Division algebras over function fields of surfaces-d’après Saltman

V. Suresh
University Of Hyderabad
Emory University

16-20 May, 2011
Ramifications in Algebra and Geometry
Emory University, Atlanta
Let K be a field.
Let K be a field.

By a central simple algebra over K we mean a finite dimensional algebra over K with center K and without any non-trivial two-sided ideals.
Let K be a field.

By a central simple algebra over K we mean a finite dimensional algebra over K with center K and without any non-trivial two-sided ideals.

Theorem (Artin – Wedderburn)

A central simple algebra A is isomorphic to the matrix algebra $M_n(D)$ for some $n \geq 1$ and central division algebra D over K.

Let K be a field.

By a central simple algebra over K we mean a finite dimensional algebra over K with center K and without any non-trivial two-sided ideals.

Theorem (Artin – Wedderburn)

A central simple algebra A is isomorphic to the matrix algebra $M_n(D)$ for some $n \geq 1$ and central division algebra D over K.

Let $Br(K)$ be the Brauer group of central simple algebras over K.
Introduction

Let K be a field.

By a central simple algebra over K we mean a finite dimensional algebra over K with center K and without any non-trivial two-sided ideals.

Theorem (Artin – Wedderburn)

A central simple algebra A is isomorphic to the matrix algebra $M_n(D)$ for some $n \geq 1$ and central division algebra D over K.

Let $Br(K)$ be the Brauer group of central simple algebras over K.

Every element of $Br(K)$ is represented by a central division algebras over K.
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the **degree** of A. If $A = \mathbb{M}_m(D)$ with D a central division algebra, then the degree of D is called the **index** of A. For a division algebra degree = index. The order of A in the $Br(K)$ is called the **period** of A. We know that period divides index and the prime divisors of degree and index are same. In fact index = period r for some $r \geq 1$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the **degree** of A.

If $A = M_m(D)$ with D a central division algebra, then the degree of D is called the **index** of A.

For a division algebra degree = index.

The order of A in the $Br(K)$ is called the **period** of A.

We know that period divides index and the prime divisors of degree and index are same.

In fact index = period r for some $r \geq 1$.

V. Suresh (UoH/Emory)
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the **degree** of A.

If $A = M_m(D)$ with D a central division algebra, then the degree of D is called the **index** of A.

For a division algebra degree $=$ index.
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the **degree** of A.

If $A = M_m(D)$ with D a central division algebra, then the degree of D is called the **index** of A.

For a division algebra degree $=$ index.

The order of A in the $Br(K)$ is called the **period** of A.
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the **degree** of A.

If $A = M_m(D)$ with D a central division algebra, then the degree of D is called the **index** of A.

For a division algebra degree = index.

The order of A in the $Br(K)$ is called the **period** of A.

We know that period divides index and the prime divisors of degree and index are same.
Let A be a central simple algebra over K. Then we know that the dimension of A as a vector space over K is a square n^2. The integer n is called the degree of A.

If $A = M_m(D)$ with D a central division algebra, then the degree of D is called the index of A.

For a division algebra degree = index.

The order of A in the $Br(K)$ is called the period of A.

We know that period divides index and the prime divisors of degree and index are same.

In fact index = periodr for some $r \geq 1$.
Question. Does there exist a natural number r depending only on the given field K such that $\text{index}(A) \mid \text{period}(A)^r$ for all central simple algebras over K?
Question. Does there exist a natural number r depending only on the given field K such that $\text{index}(A) \mid \text{period}(A)^r$ for all central simple algebras over K?

This question obviously has a negative answer if we take $K = \mathbb{C}(t_1, \cdots, t_n, \cdots)$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Question. Does there exist a natural number r depending only on the given field K such that $\text{index}(A) \mid \text{period}(A)^r$ for all central simple algebras over K?

This question obviously has a negative answer if we take $K = \mathbb{C}(t_1, \cdots, t_n, \cdots)$.

Of course this field is not an interesting field.
Let us see some examples where the question 1 has an affirmative answer.
Let us see some examples where the question 1 has an affirmative answer.

If K is a finite field or an algebraically closed field, then there are no non-trivial central division algebras.
Let us see some examples where the question 1 has an affirmative answer.

If K is a finite field or an algebraically closed field, then there are no non-trivial central division algebras.

Suppose K is a local field or a global field, the class field theory tells us that, index = period for every central simple algebra over K.
Let us modify the above question.
Let us modify the above question.

Question. Let K be a field. Suppose there exists a natural number r such that $\text{index} \mid \text{period}^r$ for every central simple algebra over K. Does there exists a natural number t such that $\text{index} \mid \text{period}^t$ for every central simple algebra over $K(t)$.
Saltman’s result

Theorem (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) | n^2$.
Theorem (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) | n^2$.

There are examples (due to Rowen-Tignol-Sivatski) of central simple algebras over $k(t)$, k-p-adic field, with $\text{index} = \text{period}^2$.
Let L/K be a finite cyclic extension of degree n and $\sigma \in Gal(L/K)$ be a generator.
Let L/K be a finite cyclic extension of degree n and $\sigma \in Gal(L/K)$ be a generator.

Let $b \in K^*$.
Let L/K be a finite cyclic extension of degree n and $\sigma \in \text{Gal}(L/K)$ be a generator.

Let $b \in K^*$.

