Motivic indecomposable summands of $\text{PGL}_1(A)$-homogeneous varieties

Charles De Clercq

Université Paris VI

Ramification in Algebra and Geometry at Emory
Conventions

Let F be a field and p be a prime. Consider

- G a semisimple affine algebraic group of inner type
- X a projective G-homogeneous variety
Conventions

Let F be a field and p be a prime. Consider

- G a semisimple affine algebraic group of inner type
- X a projective G-homogeneous variety

Notation

The category of Grothendieck Chow motives with coefficients in \mathbb{F}_p will be denoted $\text{CM}(F; \mathbb{F}_p)$.
Conventions

Let F be a field and p be a prime. Consider

- G a semisimple affine algebraic group of inner type
- X a projective G-homogeneous variety

Notation

The category of Grothendieck Chow motives with coefficients in \mathbb{F}_p will be denoted $\text{CM}(F; \mathbb{F}_p)$.

Theorem (Chernousov, Merkurjev, 2006)

The motive of X decomposes in an "unique" way as a direct sum of indecomposable motives in $\text{CM}(F; \mathbb{F}_p)$.
Conventions

Let F be a field and p be a prime. Consider
- G a semisimple affine algebraic group of inner type
- X a projective G-homogeneous variety

Notation

The category of Grothendieck Chow motives with coefficients in \mathbb{F}_p will be denoted $\text{CM}(F; \mathbb{F}_p)$.

Theorem (Chernousov, Merkurjev, 2006)

The motive of X decomposes in an "unique" way as a direct sum of indecomposable motives in $\text{CM}(F; \mathbb{F}_p)$.

The set of indecomposable p-motives of G is the set of isomorphism classes of twists of indecomposable motives of projective G-homogeneous varieties in $\text{CM}(F; \mathbb{F}_p)$. This set is denoted \mathcal{X}_G.
Statement of the problem

Problem

If G and G' are two semisimple affine algebraic groups of inner type, can we compare \mathcal{X}_G and $\mathcal{X}_{G'}$?

We give the following answer to this question, if G is isomorphic to $\text{PGL}_1(\mathbb{A})$ and G' to $\text{PGL}_1(\mathbb{A}')$, where \mathbb{A}, \mathbb{A}' are central simple algebras.

Theorem (Motivic dichotomy of PGL_1, D. C., 2011)

Let A and A' be two central simple algebras over F. Then either $\mathcal{X}_{\text{PGL}_1}(A) \cap \mathcal{X}_{\text{PGL}_1}(A')$ is reduced to the Tate motives or $\mathcal{X}_{\text{PGL}_1}(A) = \mathcal{X}_{\text{PGL}_1}(A')$.

Main ingredients of the proof:

1. The theory of upper motives of Karpenko
2. The index reduction formula of Merkurjev, Panin and Wadsworth
Statement of the problem

Problem

If G and G' are two semisimple affine algebraic groups of inner type, can we compare \mathcal{X}_G and $\mathcal{X}_{G'}$?

We give the following answer to this question, if G is isomorphic to $\text{PGL}_1(A)$ and G' to $\text{PGL}_1(A')$, where A, A' are central simple algebras.
Statement of the problem

Problem

If G and G' are two semisimple affine algebraic groups of inner type, can we compare \mathcal{X}_G and $\mathcal{X}_{G'}$?

We give the following answer to this question, if G is isomorphic to $\text{PGL}_1(A)$ and G' to $\text{PGL}_1(A')$, where A, A' are central simple algebras.

Theorem (Motivic dichotomy of PGL_1, D. C., 2011)

Let A and A' be two central simple algebras over F. Then either $\mathcal{X}_{\text{PGL}_1(A)} \cap \mathcal{X}_{\text{PGL}_1(A')}$ is reduced to the Tate motives or $\mathcal{X}_{\text{PGL}_1(A)} = \mathcal{X}_{\text{PGL}_1(A')}$.
Statement of the problem

Problem

If \(G\) and \(G'\) are two semisimple affine algebraic groups of inner type, can we compare \(X_G\) and \(X_{G'}\)?

