Questions Concerning the Regular Realizability of Groups over the Projective Line over Various Fields

Hilaf Hasson

May 19, 2011
Introduction

Temporary Motivation
Cute Topology Problem
$\mathbb{C}((t))$
\mathbb{Q}^{un}

Some Global Results

Global Results: Arbitrary Branch Points
Global Results: \mathbb{Q}-Rational Branch Points

Introducing: \mathbb{F}_p
Analogy
Back to \mathbb{Q}_p^{un}

More
Temporary Motivation

- What is the étale fundamental group of $\mathbb{P}^1_\mathbb{Q}$ minus some points?
Temporary Motivation

- What is the étale fundamental group of $\mathbb{P}_\mathbb{Q}^1$ minus some points?
- Very hard...
Cute Topology Problem

Say that we are given \(B_2(0) \setminus \{0\} \times \mathbb{P}^1_{\mathbb{C}} \setminus \{0, t, 2, 3\} \), where \(B_2(0) \) is an open disc of radius 2 in \(\mathbb{C} \) with parameter \(t \). What is its fundamental group?
Cute Topology Problem

Say that we are given $B_2(0) \setminus \{0\} \times \mathbb{P}_\mathbb{C}^1 \setminus \{0, t, 2, 3\}$, where $B_2(0)$ is an open disc of radius 2 in \mathbb{C} with parameter t. What is its fundamental group?

Look at the fiber $t = 1$. Here we can take loops $\alpha_1, \ldots, \alpha_4$ coming up from $-3i$ and looping counter-clockwise around $0, 1, 2, 3$ respectively. These generate the fundamental group of that fiber, and the relations between the α_i are generated by the sole relation $\alpha_1 \ldots \alpha_4 = 1$.
Cute Topology Problem

Say that we are given $B_2(0) \setminus \{0\} \times \mathbb{P}_{\overline{C}}^1 \setminus \{0, t, 2, 3\}$, where $B_2(0)$ is an open disc of radius 2 in \mathbb{C} with parameter t. What is its fundamental group?

Look at the fiber $t = 1$. Here we can take loops $\alpha_1, \ldots, \alpha_4$ coming up from $-3i$ and looping counter-clockwise around 0, 1, 2, 3 respectively. These generate the fundamental group of that fiber, and the relations between the α_i are generated by the sole relation $\alpha_1 \ldots \alpha_4 = 1$.

$1 \to \pi_1(\mathbb{P}_{\overline{C}}^1 \setminus \{0, 1, 2, 3\}) \to \pi_1(B_2(0) \setminus \{0\} \times \mathbb{P}_{\overline{C}}^1 \setminus \{0, t, 2, 3\}) \to \pi_1(B_2(0) \setminus \{0\})(\cong \mathbb{Z}) \to 1$
Cute Topology Problem

- Say that we are given $B_2(0) \setminus \{0\} \times \mathbb{P}^1_{\mathbb{C}} \setminus \{0, t, 2, 3\}$, where $B_2(0)$ is an open disc of radius 2 in \mathbb{C} with parameter t. What is its fundamental group?

- Look at the fiber $t = 1$. Here we can take loops $\alpha_1, \ldots, \alpha_4$ coming up from $-3i$ and looping counter-clockwise around $0, 1, 2, 3$ respectively. These generate the fundamental group of that fiber, and the relations between the α_i are generated by the sole relation $\alpha_1 \cdots \alpha_4 = 1$.

- $1 \to \pi_1(\mathbb{P}^1_{\mathbb{C}} \setminus \{0, 1, 2, 3\}) \to \pi_1(B_2(0) \setminus \{0\} \times \mathbb{P}^1_{\mathbb{C}} \setminus \{0, t, 2, 3\}) \to \pi_1(B_2(0) \setminus \{0\})(\cong \mathbb{Z}) \to 1$

- This is split, by, say, using the functoriality of π_1 and the section $t \mapsto (t, -3i)$.

Hilaf Hasson

Questions Concerning the Regular Realizability of Groups over Various Fields
Cute Topology Problem

Say that we are given $B_2(0) \setminus \{0\} \times \mathbb{P}_C^1 \setminus \{0, t, 2, 3\}$, where $B_2(0)$ is an open disc of radius 2 in \mathbb{C} with parameter t. What is its fundamental group?