Let $A = L \oplus Ly \oplus \cdots \oplus Ly^{n-1}$.

Cyclic algebras
Let L/K be a finite cyclic extension of degree n and $\sigma \in \text{Gal}(L/K)$ be a generator.

Let $b \in K^*$.

Let $A = L \oplus Ly \oplus \cdots \oplus Ly^{n-1}$.

Define $y\lambda = \sigma(\lambda)y$ for all $\lambda \in L$ and $y^n = b$.
Let L/K be a finite cyclic extension of degree n and $\sigma \in \text{Gal}(L/K)$ be a generator.

Let $b \in K^*$.

Let $A = L \oplus Ly \oplus \cdots \oplus Ly^{n-1}$.

Define $y\lambda = \sigma(\lambda)y$ for all $\lambda \in L$ and $y^n = b$.

Then A is a central simple algebra and is called a cyclic algebra.
Let L/K be a finite cyclic extension of degree n and $\sigma \in Gal(L/K)$ be a generator.

Let $b \in K^*$.

Let $A = L \oplus Ly \oplus \cdots \oplus Ly^{n-1}$.

Define $y\lambda = \sigma(\lambda)y$ for all $\lambda \in L$ and $y^n = b$.

Then A is a central simple algebra and is called a **cyclic algebra**.

A is denoted by (L, σ, b).
Assume that n is coprime with the characteristic of K and K contains a primitive n^{th} root of unity.
Assume that n is coprime with the characteristic of K and K contains a primitive n^{th} root of unity.

Then $L = K(\sqrt[n]{a})$ for some $a \in K^*$ and $\sigma(\sqrt[n]{a}) = \zeta \sqrt[n]{a}$ for some primitive n^{th} root of unity $\zeta \in K$.
Assume that n is coprime with the characteristic of K and K contains a primitive n^{th} root of unity.

Then $L = K(\sqrt[n]{a})$ for some $a \in K^*$ and $\sigma(\sqrt[n]{a}) = \zeta \sqrt[n]{a}$ for some primitive n^{th} root of unity $\zeta \in K$.

The algebra A is generated by two elements x, y with relations

$$x^n = a, \quad y^n = b, \quad \text{and} \quad yx = \zeta xy.$$
Assume that n is coprime with the characteristic of K and K contains a primitive n^{th} root of unity.

Then $L = K(\sqrt[n]{a})$ for some $a \in K^*$ and $\sigma(\sqrt[n]{a}) = \zeta \sqrt[n]{a}$ for some primitive n^{th} root of unity $\zeta \in K$.

The algebra A is generated by two elements x, y with relations

\[x^n = a, \quad y^n = b, \quad \text{and} \quad yx = \zeta xy. \]

In this case the algebra A is also denoted by $(a, b)_n$.
Let A be a central simple algebra of degree 2. Then it is easy to see that A is a cyclic algebra.
Let A be a central simple algebra of degree 2. Then it is easy to see that A is a cyclic algebra.

Let A be a central simple algebra of degree 3. Then a classical result of Albert asserts that A is a cyclic algebra.
Let A be a central simple algebra of degree 2. Then it is easy to see that A is a cyclic algebra.

Let A be a central simple algebra of degree 3. Then a classical result of Albert asserts that A is a cyclic algebra.

Question. Let A be a central simple algebra of prime degree. Is A a cyclic algebra?
Let A be a central simple algebra of degree 2. Then it is easy to see that A is a cyclic algebra.

Let A be a central simple algebra of degree 3. Then a classical result of Albert asserts that A is a cyclic algebra.

Question. Let A be a central simple algebra of prime degree. Is A a cyclic algebra?

This question is open even for degree 5 algebras.
Let k be a global field or a local field. Then the class field theory asserts that every central simple algebra over k is cyclic.
Let \(k \) be a global field or a local field. Then the class field theory asserts that every central simple algebra over \(k \) is cyclic.

We have the following:
Let k be a global field or a local field. Then the class field theory asserts that every central simple algebra over k is cyclic.

We have the following:

Theorem (Saltman(2007))

Let k be a p-adic field and K be a function field of a curve over k. Let ℓ be a prime not equal to p. Every central simple algebra over K of degree ℓ is cyclic.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.

In general it is difficult to verify when an extension splits the algebra. The condition whether the algebra $A \otimes L$ is "unramified" can be translated into a cohomological criterion.

Saltman's idea is to split the ramification in good extensions and appeal to known theorems on unramified classes (for instance the vanishing of unramified classes) to obtain his results.

We explain these ideas now.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra. In general it is difficult to verify when an extension splits the algebra. The condition whether the algebra $A \otimes L$ is "unramified" can be translated in to cohomological criterion. Saltman’s idea is to split the ramification in good extensions and appeal to known theorems on unramified classes (for instance the vanishing of unramified classes) to obtain his results. We explain these ideas now.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.

In general it is difficult to verify when an extension splits the algebra.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.

In general it is difficult to verify when an extension splits the algebra.

The condition whether the algebra $A \otimes L$ is “unramified” can be translated into a cohomological criterion.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.

In general it is difficult to verify when an extension splits the algebra.

The condition whether the algebra $A \otimes L$ is “unramified” can be translated into a cohomological criterion.

Saltman’s idea is to split the ramification in good extensions and appeal to known theorems on unramified classes (for instance the vanishing of unramified classes) to obtain his results.
Let K be a function field of a p-adic curve and q a prime not equal to p.