We give the following answer to this question, if \(G\) is isomorphic to \(\text{PGL}_1(A)\) and \(G'\) to \(\text{PGL}_1(A')\), where \(A, A'\) are central simple algebras.

Theorem (Motivic dichotomy of \(\text{PGL}_1\), D. C., 2011)

Let \(A\) and \(A'\) be two central simple algebras over \(F\). Then either

\[
X_{\text{PGL}_1(A)} \cap X_{\text{PGL}_1(A')} \text{ is reduced to the Tate motives or}
\]

\[
X_{\text{PGL}_1(A)} = X_{\text{PGL}_1(A')}.
\]

Main ingredients of the proof:

1. The theory of upper motives of Karpenko
2. The index reduction formula of Merkurjev, Panin and Wadsworth
Let X be a projective G-homogeneous variety (G still of inner type).

Definition

The isomorphism class of the indecomposable summand U_X of $X \in \text{CM}(F; \mathbb{F}_p)$ satisfying $\text{Ch}^0(U_X) \neq 0$ is the *upper* motive of X.

The set of twists of upper motives of projective G-homogeneous varieties is the set of upper p-motives of G, denoted U^p_G.

Theorem (Karpenko, 2009)

If G be a semisimple affine algebraic group of inner type, $U_G = X_G$.

Reformulation of the problem

If A and A' are central simple algebras over a field F, can we compare $U_{\text{PGL}_1}(A)$ and $U_{\text{PGL}_1}(A')$?
Let X be a projective G-homogeneous variety (G still of inner type).

Definition

The isomorphism class of the indecomposable summand U_X of $X \in \text{CM}(F; \mathbb{F}_p)$ satisfying $\text{Ch}^0(U_X) \neq 0$ is the *upper* motive of X.

The set of twists of upper motives of projective G-homogeneous varieties is the set of *upper p-motives* of G, denoted U_G.
Review of the theory of upper motives

Let X be a projective G-homogeneous variety (G still of inner type).

Definition

The isomorphism class of the indecomposable summand U_X of $X \in \text{CM}(F; \mathbb{F}_p)$ satisfying $\text{Ch}^0(U_X) \neq 0$ is the *upper* motive of X.

The set of twists of upper motives of projective G-homogeneous varieties is the set of *upper p-motives* of G, denoted U_G.

Theorem (Karpenko, 2009)

*If G be a semisimple affine algebraic group of inner type, $U_G = \mathfrak{x}_G$.***
Review of the theory of upper motives

Let X be a projective G-homogeneous variety (G still of inner type).

Definition

The isomorphism class of the indecomposable summand U_X of $X \in \text{CM}(F; \overline{F}_p)$ satisfying $\text{Ch}^0(U_X) \neq 0$ is the *upper* motive of X.

The set of twists of upper motives of projective G-homogeneous varieties is the set of *upper p-motives* of G, denoted U_G.

Theorem (Karpenko, 2009)

If G *be a semisimple affine algebraic group of inner type,* $U_G = \mathcal{X}_G$.

Reformulation of the problem

If A *and* A' *are central simple algebras over a field* F, *can we compare* $U_{\text{PGL}_1(A)}$ *and* $U_{\text{PGL}_1(A')}$?
Reduction to $\text{SB}(p^k; D)$

- Any projective $\text{PGL}_1(A)$-homogeneous variety is isomorphic to a variety of flags of right ideals $X(d_1, ..., d_k; A)$ of reduced dimension $d_1, ..., d_k$ in A.

The upper motive of $X(d_1, ..., d_k; A)$ in $\text{CM}(F; F_p)$ is the upper motive of a generalized Severi-Brauer variety $\text{SB}(p^k; D)$, where D is a division algebra Brauer equivalent to the p-primary component of A.

Reformulation of the problem

If D and D' are two p-primary division algebras over a field F, when do we have $U_{\text{SB}(p^k; D)} = U_{\text{SB}(p^k; D')}$ in $\text{CM}(F; F_p)$?

Theorem (Amitsur, 1955)

Let D and D' be two p-primary division algebras. Then $U_{\text{SB}(D)} = U_{\text{SB}(D')}$ if and only if D and D' generate the same subgroup of $\text{Br}(F)$.