Look at the fiber $t = 1$. Here we can take loops $\alpha_1, \ldots, \alpha_4$ coming up from $-3i$ and looping counter-clockwise around 0, 1, 2, 3 respectively. These generate the fundamental group of that fiber, and the relations between the α_i are generated by the sole relation $\alpha_1 \ldots \alpha_4 = 1$.

$1 \rightarrow \pi_1(\mathbb{P}_C^1 \setminus \{0, 1, 2, 3\}) \rightarrow \pi_1(B_2(0) \setminus \{0\} \times \mathbb{P}_C^1 \setminus \{0, t, 2, 3\}) \rightarrow \pi_1(B_2(0) \setminus \{0\})(\cong \mathbb{Z}) \rightarrow 1$

This is split, by, say, using the functoriality of π_1 and the section $t \mapsto (t, -3i)$.

The action in this splitting is:

$\alpha_1 \mapsto \alpha_1^{\alpha_1^{\alpha_2}}, \alpha_2 \mapsto \alpha_2^{\alpha_1^{\alpha_2}}, \alpha_3 \mapsto \alpha_3, \alpha_4 \mapsto \alpha_4$.
So \(\pi_1(B_2(0) \setminus \{0\}) \times \mathbb{P}^1_C \setminus \{0, t, 2, 3\} \) \(\cong \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, \delta \mid \alpha_1 \cdots \alpha_4 = 1, \alpha_1^\delta = \alpha_1^{\alpha_1 \alpha_2}, \alpha_2^\delta = \alpha_2^{\alpha_1 \alpha_2}, \alpha_3^\delta = \alpha_3, \alpha_4^\delta = \alpha_4 \rangle \)
This is analogous to the following question: what is the étale fundamental group of $\mathbb{P}^1_{\mathbb{C}((t))} \setminus \{0, t, 2, 3\}$?
This is analogous to the following question: what is the étale fundamental group of $\mathbb{P}^1_{\mathbb{C}((t))} \setminus \{0, t, 2, 3\}$?

The (profinite completion of) the same!
This is also analogous to the following question: what is the prime-to-p étale fundamental group of $\mathbb{P}^1_{\mathbb{Q}_p} \setminus \{0, p, 2, 3\}$?
This is also analogous to the following question: what is the prime-to-p étale fundamental group of $\mathbb{P}^1_{Q_p \setminus \{0, p, 2, 3\}}$?

(The maximal prime-to-p quotient of) the same!
Global Results: Arbitrary Branch Points

∀ finite $G \exists$ points $\{a_1, \ldots, a_r\}$ in \mathbb{P}^1_C such that $\forall X_C \rightarrow \mathbb{P}^1_C$ that is G-Galois with branch points $\{a_1, \ldots, a_r\}$, descends to a field K such that K over \mathbb{Q} is branched at most at the primes that divide $|G|$.
Global Results: Arbitrary Branch Points

- \(\forall \) finite \(G \exists \) points \(\{a_1, \ldots, a_r\} \) in \(\mathbb{P}^1_{\mathbb{C}} \) such that \(\forall \mathcal{X}_{\mathbb{C}} \rightarrow \mathbb{P}^1_{\mathbb{C}} \) that is \(G \)-Galois with branch points \(\{a_1, \ldots, a_r\} \), descends to a field \(K \) such that \(K \) over \(\mathbb{Q} \) is branched at most at the primes that divide \(|G| \).

- In particular, \(\forall \) finite \(G \), \(\exists K \) such that \(G \) is realizable as a Galois group over \(K \), and \(K \) over \(\mathbb{Q} \) is branched at most at the primes that divide \(|G| \).
Global Results: Arbitrary Branch Points

∀ finite $G \exists$ points $\{a_1, \ldots, a_r\}$ in $\mathbb{P}^1_{\mathbb{C}}$ such that $\forall \chi_{\mathbb{C}} \rightarrow \mathbb{P}^1_{\mathbb{C}}$ that is G-Galois with branch points $\{a_1, \ldots, a_r\}$, descends to a field K such that K over \mathbb{Q} is branched at most at the primes that divide $|G|$.

In particular, \forall finite G, $\exists K$ such that G is realizable as a Galois group over K, and K over \mathbb{Q} is branched at most at the primes that divide $|G|$.

Far-reaching goal: continue looking prime-to-p, and hope to construct a cover of $\mathbb{P}^1_{\mathbb{C}}$ that descends to a number field K such that K over \mathbb{Q} has all but finitely many primes split. This will imply that K is \mathbb{Q}.