Let A be a central simple algebra of period q. To show that the index of A divides q^2, we need to produce an extension L/K of degree q^2 such that $A \otimes L$ is a split algebra.

Similarly to show that a degree q algebra is cyclic, we need to find a cyclic extension of degree q which splits the algebra.

In general it is difficult to verify when an extension splits the algebra.

The condition whether the algebra $A \otimes L$ is “unramified” can be translated in to cohomological criterion.

Saltman’s idea is to split the ramification in good extensions and appeal to known theorems on unramified classes (for instance the vanishing of unramified classes) to obtain his results.

We explain these ideas now.
R - a discrete valuation ring

K - field of fractions of R

k - residue field of R

$\nu : K^* \to \mathbb{Z}$ - the discrete valuation given by R.

n - a natural number which is a unit in R.

We have a homomorphism $\partial : nBr(K) \to H^1(k, \mathbb{Z}/n\mathbb{Z})$ called the residue homomorphism.
- R - a discrete valuation ring
- K - field of fractions of R
- k - residue field of R
- $\nu : K^* \to \mathbb{Z}$ - the discrete valuation given by R.
- n - a natural number which is a unit in R.

We have a homomorphism $\partial : \text{nBr}(K) \to H^1(k, \mathbb{Z}/n\mathbb{Z})$ called the **residue homomorphism**.

We say that a central simple algebra A over K is **unramified** at R if $\partial(A)$ is trivial.
Suppose that R contains a primitive n^{th} root of unity.
Suppose that R contains a primitive n^{th} root of unity.

By fixing a primitive n^{th} root of unity, we fix an isomorphism $\mathbb{Z}/n\mathbb{Z} \simeq \mu_n$ and identify $H^1(k, \mathbb{Z}/n\mathbb{Z})$ with k^*/k^{*n}.
Suppose that R contains a primitive n^{th} root of unity.

By fixing a primitive n^{th} root of unity, we fix an isomorphism $\mathbb{Z}/n\mathbb{Z} \simeq \mu_n$ and identify $H^1(k, \mathbb{Z}/n\mathbb{Z})$ with k^*/k^{*n}.

For $A = (a, b)_n$, we have $\partial(A) = \bar{u} \in k^*/k^{*n}$, where $u = (-1)^{\nu(a)\nu(b)} a^{\nu(b)} b^{\nu(a)}$.
Suppose that \(R \) contains a primitive \(n^{th} \) root of unity.

By fixing a primitive \(n^{th} \) root of unity, we fix an isomorphism \(\mathbb{Z}/n\mathbb{Z} \cong \mu_n \) and identify \(H^1(k, \mathbb{Z}/n\mathbb{Z}) \) with \(k^*/k^{*n} \).

For \(A = (a, b)_n \), we have \(\partial(A) = \overline{u} \in k^*/k^{*n} \), where
\[
u(a) \nu(b) a \nu(b) b \nu(a).
\]

In particular if \(A = (\pi, u) \), where \(u \) is unit in \(R \) and \(\pi \) is parameter in \(R \), then \(\partial(A) = \overline{u} \in k^*/k^{*n} \).
\(\mathcal{X}\) - a regular integral scheme of dimension 2,
\(\mathcal{X}^1\) - the set of codimension one points of \(\mathcal{X}\).
For \(x \in \mathcal{X}^1\), the local ring at \(x\) is a discrete valuation ring.
\(K\) - the function field of \(\mathcal{X}\)
Assume that \(n\) is a unit on \(\mathcal{X}\)
We have a residue homomorphism
\[
\partial_x : \ n\text{Br}(K) \to H^1(\kappa(x), \mathbb{Z}/n\mathbb{Z}).
\]
\(\mathcal{X} \) - a regular integral scheme of dimension 2,
\(\mathcal{X}^1 \) - the set of codimension one points of \(\mathcal{X} \).

For \(x \in \mathcal{X}^1 \), the local ring at \(x \) is a discrete valuation ring.

\(K \) - the function field of \(\mathcal{X} \)

Assume that \(n \) is a unit on \(\mathcal{X} \)

We have a residue homomorphism
\[
\partial_x : \ n\text{Br}(K) \to H^1(\kappa(x), \mathbb{Z}/n\mathbb{Z}).
\]

We say that a central simple algebra \(A \) over \(K \) is **unramified on** \(\mathcal{X} \)
if \(A \) is unramified at every point of \(\mathcal{X}^1 \).
From now onwards \mathcal{X} denotes a non-singular surface (i.e. two dimensional separated excellent integral Noetherian scheme quasi-projective over some affine scheme.

Theorem (Saltman) Let K be as above. Assume that K contains a primitive n-th root of unity. Let A be a central simple algebra of period n. Then there exist $f, g \in K^*$ such that A is unramified at every discrete valuation of K $(n\sqrt[f]{f}, n\sqrt[g]{g})$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
From now onwards \(\mathcal{X} \) denotes a non-singular surface (i.e. two dimensional separated excellent integral Noetherian scheme quasi-projective over some affine scheme.

Let \(K \) be the field of fractions of \(\mathcal{X} \).
From now onwards \mathcal{X} denotes a non-singular surface (i.e. two dimensional separated excellent integral Noetherian scheme quasi-projective over some affine scheme).

Let K be the field of fractions of \mathcal{X}.

