Essential dimension of separable subalgebras

Roland Lötscher

University of Munich, Germany

May 18, 2011
Table of contents

1 Essential dimension

2 The Problem

3 Solution of a special case

4 Split versus non-split groups
1 Essential dimension

2 The Problem

3 Solution of a special case

4 Split versus non-split groups
Recollection on essential dimension

- **Intuitively:** Essential dimension = number of independent parameters needed to define algebraic objects of some kind
- **Formally:** \(\mathcal{A} : \text{Fields}_F \to \text{Sets} \) a functor.
 For \(K \in \text{Fields}_F, a \in \mathcal{A}(K) \)

 \[\text{ed } a := \min \{ \text{trdeg}_F K_0 \mid \text{K_0 a field of definition of a} \} \]

 \[\text{ed } \mathcal{A} := \sup_{a \in \text{Im}(\mathcal{A}(K_0) \to \mathcal{A}(K))} \text{ed } a \]

- If \(G \) is an algebraic group over \(F \): \(\text{ed } G := \text{ed } H^1(-, G), \quad H^1(K, G) \cong \{ G\text{-torsors over } K \}/\text{iso}. \)
Recollection on essential dimension

- If G is an algebraic group over F: $\text{ed } G := \text{ed } H^1(_, G)$,
 \[H^1(K, G) \cong \{ G\text{-torsors over } K \}/\text{iso}. \]

- Other interpretations for some G:
 - $H^1(_, \text{PGL}_n) \cong \text{CSA}_n \cong \text{SB-Var}_{n-1}$ central simple algebras of degree n (or $n-1$-dimensional Severi Brauer varieties).
 - $H^1(_, \text{O}_n) \cong \text{Quad}_n$ non-degenerate quadratic forms of dimension n
 - $H^1(_, \text{S}_n) \cong \text{ét}_n \cong \text{Gal}_{S_n}$ étale algebras of dimension n (or Galois S_n-algebras).
 - etc.

- Thus essential dimension of algebraic groups can be used to study the “complexity” of interesting algebraic objects.
1. Essential dimension
2. The Problem
3. Solution of a special case
4. Split versus non-split groups
Throughout this talk: $G = N_{\text{GL}_1(A)}(\text{GL}_1(B))$, where

- A is a central simple F-algebra
- B is a separable F-subalgebra of A

$$B = B_1 \times \cdots \times B_r,$$

where each B_i is simple, and $Z(B) = K_1 \times \cdots \times K_r$ is étale.

- $\text{GL}_1(A)$ is the algebraic group of invertible elements of A:

$$\text{GL}_1(A)(R) = A^*_R,$$

where $A_R = A \otimes_F R$.

- Problem: Compute $\text{ed } G$!
Motivation: Part 1

Interpretation of the functor $H^1(K, G)$

\[H^1(K, G) \cong \{ B' \subseteq A_K \text{ sep. subalg. of the “same type” as } B \}/\text{conj.} \]

- $B_1, B_2 \subseteq A$ are **conjugate** if $\exists a \in A^\times : aB_1a^{-1} = B_2$.
- type of $B \subseteq A$ is a discrete invariant under conjugation:

 Write $B_{\text{sep}} = B_1 \times \cdots \times B_m, \quad B_i \cong M_{d_i}(F_{\text{sep}})$,

 $C_{A_{\text{sep}}}(B_{\text{sep}}) = C_1 \times \cdots \times C_m, \quad C_i \cong M_{r_i}(F_{\text{sep}})$

 s.t. $Z(B_i) = Z(C_i)$.

- type of B: multiset $t_B = [(d_1, r_1), \ldots, (d_m, r_m)]$ (repetitions allowed, order does not matter).

Special cases

- B étale: $t_B = [(1, r_1), \ldots, (1, r_m)]$ (Krashen)
- B central simple: $t_B = [(d, r)]$

- Relation: $\sum_{i=1}^m d_ir_i = \deg A$.
Motivation: Part 1

Interpretation of the functor $H^1(K, G)$

$$H^1(K, G) \cong \{ B' \subseteq A_K \text{ sep. subalg. of the “same type” as } B \}/\text{conj.}$$

- Thus \textit{ed}\ G measures the complexity of certain separable subalgebras of A (and the A_K‘s)!

