The cyclicity problem for the projective Schur group

Eli Geva

Joint work with Eli Aljadeff

May 2011
Definitions

Let k be any field. A finite dimensional k-central simple algebra A is a projective Schur algebra over k if it is spanned over k as a vector space by a subgroup Γ of A^\times which is finite modulo k^\times. Notation: $A = k(\Gamma)$.

Example: Symbol algebras $(a, b)_n$: Assume $\xi_n, a, b \in k$, put $\Gamma = \langle x, y | x^n = a, y^n = b, [x, y] = \xi_n \rangle$, $\Gamma / k^\times \sim = \mathbb{Z}_n \times \mathbb{Z}_n$. The projective Schur group of k is the subgroup of $Br(k)$ generated by (and in fact consists of) all classes that may be represented by a projective Schur algebra over k. By Merkurjev-Suslin theorem if k contain all roots of 1 then $PS(k) = Br(k)$. Equality holds also if k is a global field. It was conjectured by Nelis and Van Oystaeyen in 1991 that $PS(k) = Br(k)$ for all fields k, but in 1994 Aljadeff and Sonn gave a counter example (e.g. $k = \mathbb{Q}(x)$).
Definitions

Let k be any field. A finite dimensional k-central simple algebra A is a projective Schur algebra over k if it is spanned over k as a vector space by a subgroup Γ of A^\times which is finite modulo k^\times. Notation: $A = k(\Gamma)$.

Example: Symbol algebras $(a, b)_n$: Assume $\xi_n, a, b \in k$, put $\Gamma = \langle x, y \mid x^n = a, y^n = b, [x, y] = \xi_n \rangle$, $\Gamma / k^\times \cong \mathbb{Z}_n \times \mathbb{Z}_n$.
Definitions

Let k be any field. A finite dimensional k-central simple algebra A is a projective Schur algebra over k if it is spanned over k as a vector space by a subgroup Γ of A^\times which is finite modulo k^\times. Notation: $A = k(\Gamma)$.

Example: Symbol algebras $(a, b)_n$: Assume $\xi_n, a, b \in k$, put $\Gamma = \langle x, y \mid x^n = a, y^n = b, [x, y] = \xi_n \rangle$, $\Gamma/k^\times \cong \mathbb{Z}_n \times \mathbb{Z}_n$.

The projective Schur group of k is the subgroup of $Br(k)$ generated by (and in fact consists of) all classes that may be represented by a projective Schur algebra over k.

By Merkurjev-Suslin theorem if k contain all roots of 1 then $PS(k) = Br(k)$. Equality holds also if k is a global field. It was conjectured by Nélis and van Oystaeyen in 1991 that $PS(k) = Br(k)$ for all fields k, but in 1994 Aljadeff and Sonn gave a counter example (e.g. $k = \mathbb{Q}(x)$).
Let k be any field. A finite dimensional k-central simple algebra A is a projective Schur algebra over k if it is spanned over k as a vector space by a subgroup Γ of A^\times which is finite modulo k^\times. Notation: $A = k(\Gamma)$.

Example: Symbol algebras $(a, b)_n$: Assume $\xi_n, a, b \in k$, put $\Gamma = \langle x, y \mid x^n = a, y^n = b, [x, y] = \xi_n \rangle$, $\Gamma/k^\times \cong \mathbb{Z}_n \times \mathbb{Z}_n$.

The projective Schur group of k is the subgroup of $Br(k)$ generated by (and in fact consists of) all classes that may be represented by a projective Schur algebra over k.

By Merkurjev-Suslin theorem if k contain all roots of 1 then $PS(k) = Br(k)$. Equality holds also if k is a global field. It was conjectured by Nelis and Van Oystaeyen in 1991 that $PS(k) = Br(k)$ for all fields k, but in 1994 Aljadeff and Sonn gave a counter example (e.g. $k = \mathbb{Q}(x)$).
Theorem: (G & A)

Every projective Schur algebra is Brauer equivalent to a tensor product of cyclic algebras. Or in other words, the projective Schur group is generated by cyclic algebras.
If $\text{char}(k) > 0$

The case of $\text{char}(k) > 0$ was already known by Aljadeff and Sonn [AS, 2001]. Main ingredients:
If $\text{char}(k) > 0$

The case of $\text{char}(k) > 0$ was already known by Aljadeff and Sonn [AS, 2001]. Main ingredients:

- Merkurjev-Suslin theorem.
If $\text{char}(k) > 0$

The case of $\text{char}(k) > 0$ was already known by Aljadeff and Sonn [AS, 2001]. Main ingredients:

- Merkurjev-Suslin theorem.
- Every finite cyclotomic extension of a field with positive characteristic is cyclic.
If $\text{char}(k) > 0$

The case of $\text{char}(k) > 0$ was already known by Aljadeff and Sonn [AS, 2001]. Main ingredients:

- Merkurjev-Suslin theorem.
- Every finite cyclotomic extension of a field with positive characteristic is cyclic.