Let n be an integer which is a unit on \mathcal{X}.

Theorem (Saltman) Let K be as above. Assume that K contains a primitive nth root of unity. Let A be a central simple algebra of period n. Then there exist $f, g \in K^*$ such that A is unramified at every discrete valuation of K.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
From now onwards \mathcal{X} denotes a non-singular surface (i.e. two dimensional separated excellent integral Noetherian scheme quasi-projective over some affine scheme.

Let K be the field of fractions of \mathcal{X}.

Let n be an integer which is a unit on \mathcal{X}.

Theorem (Saltman)

Let K be as above. Assume that K contains a primitive n^{th} root of unity. Let A be a central simple algebra of period n. Then there exist $f, g \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f}, \sqrt[n]{g})$.

V. Suresh (UoH/Emory)
Division algebras over function fields of surfaces-d’après Saltman
Corollary (Saltman (1997))

Let \(k \) be a \(p \)-adic field and \(K \) be a function field of a curve over \(k \). Let \(A \) be a central simple algebra of period \(n \). Suppose that \(n \) is coprime to \(p \). Then \(\text{index}(A) \mid n^2 \).
Corollary (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) | n^2$.

Proof. Proof if by induction on n the period of A.

Corollary (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) | n^2$.

Proof. Proof if by induction on n the period of A.

If $n = 1$, there is nothing to prove. Assume that $n \geq 2$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Corollary (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) \mid n^2$.

Proof. Proof if by induction on n the period of A.

If $n = 1$, there is nothing to prove. Assume that $n \geq 2$.

Let q be a prime which divides n. Let $B = qA \in Br(K)$.
Corollary (Saltman (1997))
Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) \mid n^2$.

Proof. Proof if by induction on n the period of A.
If $n = 1$, there is nothing to prove. Assume that $n \geq 2$.
Let q be a prime which divides n. Let $B = qA \in \text{Br}(K)$.
Then the period of B is $\frac{n}{q}$.
Corollary (Saltman (1997))

Let k be a p-adic field and K be a function field of a curve over k. Let A be a central simple algebra of period n. Suppose that n is coprime to p. Then $\text{index}(A) | n^2$.

Proof. Proof if by induction on n the period of A.

If $n = 1$, there is nothing to prove. Assume that $n \geq 2$.

Let q be a prime which divides n. Let $B = qA \in Br(K)$.

Then the period of B is $\frac{n}{q}$

By the induction the index of B divides $\frac{n^2}{q^2}$. Hence there exists an extension L/K of degree $\frac{n^2}{q^2}$ which splits B. In particular the period of $A \otimes L$ is q. Thus it is enough to show that the index of $A \otimes L$ divides q^2.
Let M/L be the extension given by the q^{th} roots of unity.

By the above theorem, there exists $f, g \in K^\ast$ such that A is unramified over $K(q\sqrt{f}, q\sqrt{g})$. By a theorem of Grothendieck, the unramified Brauer group of $K(q\sqrt{f}, q\sqrt{g})$ is zero. Hence $A \otimes K(q\sqrt{f}, q\sqrt{g})$ is trivial. In particular the index of A divides q^2.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Let M/L be the extension given by the q^{th} roots of unity.

Since the degree of M/L is coprime to q, the index of $A \otimes L$ is same as the index of $A \otimes M$.

By the above theorem, there exists $f, g \in K^*$ such that A is unramified over $K(q^{1/2}f, q^{1/2}g)$.

By a theorem of Grothendieck, the unramified Brauer group of $K(q^{1/2}f, q^{1/2}g)$ is zero.

Hence $A \otimes K(q^{1/2}f, q^{1/2}g)$ is trivial. In particular the index of A divides q^2.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Let M/L be the extension given by the q^{th} roots of unity.

Since the degree of M/L is coprime to q, the index of $A \otimes L$ is same as the index of $A \otimes M$.

Since M is also a function field of a curve over a p-adic field, it is enough to prove the corollary when K contains all the q^{th} roots of unity and the period of A is q.
Let M/L be the extension given by the q^{th} roots of unity.

Since the degree of M/L is coprime to q, the index of $A \otimes L$ is same as the index of $A \otimes M$.

Since M is also a function field of a curve over a p-adic field, it is enough to prove the corollary when K contains all the q^{th} roots of unity and the period of A is q.

By the above theorem, there exists $f, g \in K^*$ such that A is unramified over $K(\sqrt[q]{f}, \sqrt[q]{g})$.

By a theorem of Grothendieck, the unramified Brauer group of $K(\sqrt[q]{f}, \sqrt[q]{g})$ is zero.

Hence $A \otimes K(\sqrt[q]{f}, \sqrt[q]{g})$ is trivial. In particular the index of A divides q^2.

V. Suresh (UoH/Emory)
Let M/L be the extension given by the q^{th} roots of unity.

Since the degree of M/L is coprime to q, the index of $A \otimes L$ is same as the index of $A \otimes M$.

Since M is also a function field of a curve over a p-adic field, it is enough to prove the corollary when K contains all the q^{th} roots of unity and the period of A is q.

By the above theorem, there exists $f, g \in K^*$ such that A is unramified over $K(\sqrt[q]{f}, \sqrt[q]{g})$.

By a theorem of Grothendieck, the unramified Brauer group of $K(\sqrt[q]{f}, \sqrt[q]{g})$ is zero.
Let M/L be the extension given by the q^{th} roots of unity.