Charles De Clercq (Université Paris VI)
May 19, 2011 5 / 8
Reduction to $SB(p^k; D)$

- Any projective $\text{PGL}_1(A)$-homogeneous variety is isomorphic to a variety of flags of right ideals $X(d_1, ..., d_k; A)$ of reduced dimension $d_1, ..., d_k$ in A.
- The upper motive of $X(d_1, ..., d_k; A)$ in $\text{CM}(F; \mathbb{F}_p)$ is the upper motive of a generalized Severi-Brauer variety $SB(p^\alpha; D)$, where D is a division algebra Brauer equivalent to the p-primary component of A.

Theorem (Amitsur, 1955)

Let D and D' two p-primary division algebras. Then $U_{SB(D)} = U_{SB(D')}$ if and only if D and D' generate the same subgroup of $\text{Br}(F)$.

Charles De Clercq (Université Paris VI)
May 19, 2011 5 / 8
Reduction to $SB(p^k; D)$

- Any projective $PGL_1(A)$-homogeneous variety is isomorphic to a variety of flags of right ideals $X(d_1, ..., d_k; A)$ of reduced dimension $d_1, ..., d_k$ in A.
- The upper motive of $X(d_1, ..., d_k; A)$ in $CM(F; \mathbb{F}_p)$ is the upper motive of a generalized Severi-Brauer variety $SB(p^\alpha; D)$, where D is a division algebra Brauer equivalent to the p-primary component of A.

Reformulation of the problem

If D and D' are two p-primary division algebras over a field F, when do we have $U_{SB(p^k; D)} = U_{SB(p^{k'}; D')}$ in $CM(F; \mathbb{F}_p)$?
Reduction to $\text{SB}(p^k; D)$

- Any projective $\text{PGL}_1(A)$-homogeneous variety is isomorphic to a variety of flags of right ideals $X(d_1, ..., d_k; A)$ of reduced dimension $d_1, ..., d_k$ in A.

- The upper motive of $X(d_1, ..., d_k; A)$ in $\text{CM}(F; \mathbb{F}_p)$ is the upper motive of a generalized Severi-Brauer variety $\text{SB}(p^\alpha; D)$, where D is a division algebra Brauer equivalent to the p-primary component of A.

Reformulation of the problem

If D and D' are two p-primary division algebras over a field F, when do we have $U_{\text{SB}(p^k; D)} = U_{\text{SB}(p^k'; D')}$ in $\text{CM}(F; \mathbb{F}_p)$?

Theorem (Amitsur, 1955)

Let D and D' two p-primary division algebras. Then $U_{\text{SB}(D)} = U_{\text{SB}(D')}$ if and only if D and D' generate the same subgroup of $\text{Br}(F)$.
Theorem (D. C., 2011)

Let D and D' be two division algebras of degree p^n. The following assertions are equivalent:

1. for some $0 \leq k < n$, there are two rational maps $\mathrm{SB}(p^k; D) \leftrightarrow \mathrm{SB}(p^k; D')$;
2. the classes of D and D' generate the same subgroup of $\mathrm{Br}(F)$;
3. for any $0 \leq k < n$, there are two rational maps $\mathrm{SB}(p^k; D) \leftrightarrow \mathrm{SB}(p^k; D')$.

Charles De Clercq (Université Paris VI) May 19, 2011 6 / 8
Theorem (D. C., 2011)

Let D and D' be two division algebras of degree p^n. The following assertions are equivalent:

1. for some $0 \leq k < n$, there are two rational maps
 $SB(p^k; D) \leftrightarrow SB(p^k; D')$;

2. the classes of D and D' generate the same subgroup of $Br(F)$;

3. for any $0 \leq k < n$, there are two rational maps
 $SB(p^k; D) \leftrightarrow SB(p^k; D')$.