- When t_B satisfies ($d_i = d_j \Rightarrow r_i = r_j)$:

 conjugacy classes = isomorphism classes

 for type t_B subalgebras.
Motivation: Part 2

\[H^1(K, G) \cong \{ B' \subseteq A_K \text{ sep. subalg. of type } t_B \}/\text{conj.} \]

For some choice of B and A the value $\text{ed } G$ coincides with:

- $\text{ed } \text{PGL}_n = \text{ed } \text{CSA}_n$
- $\text{ed } S_n = \text{ed } \text{Ét}_n$
- More generally: essential dim. of \textit{forms of any separable algebra}.

In general computing $\text{ed } G$ is very \textbf{hard}, but also very \textbf{interesting}. We will solve an interesting special case.
Motivation: Part 2

\[H^1(K, G) \cong \{ B' \subseteq A_K \text{ separ. subalg. of type } t_B \}/\text{conj.} \]

For some choice of \(B \) and \(A \) the value \(\text{ed } G \) coincides with:
- \(\text{ed } \text{PGL}_n = \text{ed } \text{CSA}_n \)
 - Choose \(B \) central simple of degree \(n \), \(n^2 \text{ ind } A \mid \text{deg } A \)
 - e.g. \(B = M_n(F) \hookrightarrow M_n(F) \otimes_F M_n(F), \ a \mapsto a \otimes 1. \)
 Here \(G \cong (\text{GL}_n \times \text{GL}_n)/\{(t, t^{-1}) \mid t \in \mathbb{G}_m\}. \)
- \(\text{ed } S_n = \text{ed } \hat{\text{Et}}_n \)
- More generally: essential dim. of forms of any separable algebra.

In general computing \(\text{ed } G \) is very hard, but also very interesting. We will solve an interesting special case.
Motivation: Part 2

\[H^1(K, G) \cong \{ B' \subseteq A_K \text{ sep. subalg. of type } t_B \}/\text{conj.} \]

For some choice of \(B \) and \(A \) the value \(\text{ed } G \) coincides with:

- \(\text{ed } \text{PGL}_n = \text{ed } \text{CSA}_n \)
- \(\text{ed } S_n = \text{ed } \text{ét}_n \)

 - Choose \(B \) étale of dimension \(n \), \(t_B = [(1, r), \ldots, (1, r)] \), \(\text{ind } A | r \)

 - e.g. \(F^n \hookrightarrow M_n(F) \otimes M_r(F), (\lambda_1, \ldots, \lambda_n) \mapsto \text{Diag}(\lambda_1, \ldots, \lambda_n) \otimes 1 \)

Here \(G \cong (\text{GL}_r)^n \rtimes S_n \).

More generally: essential dim. of forms of any separable algebra.

In general computing \(\text{ed } G \) is very hard, but also very interesting. We will solve an interesting special case.
Motivation: Part 2

\[H^1(K, G) \cong \{ B' \subset A_K \text{ sep. subalg. of type } t_B \}/\text{conj.} \]

For some choice of \(B \) and \(A \) the value \(\text{ed } G \) coincides with:

- \(\text{ed PGL}_n = \text{ed CSA}_n \)
 - \(\text{ed CSA}_n \) is completely open (even if \(n \) is a prime)
 - \(\text{ed}_p \text{ CSA}_n \) is solved for \(\nu_p(n) \leq 1 \) and \(\nu_p(n) = 2 \) (Merkurjev), \(\text{char } F \neq p \)
- \(\text{ed } S_n = \text{ed } \text{Ét}_n \)
- More generally: essential dim. of forms of any separable algebra.