Of course this is false in $\text{char}(k) = 0$.
Question:

How to construct projective Schur algebras in a natural way?
Question:

How to construct projective Schur algebras in a natural way?

- Notation: Given any field extension F/k we denote by $\text{Rad}_k(F)$ the subgroup of F^\times generated by all units of F which are of finite order modulo k^\times.
Question:

How to construct projective Schur algebras in a natural way?

- Notation: Given any field extension F/k we denote by $\text{Rad}_k(F)$ the subgroup of F^\times generated by all units of F which are of finite order modulo k^\times.

- A field extension F/k is said to be radical if $F = k(\text{Rad}_k(F))$.

Is every projective Schur algebra Brauer equivalent to such an algebra? Aljadeff, Sonn and Del-Rio: yes! (Even with G abelian) (A-S for $\text{char}(k) > 0$ and $A-D$ for $\text{char}(k) = 0$)
Question:

How to construct projective Schur algebras in a natural way?

- Notation: Given any field extension F/k we denote by $\text{Rad}_k(F)$ the subgroup of F^\times generated by all units of F which are of finite order modulo k^\times.

- A field extension F/k is said to be radical if $F = k(\text{Rad}_k(F))$.

- A k-central simple algebra A is radical if A is a crossed product of the form $(F/k, G, \alpha)$ where F/k is radical and $\alpha \in \text{Rad}_k(F)$.
Question:

How to construct projective Schur algebras in a natural way?

- Notation: Given any field extension F/k we denote by $Rad_k(F)$ the subgroup of F^\times generated by all units of F which are of finite order modulo k^\times.

- A field extension F/k is said to be radical if $F = k(Rad_k(F))$.

- A k-central simple algebra A is radical if A is a crossed product of the form $(F/k, G, \alpha)$ where F/k is radical and $\alpha \in Rad_k(F)$.

Is every projective Schur algebra Brauer equivalent to such an algebra? Aljadeff, Sonn and Del-Rio: yes! (Even with G abelian) (A-S for $char(k) > 0$ and $A-D$ for $char(k) = 0$)
If $\text{char}(k) = 0$

Let $A = k(\Gamma)$ be a k-projective Schur algebra.

- By Aljadeff and Del-Rio we can assume $A = (k(H)/k, G, \alpha)$ where $H \subseteq \text{Rad}_k(F)$ is finite modulo k^\times, G is abelian and $\alpha \in H$.
If $\text{char}(k) = 0$

Let $A = k(\Gamma)$ be a k-projective Schur algebra.

- By Aljadeff and Del-Rio we can assume $A = (k(H)/k, G, \alpha)$ where $H \subseteq \text{Rad}_k(F)$ is finite modulo k^\times, G is abelian and $\alpha \in H$.

- We can assume A is of prime power index.
If $\text{char}(k) = 0$

Let $A = k(\Gamma)$ be a k-projective Schur algebra.

- By Aljadeff and Del-Rio we can assume $A = (k(H)/k, G, \alpha)$ where $H \subseteq \text{Rad}_k(F)$ is finite modulo k^\times, G is abelian and $\alpha \in H$.

- We can assume A is of prime power index.

- We can assume $\alpha \in H_p$ where H_p is the subgroup of H generated by all elements of H with p-power order modulo k^\times.
continue:

- $A = k(\Gamma) = \bigoplus_{\sigma \in G} k(H) u_{\sigma}$.
A = k(\Gamma) = \bigoplus_{\sigma \in G} k(H)u_{\sigma}.

If \([u_\sigma, u_\tau] = 1\) for all \(\sigma, \tau \in G\) then \(A\) is a tensor product of cyclic algebras.
A = k(\Gamma) = \bigoplus_{\sigma \in G} k(H)u_\sigma.

If \([u_\sigma, u_\tau] = 1\) for all \(\sigma, \tau \in G\) then \(A\) is a tensor product of cyclic algebras.

The group \(\Gamma\) is center-by-finite, therefore by a theorem of Schur \(\Gamma'\) is finite. This implies that for all \(\sigma, \tau \in G\) the commutator \([u_\sigma, u_\tau]\) is a root of unity (and by assumption) of \(p\)-power order.
\[A = k(\Gamma) = \oplus_{\sigma \in G} k(H)u_{\sigma}. \]

If \([u_\sigma, u_\tau] = 1\) for all \(\sigma, \tau \in G\) then \(A\) is a tensor product of cyclic algebras.

The group \(\Gamma\) is center-by-finite, therefore by a theorem of Schur \(\Gamma'\) is finite. This implies that for all \(\sigma, \tau \in G\) the commutator \([u_\sigma, u_\tau]\) is a root of unity (and by assumption) of \(p\)-power order.

"Find" a radical abelian algebra which is Brauer equivalent to \(A\) with suitable representatives \(\{u_\sigma \mid \sigma \in G\}\) such that the commutators \([u_\sigma, u_\tau] = 1\) for all \(\sigma, \tau \in G\).