Theorem (D. C., 2011)

Let D and D' be two p-primary division algebras. If $0 \leq k < \deg(D)$ and $0 \leq k' < \deg(D')$,

$U_{SB}(p^k; D) = U_{SB}(p^{k'}; D')$ in $\text{CM}(F; \mathbb{F}_p)$ \iff $k = k'$ and $<[D]> =<[D']>$

Charles De Clercq (Université Paris VI)
May 19, 2011 6 / 8
Theorem (D. C., 2011)

Let D and D' be two division algebras of degree p^n. The following assertions are equivalent:

1. for some $0 \leq k < n$, there are two rational maps
 $$SB(p^k; D) \leftrightarrow SB(p^k; D');$$
2. the classes of D and D' generate the same subgroup of $Br(F)$;
3. for any $0 \leq k < n$, there are two rational maps
 $$SB(p^k; D) \leftrightarrow SB(p^k; D').$$

Theorem (D. C., 2011)

Let D and D' be two p-primary division algebras. If $0 \leq k < \deg(D)$ and $0 \leq k' < \deg(D')$,
$$U_{SB}(p^k; D) = U_{SB}(p^{k'}; D') \text{ in } CM(F; \mathbb{F}_p) \iff k = k' \text{ and } <[D]> = <[D']>.$$
Corollary

If $X = X(d_1, ..., d_k; A)$ and $X' = X(d'_1, ..., d'_k; A')$ are two anisotropic varieties of flags of right ideals in A and A',

$$U_X = U_{X'} \text{ in } \text{CM}(F; \mathbb{F}_p) \iff v_p(\gcd(d_1, ..., d_k)) = v_p(\gcd(d'_1, ..., d'_k))$$

and $<[A_p]> =<[A'_p]>$.

Theorem (Motivic dichotomy of PGL_1, D. C., 2011)

Let A and A' be two central simple algebras over F. Then either $X_{\text{PGL}_1}(A) \cap X_{\text{PGL}_1}(A')$ is reduced to the Tate motives or $X_{\text{PGL}_1}(A) = X_{\text{PGL}_1}(A')$.

Charles De Clercq (Université Paris VI) May 19, 2011 7 / 8
Corollary

If \(X = X(d_1, \ldots, d_k; A) \) and \(X' = X(d'_1, \ldots, d'_{k'}; A') \) are two anisotropic varieties of flags of right ideals in \(A \) and \(A' \),

\[U_X = U_{X'} \text{ in } \text{CM}(F; \mathbb{F}_p) \iff v_p(\gcd(d_1, \ldots, d_k)) = v_p(\gcd(d'_1, \ldots, d'_{k'})) \]

and \(<[A_p]> = <[A'_p]> \)

Theorem (Motivic dichotomy of \(\text{PGL}_1 \), D. C., 2011)

Let \(A \) and \(A' \) be two central simple algebras over \(F \). Then either

\(\mathcal{X}_{\text{PGL}_1}(A) \cap \mathcal{X}_{\text{PGL}_1}(A') \) is reduced to the Tate motives or

\(\mathcal{X}_{\text{PGL}_1}(A) = \mathcal{X}_{\text{PGL}_1}(A') \).
Corollary

If $X = X(d_1, ..., d_k; A)$ and $X' = X(d'_1, ..., d'_{k'}; A')$ are two anisotropic varieties of flags of right ideals in A and A',

$$U_X = U_{X'} \text{ in } \text{CM}(F; \mathbb{F}_p) \iff v_p(\gcd(d_1, ..., d_k)) = v_p(\gcd(d'_1, ..., d'_{k'}))$$

and $<[A_p]> =<[A'_p]>$

Theorem (Motivic dichotomy of PGL_1, D. C., 2011)

Let A and A' be two central simple algebras over F. Then either

$\mathcal{X}_{\text{PGL}_1}(A) \cap \mathcal{X}_{\text{PGL}_1}(A')$ is reduced to the Tate motives or

$\mathcal{X}_{\text{PGL}_1}(A) = \mathcal{X}_{\text{PGL}_1}(A')$.
What happens if the ring a coefficient is not \mathbb{F}_p?

Theorem (D. C. 2010)

Let G be a semisimple algebraic group of inner type and X a projective G-homogeneous variety. Then for any finite field \mathbb{F}_q of characteristic p, the motivic decomposition of $X \in \text{CM}(F; \mathbb{F}_p)$ lifts to the motivic decomposition of $X \in \text{CM}(F; \mathbb{F}_q)$.