In general computing \(\text{ed } G \) is very hard, but also very interesting. We will solve an interesting special case.
Motivation: Part 2

\[H^1(K, G) \cong \{ B' \subseteq A_K \text{ sep. subalg. of type } t_B \}/\text{conj.} \]

For some choice of \(B \) and \(A \) the value \(\text{ed } G \) coincides with:

- \(\text{ed } \text{PGL}_n = \text{ed } \text{CSA}_n \)
 - \(\text{ed } \text{CSA}_n \) is completely open (even if \(n \) is a prime)
 - \(\text{ed}_p \text{CSA}_n \) is solved for \(\nu_p(n) \leq 1 \) and \(\nu_p(n) = 2 \) (Merkurjev), \(\text{char } F \neq p \)

- \(\text{ed } S_n = \text{ed } \text{Ét}_n \)
 - \(\text{ed } \text{Ét}_n \) is open for \(n \geq 8 \) (\(n \geq 7 \), \(\text{char } F \geq 0 \); \(n \geq 6 \), \(\text{char } F = 2 \))
 - \(\text{ed } \text{Ét}_7 = 4 \) when \(\text{char } F = 0 \) (Duncan)
 - \(\text{ed}_p S_n = \lfloor \frac{n}{p} \rfloor \), \(\text{char } F \neq p \) (Serre). Open in \(\text{char } F = p \).

- More generally: essential dim. of forms of any separable algebra.

In general computing \(\text{ed } G \) is very hard, but also very interesting. We will solve an interesting special case.
Outline

1. Essential dimension
2. The Problem
3. Solution of a special case
4. Split versus non-split groups
The special case

We consider the case, where:

- A is a division algebra
- $\deg A = p^n$ ($n \geq 0$)
- (No assumptions on F or char F!)

Note:

- A division $\Rightarrow t_B = [(d, r), \ldots, (d, r)]$ (constant)
- $dr \mid \deg A = p^n$. Set $d = p^a, r = p^b$ (with $a + b \leq n$).

The main theorem

Under the above assumptions and notations:

$$
ed G = \operatorname{ed}_p G$$
$$= \dim_F A - \dim G$$
$$= p^{2n} - p^{n+a-b} - p^{n-a+b} + p^{n-a-b}.$$
About the proof

- Computing $\dim G$ (and hence $\dim_F A - \dim G$) is easy.
- $G \subseteq \text{GL}_1(A)$, $\text{ed} \ \text{GL}_1(A) = 0$

$$\Rightarrow \text{ed} \ G \leq \dim_F A - \dim G$$

(in general $G \subseteq H \Rightarrow \text{ed} \ G + \dim G \leq \text{ed} \ H + \dim H$).

- Since $\text{ed}_p \ G \leq \text{ed} \ G$, it remains to show:

$$\text{ed}_p \ G \geq \dim_F A - \dim G.$$

- This bound uses an index formula of Brosnan-Reichstein-Vistoli which relies on the incompressibility of certain Severi-Brauer varieties due to Karpenko.
Subgroups of $\text{GL}_1(A)$

- A a division algebra, $\deg A = p^n$.
- There is a whole bunch of subgroups $S \subseteq \text{GL}_1(A)$ satisfying
 \[\text{ed} \ S = \dim_F A - \dim S. \]

- Except $N_{\text{GL}_1(A)}(\text{GL}_1(B))$ these include the groups
 \[S = \text{Sim}(A, \sigma) \text{ and } S = \text{Iso}(A, \sigma), \]
 \rightarrow conjugacy classes of involutions

 (σ a involution of the first kind).
A look at cohomology

- $S \subseteq \text{GL}_1(A)$, A a division algebra, $\deg A = p^n$
- Set $H := \text{Int}(S) \subseteq \text{Aut}_F(A)$, $C := S \cap Z(\text{GL}_1(A)) \subseteq Z(\text{GL}_1(A)) \simeq \mathbb{G}_m$.
- Consider the following diagram with exact rows: Case $C \simeq \mathbb{G}_m$

\[
\begin{array}{cccccc}
1 & \rightarrow & \mathbb{G}_m & \rightarrow & S & \rightarrow & H & \rightarrow & 1 \\
\uparrow & & \uparrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & \mathbb{G}_m & \rightarrow & \text{GL}_1(A) & \rightarrow & \text{Int} \rightarrow & \text{Aut}_F(A) & \rightarrow & 1
\end{array}
\]