More immediate goal: understand locally and globally the condition that the branch points be rational.
Global Results: Arbitrary Branch Points

- \(\forall \) finite \(G \) \(\exists \) points \(\{a_1, \ldots, a_r\} \) in \(\mathbb{P}^1_{\mathbb{C}} \) such that \(\forall X_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}} \) that is \(G \)-Galois with branch points \(\{a_1, \ldots, a_r\} \), descends to a field \(K \) such that \(K \) over \(\mathbb{Q} \) is branched at most at the primes that divide \(|G| \).

- In particular, \(\forall \) finite \(G \), \(\exists K \) such that \(G \) is realizable as a Galois group over \(K \), and \(K \) over \(\mathbb{Q} \) is branched at most at the primes that divide \(|G| \).

- Far-reaching goal: continue looking prime-to-\(p \), and hope to construct a cover of \(\mathbb{P}^1_{\mathbb{C}} \) that descends to a number field \(K \) such that \(K \) over \(\mathbb{Q} \) has all but finitely many primes split. This will imply that \(K \) is \(\mathbb{Q} \).

- More immediate goal: understand locally and globally the condition that the branch points be rational.
Global Results: \mathbb{Q}-Rational Branch Points

This more nuanced view can for example prove the following global results:

- Theorem: For any finite group G such that it is generated by two elements and $Z(G)$ (for example, any simple or quasi-simple group), \exists a number field K such that G is regularly realizable over K with \mathbb{Q}-rational branch points and such that K over \mathbb{Q} is branched only at primes that divide $|G|$.
This more nuanced view can for example prove the following global results:

- Theorem: For any finite group G such that it is generated by two elements and $Z(G)$ (for example, any simple or quasi-simple group), \exists a number field K such that G is regularly realizable over K with \mathbb{Q}-rational branch points and such that K over \mathbb{Q} is branched only at primes that divide $|G|$.

- Theorem: For any finite group G, and for any finite set of primes S that don’t divide $|G|$, \exists a number field K such that G is regularly realizable over K with \mathbb{Q}-rational branch points and such that K over \mathbb{Q} is unramified over the primes of S.
Introducing: \mathbb{F}_p

- $\mathbb{C}((t))$ and \mathbb{Q}^{un}_p are analogous because they are both cohomological dimension 1 fields with isomorphic prime-to-p absolute Galois groups ($\cong \hat{\mathbb{Z}}(p)$). \mathbb{F}_p also satisfies this.
Introducing: \mathbb{F}_p

- $\mathbb{C}(t))$ and \mathbb{Q}_p^{un} are analogous because they are both cohomological dimension 1 fields with isomorphic prime-to-p absolute Galois groups ($\cong \hat{\mathbb{Z}}(p)$). \mathbb{F}_p also satisfies this.

- Differences: it is not the quotient field of a complete DVR, let alone of a complete DVR with an algebraically closed residue field. Further, it has very few roots of unity.
Introducing: \mathbb{F}_p

- $\mathbb{C}((t))$ and \mathbb{Q}_p^{un} are analogous because they are both cohomological dimension 1 fields with isomorphic prime-to-p absolute Galois groups ($\cong \widehat{\mathbb{Z}}(p)$). \mathbb{F}_p also satisfies this.

- Differences: it is not the quotient field of a complete DVR, let alone of a complete DVR with an algebraically closed residue field. Further, it has very few roots of unity.

- The Galois action $Gal^{(p)}(\mathbb{F}_p)$ on $\pi_1^{(p)}(\mathbb{P}^1_{\mathbb{F}_p} \setminus \{a_1, ..., a_r\})$ is now much less well understood.
Introducing: \mathbb{F}_p

- $\mathbb{C}((t))$ and \mathbb{Q}_p^{un} are analogous because they are both cohomological dimension 1 fields with isomorphic prime-to-p absolute Galois groups ($\cong \hat{\mathbb{Z}}(p)$). \mathbb{F}_p also satisfies this.

- Differences: it is not the quotient field of a complete DVR, let alone of a complete DVR with an algebraically closed residue field. Further, it has very few roots of unity.

- The Galois action $Gal(p)(\mathbb{F}_p)$ on $\pi_1^{(p)}(\mathbb{P}^1_{\mathbb{F}_p} \setminus \{a_1, ..., a_r\})$ is now much less well understood.