Since the degree of M/L is coprime to q, the index of $A \otimes L$ is same as the index of $A \otimes M$.

Since M is also a function field of a curve over a p-adic field, it is enough to prove the corollary when K contains all the q^{th} roots of unity and the period of A is q.

By the above theorem, there exists $f, g \in K^*$ such that A is unramified over $K(\sqrt[q]{f}, \sqrt[q]{g})$.

By a theorem of Grothendieck, the unramified Brauer group of $K(\sqrt[q]{f}, \sqrt[q]{g})$ is zero.

Hence $A \otimes K(\sqrt[q]{f}, \sqrt[q]{g})$ is trivial. In particular the index of A divides q^2.
Theorem (Saltman (2008))

Let K be as above and q a prime which is a unit on X. Assume that K contains a primitive q^{th} root of unity. Let A be a central simple algebra of degree q. Then there exists $f \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f})$.

Corollary (Saltman (2007))

Let K be a function field of a p-adic curve and q a prime not equal to p. Then every central simple algebra over K of degree q is cyclic.

Proof.
Let A/K be a central simple algebra of degree q. Then by the above theorem, there exists $f \in K^*$ such that $A \otimes K(\sqrt[q]{f})$ is unramified. Once again by the theorem of Grothendieck, $A \otimes K(\sqrt[q]{f})$ is trivial. Hence A is cyclic.
Theorem (Saltman (2008))

Let K be as above and q a prime which is a unit on \mathcal{X}. Assume that K contains a primitive q^{th} root of unity. Let A be a central simple algebra of degree q. Then there exists $f \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f})$.

Corollary (Saltman (2007))

Let K be a function field of p-adic curve and q a prime not equal to p. Then every central simple algebra over K of degree q is cyclic.
Theorem (Saltman (2008))
Let K be as above and q a prime which is a unit on X. Assume that K contains a primitive q^{th} root of unity. Let A be a central simple algebra of degree q. Then there exists $f \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f})$.

Corollary (Saltman (2007))
Let K be a function field of p-adic curve and q a prime not equal to p. Then every central simple algebra over K of degree q is cyclic.

Proof. Let A/K be a central simple algebra of degree q. Then by the above theorem, there exists $f \in K^*$ such that $A \otimes K(\sqrt{f})$ is unramified.
Theorem (Saltman (2008))
Let K be as above and q a prime which is a unit on \mathcal{X}. Assume that K contains a primitive q^{th} root of unity. Let A be a central simple algebra of degree q. Then there exists $f \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f})$.

Corollary (Saltman (2007))
Let K be a function field of p-adic curve and q a prime not equal to p. Then every central simple algebra over K of degree q is cyclic.

Proof. Let A/K be a central simple algebra of degree q. Then by the above theorem, there exists $f \in K^*$ such that $A \otimes K(\sqrt{f})$ is unramified.

Once again by the theorem of Grothendieck, $A \otimes K(\sqrt{f})$ is trivial. Hence A is cyclic.
We now explain the general ideal behind the proof of these results.
We now explain the general ideal behind the proof of these results.

\mathcal{X} - a non-singular surface.
We now explain the general ideal behind the proof of these results.

\(\mathcal{X} \) - a non-singular surface.

\(\mathcal{X}^1 \) - set of codimension one points of \(\mathcal{X} \).
We now explain the general ideal behind the proof of these results.

\(\mathcal{X} \) - a non-singular surface.

\(\mathcal{X}^1 \) - set of codimension one points of \(\mathcal{X} \)

\(K \) - function field of \(\mathcal{X} \).
We now explain the general ideal behind the proof of these results.

\[\mathcal{X} \] - a non-singular surface.

\[\mathcal{X}^1 \] - set of codimension one points of \(\mathcal{X} \)

\(K \) - function field of \(\mathcal{X} \).

\(n \) - an integer which is a unit on \(\mathcal{X} \)
We now explain the general ideal behind the proof of these results.

\(\mathcal{X} \) - a non-singular surface.

\(\mathcal{X}^1 \) - set of codimension one points of \(\mathcal{X} \).

\(K \) - function field of \(\mathcal{X} \).

\(n \) - an integer which is a unit on \(\mathcal{X} \).

\(K \)-contains a primitive \(n^{th} \) root of unity.
We now explain the general ideal behind the proof of these results.

\mathcal{X} - a non-singular surface.

\mathcal{X}^1 - set of codimension one points of \mathcal{X}

K - function field of \mathcal{X}.

n - an integer which is a unit on K-

K-contains a primitive n^{th} root of unity.

For $x \in \mathcal{X}^1$, we have the residue homomorphism

$$\partial_x : n\text{Br}(K) \rightarrow \kappa(x)^*/\kappa(x)^{*n}$$
Two irreducible curves C_1 and C_2 on \mathcal{X} said to have **normal crossings** if they intersect at a point P, then the maximal ideal m_P at P is generated by π and δ, where π and δ define C_1 and C_2 at P respectively.

A divisor D on \mathcal{X} is said to have **normal crossings** if any two distinct irreducible curves in the support of D have normal crossings.