- Induced diagram in cohomology:

\[
\begin{array}{ccc}
H^1(K, H) & \xrightarrow{\delta} & H^2(K, \mathbb{G}_m) = \text{Br}(K) \\
\downarrow & & \downarrow \\
H^1(K, \text{Aut}_F(A)) & \rightarrow & H^2(K, \mathbb{G}_m) = \text{Br}(K)
\end{array}
\]
A look at cohomology

- $S \subseteq \text{GL}_1(A)$, A a division algebra, $\deg A = p^n$
- Set $H := \text{Int}(S) \subseteq \text{Aut}_F(A)$, $C := S \cap Z(\text{GL}_1(A)) \subseteq Z(\text{GL}_1(A)) \simeq \mathbb{G}_m$.
- Consider the following diagram with exact rows: Case $C \simeq \mu_r$

$$
\begin{array}{ccccccccc}
1 & \rightarrow & \mu_r & \rightarrow & S & \rightarrow & H & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \rightarrow & \mathbb{G}_m & \rightarrow & \text{GL}_1(A) & \rightarrow & \text{Int} & \rightarrow & \text{Aut}_F(A) & \rightarrow & 1
\end{array}
$$

- Induced diagram in cohomology:

$$
\begin{array}{cccccc}
H^1(K, H) & \overset{\delta}{\rightarrow} & H^2(K, \mu_r) = \text{Br}_r(K) \\
\downarrow & & \downarrow & & \\
H^1(K, \text{Aut}_F(A)) & \rightarrow & H^2(K, \mathbb{G}_m) = \text{Br}(K)
\end{array}
$$
A look at cohomology

- $S \subseteq \text{GL}_1(A)$, A a division algebra, $\text{deg } A = p^n$

$$H^1(K, H) \xrightarrow{\delta} \text{Br}_? (K)$$

$$\downarrow$$

$$H^1(K, \text{Aut}_F(A)) \xrightarrow{} \text{Br}(K)$$

- Brosnan-Reichstein-Vistoli (using Karpenko’s incompressibility result): $\text{ed}_p S \geq \max_t \text{ind } \delta(t) - \dim S$.
A look at cohomology

- $S \subseteq \text{GL}_1(A)$, A a division algebra, $\deg A = p^n$

$$
\begin{array}{c}
H^1(K, H) \xrightarrow{\delta} \text{Br}_? (K) \\
\downarrow \quad \quad \quad \downarrow \\
H^1(K, \text{Aut}_F(A)) \longrightarrow \text{Br}(K)
\end{array}
$$

- Brosnan-Reichstein-Vistoli (using Karpenko's incompressibility result): $\text{ed}_p S \geq \max_t \text{ind} \delta(t) - \dim S$.

- $H^1(K, \text{Aut}_F(A))$ classifies forms of A_K.

- The map $H^1(K, \text{Aut}_F(A)) \rightarrow \text{Br}(K)$ takes the isomorphism class of A' to the Brauer class of $A' \otimes_F A^{op}$.

- If the image of $H^1(K, H) \rightarrow H^1(K, \text{Aut}_F(A))$ contains $[A']$ with $A' \otimes_F A^{op}$ division, then $\text{ed}_p S \geq \dim_F A - \dim S$ follows.
Cohomology continued

- $S \subseteq \text{GL}_1(A)$, A division, $\deg A = p^n$, $H = \text{Int}(S)$.
- In order to prove $\text{ed} S = \text{ed}_{p} S = \dim_F A - \dim S$ it suffices to find $K \in \text{Fields}_F$ and $t \in H^1(K, H)$ such that the algebra A' representing the image of t in $H^1(K, \text{Aut}_F(A))$ makes $A' \otimes_F A^{\text{op}}$ division.
Cohomology continued