- Still, one can say a lot using this analogy!
Let δ denote a (topological) generator of $Gal(p)(\mathbb{Q}_{p}^{un})$.

For $\pi_{1}(\mathbb{P}^{1}_{\mathbb{Q}_{p}} \setminus \{a_{1}, ..., a_{r}\})$ (with $a_{1}, ..., a_{r}$ \mathbb{Q}_{p}^{un}-rational), in the analogy with geometry, one can observe:

$$\exists h_{i} \in \langle \alpha_{1}, ..., \alpha_{r} | \prod \alpha_{i} = 1 \rangle. \alpha_{i}^{\delta^{n}} = \alpha_{i}^{h_{i}^{n}}.$$
Let δ denote a (topological) generator of $Gal^{(p)}(\mathbb{Q}^{un}_p)$.

- For $\pi_1(\mathbb{P}^1_{\mathbb{Q}^{un}_p} \setminus \{a_1, \ldots, a_r\})$ (with a_1, \ldots, a_r \mathbb{Q}^{un}_p-rational), in the analogy with geometry, one can observe:
 \[\exists h_i \in \langle \alpha_1, \ldots, \alpha_r \mid \prod \alpha_i = 1 \rangle \cdot \alpha_i^{\delta^n} = \alpha_i^{h_i^n}. \]

- This implies: any Galois branched cover of $\mathbb{P}^1_{\mathbb{Q}_p}$ with \mathbb{Q}^{un}_p-rational branch points is already defined over $\mathbb{Q}^{un}_p \left(\frac{1}{|G|/|Z(G)|} \right)$.
Let δ denote a (topological) generator of $\text{Gal}^{(p)}(\mathbb{Q}_{p}^{un})$.

- For $\pi_1(\mathbb{P}^1_{\mathbb{Q}_{p}} \setminus \{a_1, \ldots, a_r\})$ (with $a_1, \ldots, a_r \mathbb{Q}_{p}^{un}$-rational), in the analogy with geometry, one can observe:
 \[\exists h_i \in \langle \alpha_1, ..., \alpha_r | \prod \alpha_i = 1 \rangle. \alpha_i^{\delta_n} = \alpha_i^{h_i^n}. \]

- This implies: any Galois branched cover of $\mathbb{P}^1_{\mathbb{Q}_{p}}$ with \mathbb{Q}_{p}^{un}-rational branch points is already defined over $\mathbb{Q}_{p}^{un}(p \frac{1}{|G|/|Z(G)|})$.

- For example: If the branch points are $\{0, p, \infty\}$ then the Galois action is:
 \[
 \alpha_1^{\delta_n} = (\alpha_1 \alpha_2)^n \\
 \alpha_2^{\delta_n} = (\alpha_1 \alpha_2)^n \\
 \alpha_3^{\delta_n} = \alpha_3
 \]
It is not true that any Galois branched cover over $\mathbb{P}^1_{\mathbb{F}_p}$ with \mathbb{F}_p-rational branch points is defined over $\mathbb{F}_p^{G/Z(G)}$. But:
It is not true that any Galois branched cover over $\mathbb{P}^1_{\mathbb{F}_p}$ with \mathbb{F}_p-rational branch points is defined over $\mathbb{F}_p^{|G/\mathbb{Z}(G)|}$. But:

Let K be a finite field of characteristic p.

Theorem: $\forall G$ which is solvable and prime-to-p, and \forall chief series $1 = G_0 \triangleleft \ldots \triangleleft G_m = G$ (where $G_i \triangleleft G$ and $G_i/G_{i-1} \cong (\mathbb{Z}/l_i\mathbb{Z})^{n_i}$ where the l_i’s are prime), and $\forall G$-Galois extension with K-rational branch points and with branch cycle description $(g_1, .., g_r)$, $X \to \mathbb{P}^1_{K}$:

Then the cover descends to the L such that $(L : K(\zeta_{|G|})) = |G| \prod_i \exp(Sp_{2u_i}(\mathbb{Z}/l_i\mathbb{Z}))$ where $u_i := (1 - |G/G_i| + \frac{1}{2}|G/G_i| \sum_{j=1}^r (1 - \frac{1}{a_{ij}}))$ and $a_{ij} :=$ the order of g_j in G/G_i.
There is more to say, so if you're interested, ask me later..