Given a divisor D on \mathcal{X} there exists a blow up \mathcal{X}' of \mathcal{X} such that the strict transform of D and the exceptional curves on \mathcal{X}' have normal crossings.
Two irreducible curves \(C_1\) and \(C_2\) on \(X\) said to have normal crossings if they intersect at a point \(P\), then the maximal ideal \(m_P\) at \(P\) is generated by \(\pi\) and \(\delta\), where \(\pi\) and \(\delta\) define \(C_1\) and \(C_2\) at \(P\) respectively.

A divisor \(D\) on \(X\) is said to have normal crossings if any two distinct irreducible curves in the support of \(D\) have normal crossings.
Two irreducible curves C_1 and C_2 on \mathcal{X} said to have **normal crossings** if they intersect at a point P, then the maximal ideal m_P at P is generated by π and δ, where π and δ define C_1 and C_2 at P respectively.

A divisor D on \mathcal{X} is said to have **normal crossings** if any two distinct irreducible curves in the support of D have normal crossings.

Given a divisor D on \mathcal{X} there exists a blow up \mathcal{X}' of \mathcal{X} such that the strict transform of D and the exceptional curves on \mathcal{X}' have normal crossings.
\[\alpha \in Br(K) \text{ of order } n. \]
\(\alpha \in Br(K) \) of order \(n \).

The union of the curves \(C \) where \(\alpha \) is ramified is called the **ramification locus** of \(\alpha \).
$\alpha \in Br(K)$ of order n.

The union of the curves C where α is ramified is called the \textbf{ramification locus} of α.

After blowing up \mathcal{X}, we assume that the ramification locus of α is a union of regular curves C_i with normal crossings.
$\alpha \in Br(K)$ of order n.

The union of the curves C where α is ramified is called the **ramification locus** of α.

After blowing up X, we assume that the ramification locus of α is a union of regular curves C_i with normal crossings.

The intersection points among the C_i are called **nodal** points.
\[\alpha \in Br(K) \text{ of order } n. \]

The union of the curves \(C \) where \(\alpha \) is ramified is called the \textbf{ramification locus} of \(\alpha \).

After blowing up \(\mathcal{X} \), we assume that the ramification locus of \(\alpha \) is a union of regular curves \(C_i \) with normal crossings.

The intersection points among the \(C_i \) are called \textbf{nodal} points.

By the assumption every nodal point lies exactly on two curves \(C_i \).
$\alpha \in Br(K)$ of order n.

The union of the curves C where α is ramified is called the **ramification locus** of α.

After blowing up X, we assume that the ramification locus of α is a union of regular curves C_i with normal crossings.

The intersection points among the C_i are called **nodal** points.

By the assumption every nodal point lies exactly on two curves C_i.

Any point on exactly one C_i is called a **curve** point.
$\alpha \in Br(K)$ of order n.

The union of the curves C where α is ramified is called the **ramification locus** of α.

After blowing up X, we assume that the ramification locus of α is a union of regular curves C_i with normal crossings.

The intersection points among the C_i are called **nodal** points.

By the assumption every nodal point lies exactly on two curves C_i.

Any point on exactly one C_i is called a **curve** point.

By the assumption curve points are non-singular point on the curve.
We begin with the following:
We begin with the following:

Lemma

Let A be a two-dimensional regular local ring with maximal ideal m and field of fractions K. Let n be an integer which is a unit in A. Assume that K contains a primitive n^{th} root of unity. Let $\alpha \in n\text{Br}(K)$.

1. Suppose that $m = (\pi, \delta)$ and α is ramified only at π on A. Then $\alpha = \alpha' + (u, \pi)$ for some unit $u \in A$ and $\alpha' \in \text{Br}(A)$.

2. Suppose that $m = (\pi, \delta)$ and α is ramified only at π and δ on A. Then either $\alpha = \alpha' + (u, \pi) + (v, \delta)$ or $\alpha = \alpha' + (u\delta^s, \pi)$ for some units $u, v \in A$, s coprime to n and $\alpha' \in \text{Br}(A)$.
We begin with the following:

Lemma
Let A be a two-dimensional regular local ring with maximal ideal m and field of fractions K. Let n be an integer which is a unit in A. Assume that K contains a primitive n^{th} root of unity. Let $\alpha \in n\text{Br}(K)$.

1) Suppose that $m = (\pi, \delta)$ and α is ramified only at π on A. Then $\alpha = \alpha' + (u, \pi)$ for some unit $u \in A$ and $\alpha' \in \text{Br}(A)$.
We begin with the following:

Lemma
Let A be a two-dimensional regular local ring with maximal ideal m and field of fractions K. Let n be an integer which is a unit in A. Assume that K contains a primitive n^{th} root of unity. Let $\alpha \in nBr(K)$.

1) Suppose that $m = (\pi, \delta)$ and α is ramified only at π on A. Then $\alpha = \alpha' + (u, \pi)$ for some unit $u \in A$ and $\alpha' \in Br(A)$.

2) Suppose that $m = (\pi, \delta)$ and α is ramified only at π and δ on A. Then either $\alpha = \alpha' + (u, \pi) + (v, \delta)$ or $\alpha = \alpha' + (u\delta^s, \pi)$ for some units $u, v \in A$, s coprime to n and $\alpha' \in Br(A)$.
Theorem (Saltman)
Let K be as above. Assume that K contains a primitive nth root of unity. Let $\alpha \in n\text{Br}(K)$. Then there exist $f, g \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f}, \sqrt[n]{g})$.
Theorem (Saltman)

Let K be as above. Assume that K contains a primitive n^{th} root of unity. Let $\alpha \in \mathcal{Br}(K)$. Then there exist $f, g \in K^*$ such that A is unramified at every discrete valuation of $K(\sqrt[n]{f}, \sqrt[n]{g})$.