- $S \subseteq \text{GL}_1(A)$, A division, $\text{deg} \ A = p^n$, $H = \text{Int}(S)$.
- In order to prove $\text{ed} \ S = \text{ed}_p S = \dim_F A - \dim S$, it suffices to find $K \in \text{Fields}_F$ and $t \in H^1(K, H)$ such that the algebra A' representing the image of t in $H^1(K, \text{Aut}_F(A))$ makes $A' \otimes_F A^{\text{op}}$ division.
- I did this for the groups $H = \text{Aut}_F(A, B)$ and $H = \text{Aut}_F(A, \sigma)$.
 \implies main theorem
Cohomology continued

- \(S \subseteq \text{GL}_1(A) \), \(A \) division, \(\deg A = p^n \), \(H = \text{Int}(S) \).
- In order to prove \(\text{ed} S = \text{ed}_p S = \dim_F A - \dim S \) it suffices to find \(K \in \text{Fields}_F \) and \(t \in H^1(K, H) \) such that the algebra \(A' \) representing the image of \(t \) in \(H^1(K, \text{Aut}_F(A)) \) makes \(A' \otimes_F A^{\text{op}} \) division.
- I did this for the groups \(H = \text{Aut}_F(A, B) \) and \(H = \text{Aut}_F(A, \sigma) \).

A more general method, using incompressibility of quadratic Weil transfers of Severi-Brauer varieties (Karpenko), applies for certain subgroups \(S \subseteq R_{L/F}(\text{GL}_1(A)) \), where:

- \(L/F \) is a quadratic separable field extension,
- \(A \) is a central simple \(L \)-algebra

Example: \(S = GU(A, \tau) \), where \(\tau \) is a unitary involution
Outline

1. Essential dimension
2. The Problem
3. Solution of a special case
4. Split versus non-split groups
Split reductive groups

- S a (smooth) algebraic group, S_{alg} reductive
- Call S split, if S contains a split maximal torus and S/S^0 is constant.

Examples

- $\text{GL}_n, \text{SL}_n, S_n$ etc. are split, S_{alg} is split etc.
- $\text{GL}_1(A), \text{SL}_1(A)$ are split if and only if A is split.
- $G = N_{\text{GL}_1(A)}(\text{GL}_1(B))$ is split if and only if both A and B are split, i.e. (direct products of) matrix algebras $M_{n_i}(F)$.

Until recently (for ed S): mostly split groups considered.
A surprising phenomenon

- **Non-split groups**: $\text{SL}_1(A)$ (Favi-Lequeu), twisted p-groups and tori (L-MacDonald-Meyer-Reichstein).
- In every case the split case has been solved earlier, $\text{ed} \text{SL}_n = 0 = \text{ed} \mathbb{G}_m^n$; finite p-groups: Karpenko-Merkurjev.

Natural question:
Is essential dimension computation **easier** for **split** groups??
A surprising phenomenon

- **Non-split groups**: $\text{SL}_1(A)$ (Favi-Lequeu), twisted p-groups and tori (L-MacDonald-Meyer-Reichstein).

- In every case the split case has been solved earlier, $\text{ed} \, \text{SL}_n = 0 = \text{ed} \, \mathbb{G}_m^n$; finite p-groups: Karpenko-Merkurjev.

Natural question:

Is essential dimension computation **easier** for **split** groups??

- We observed for $G = N_{\text{GL}_1(A)}(\text{GL}_1(B))$: Computing $\text{ed} \, G$ is **very hard** when G is **split**, easier in very **non-split** case (A division)!!

→ **first examples** of groups with $\text{ed} \, G$ known, $\text{ed} \, G_{\text{alg}}$ unknown.
Summary

- **Problem:** Compute $\text{ed} \, N_{GL_1(A)}(GL_1(B))$, where B is a separable subalgebra of a central simple algebra A.
 → complexity of *conjugacy-classes of separable subalgebras* of certain type.
- Problem is **interesting**, but in general **very hard**, especially in the **split case**.
- We **solved** the problem in the **division algebra case** (assuming $\deg A = p^n$).
 → first groups, where $\text{ed} \, G$ is known, $\text{ed} \, G_{\text{alg}}$ unknown.
- Same **method** applies for other groups like $\text{Sim}(A, \sigma)$, $\text{Iso}(A, \sigma)$.