Proof. After blowing up, we assume that the ramification locus of α is union of two regular curves C and E with normal crossings. Choose $f \in K^*$ as follows:

$$\text{div}_\alpha(f) = C + E + F$$

for some divisor F such that F does not contain any component of either C or E and F does not pass through the points of $C \cap E$.
Let P be closed point in $C \cap F$.
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

Similarly if $P \in E \cap F$, we have $\alpha = \alpha' + (\delta, v)$. Let $u_P = v$.
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

Similarly if $P \in E \cap F$, we have $\alpha = \alpha' + (\delta, v)$. Let $u_P = v$.

Suppose that $P \in C \cap E$.
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

Similarly if $P \in E \cap F$, we have $\alpha = \alpha' + (\delta, v)$. Let $u_P = v$.

Suppose that $P \in C \cap E$.

We have $f = \pi \delta w$ for some unit w at P and π and δ define C and E at P respectively.
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

Similarly if $P \in E \cap F$, we have $\alpha = \alpha' + (\delta, v)$. Let $u_P = v$.

Suppose that $P \in C \cap E$.

We have $f = \pi \delta w$ for some unit w at P and π and δ define C and E at P respectively.

We have $\alpha = \alpha' + (u \delta^s, \pi)$ or $\alpha = \alpha' + (\pi, u) + (\delta, v)$.
Let P be closed point in $C \cap F$.

By the above lemma, we have $\alpha = \alpha' + (\pi, u)$ for some α' unramified at P, u a unit at P and π defines C at P. Let $u_P = u$.

Similarly if $P \in E \cap F$, we have $\alpha = \alpha' + (\delta, v)$. Let $u_P = v$.

Suppose that $P \in C \cap E$.

We have $f = \pi \delta w$ for some unit w at P and π and δ define C and E at P respectively.

We have $\alpha = \alpha' + (u \delta^s, \pi)$ or $\alpha = \alpha' + (\pi, u) + (\delta, v)$.

In the first case, let $u_P = uw$ and in the second case let $u_P = uv$.

V. Suresh (UoH/Emory)
Division algebras over function fields of surfaces-d'après Saltman
By the Chinese remainder theorem, we get a function $g \in K^*$ which is a unit at all the above closed points and components of C, E, F such that $g(P)^{-1}u_P(P)$ is an n^{th} power for all $P \in C \cap E, C \cap F, E \cap F$. Then α is unramified at every discrete valuation of $K(n\sqrt{f}, n\sqrt{g})$.

Corollary Let X, K and n as above. Suppose that for every closed point P of X the residue field $\kappa(P)$ is algebraically closed. Let A be a central simple algebra over K of period n. Then there exists $f \in K^*$ such that A is unramified over $K(n\sqrt{f})$.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
By the Chinese remainder theorem, we get a function $g \in K^*$ which is a unit at all the above closed points and components of C, E, F such that $g(P)^{-1}u_P(P)$ is an n^{th} power for all $P \in C \cap E, C \cap F, E \cap F$.

Then α is unramified at every discrete valuation of $K(\sqrt[n]{f}, \sqrt[n]{g})$.
By the Chinese remainder theorem, we get a function $g \in K^*$ which is a unit at all the above closed points and components of C, E, F such that $g(P)^{-1} u_P(P)$ is an n^{th} power for all $P \in C \cap E, C \cap F, E \cap F$.

Then α is unramified at every discrete valuation of $K(\sqrt[n]{f}, \sqrt[n]{g})$.

Corollary

Let \mathcal{X}, K and n as above. Suppose that for every closed point P of \mathcal{X} the residue field $\kappa(P)$ is algebraically closed. Let A be a central simple algebra over K of period n. Then there exists $f \in K^*$ such that A is unramified over $K(\sqrt[n]{f})$.
\mathcal{X} - non-singular surface and K its field of fractions and $\alpha \in qBr(K)$, q a prime.
\(\mathcal{X} \) - non-singular surface and \(K \) its field of fractions and \(\alpha \in \mathbb{qBr}(K), \mathbb{q} \text{ a prime.} \)

Assume that the ramification locus of \(\alpha \) on \(\mathcal{X} \) is a union of regular curves with normal crossings.
\(\mathcal{X} \) - non-singular surface and \(K \) its field of fractions and \(\alpha \in qBr(K) \), \(q \) a prime.

Assume that the ramification locus of \(\alpha \) on \(\mathcal{X} \) is a union of regular curves with normal crossings.

Let \(P \) be a nodal point and \(C_1 \) and \(C_2 \) are the two curves in the ramification locus of \(\alpha \).
\(\mathcal{X} \) - non-singular surface and \(K \) its field of fractions and \(\alpha \in q\text{Br}(K), q \) a prime.

Assume that the ramification locus of \(\alpha \) on \(\mathcal{X} \) is a union of regular curves with normal crossings.

Let \(P \) be a nodal point and \(C_1 \) and \(C_2 \) are the two curves in the ramification locus of \(\alpha \).

Let \(A = \mathcal{O}_{\mathcal{X}, P} \). Then \(A \) is a two dimensional regular local ring with maximal ideal \(m_P = (\pi, \delta) \) for some primes \(\pi, \delta \in A \) defining \(C_1 \) and \(C_2 \) at \(P \) respectively. Let \(\kappa(P) \) be the residue field at \(P \).
\mathcal{X} - non-singular surface and K its field of fractions and $\alpha \in qBr(K)$, q a prime.

Assume that the ramification locus of α on \mathcal{X} is a union of regular curves with normal crossings.

Let P be a nodal point and C_1 and C_2 are the two curves in the ramification locus of α.

Let $A = \mathcal{O}_{\mathcal{X}, P}$. Then A is a two dimensional regular local ring with maximal ideal $m_P = (\pi, \delta)$ for some primes π, $\delta \in A$ defining C_1 and C_2 at P respectively. Let $\kappa(P)$ be the residue field at P.

By the above lemma, we have either $\alpha = \alpha' + (u, \pi) + (v, \delta)$ or $\alpha = \alpha' + (u\delta^s, \pi)$ for some units u, v in A, s coprime to q and $\alpha' \in Br(A)$.
P is a **cold** point if $\alpha = \alpha' + (u\delta^m, \pi)$ for some unit u at P and m coprime to q.

V. Suresh (UoH/Emory)
Division algebras over function fields of surfaces-d’après Saltman
\(P\) is a **cold** point if \(\alpha = \alpha' + (u\delta^m, \pi)\) for some unit \(u\) at \(P\) and \(m\) coprime to \(q\).

Assume that \(\alpha = \alpha' + (u, \pi) + (v, \delta)\) for some units \(u, v \in A\) and \(\alpha' \in Br(A)\).
P is a **cold** point if $\alpha = \alpha' + (u\delta^m, \pi)$ for some unit u at P and m coprime to q.

Assume that $\alpha = \alpha' + (u, \pi) + (v, \delta)$ for some units $u, v \in A$ and $\alpha' \in Br(A)$.

P is a **cool** point if u and v are q^{th} powers modulo the maximal ideal m_P.
P is a **cold** point if $\alpha = \alpha' + (u\delta^m, \pi)$ for some unit u at P and m coprime to q.

Assume that $\alpha = \alpha' + (u, \pi) + (v, \delta)$ for some units $u, v \in A$ and $\alpha' \in Br(A)$.

P is a **cool** point if u and v are q^{th} powers modulo the maximal ideal m_P.

P is a **hot** point if images of u and v do not generate the same subgroups of $\kappa(P)^*/\kappa(P)^*q$.

P is a **chilly** point if the images of u and v generate the same non-trivial subgroups $\kappa(P)^*/\kappa(P)^*q$. In the last case write $v = u^s_P$ up to an nth power. The integer s_P is called the coefficient of P with respect to C_1.
P is a **cold** point if $\alpha = \alpha' + (u\delta^m, \pi)$ for some unit u at P and m coprime to q.

Assume that $\alpha = \alpha' + (u, \pi) + (v, \delta)$ for some units $u, v \in A$ and $\alpha' \in Br(A)$.

P is a **cool** point if u and v are q^{th} powers modulo the maximal ideal m_P.

P is a **hot** point if images of u and v do not generate the same subgroups of $\kappa(P)^*/\kappa(P)^{q}$.

P is a **chilly** point if the images of u and v generate the same non-trivial subgroups $\kappa(P)^*/\kappa(P)^{q}$.
P is a **cold** point if $\alpha = \alpha' + (u\delta^m, \pi)$ for some unit u at P and m coprime to q.

Assume that $\alpha = \alpha' + (u, \pi) + (v, \delta)$ for some units $u, v \in A$ and $\alpha' \in Br(A)$.

P is a **cool** point if u and v are q^{th} powers modulo the maximal ideal m_P.

P is a **hot** point if images of u and v do not generate the same subgroups of $\kappa(P)^*/\kappa(P)^*q$.

P is a **chilly** point if the images of u and v generate the same non-trivial subgroups $\kappa(P)^*/\kappa(P)^*q$.

In the last case write $\bar{v} = \bar{u}^s$ up to an n^{th} power. The integer s_P is called the **coefficient** of P with respect to C_1.
Let P be a cool point. Let \mathcal{X}' be the blow up of \mathcal{X} at P. Then it is easy to see that α is unramified at the exceptional curve. Thus replacing \mathcal{X} by \mathcal{X}', we can assume that there are no cool points.
Let P be a cool point. Let \mathcal{X}' be the blow up of \mathcal{X} at P. Then it is easy to see that α is unramified at the exceptional curve. Thus replacing \mathcal{X} by \mathcal{X}', we can assume that there are no cool points.

Consider the following graph:
vertices are the curves in the ramification locus of α. The edges are the chilly points. Two vertices have an edge if both the curves intersect at a chilly point.
Let P be a cool point. Let \mathcal{X}' be the blow up of \mathcal{X} at P. Then it is easy to see that α is unramified at the exceptional curve. Thus replacing \mathcal{X} by \mathcal{X}', we can assume that there are no cool points.

Consider the following graph:
vertices are the curves in the ramification locus of α. The edges are the chilly points. Two vertices have an edge if both the curves intersect at a chilly point.

A loop in this graph is called a **chilly loop**
Let P be a cool point. Let \mathcal{X}' be the blow up of \mathcal{X} at P. Then it is easy to see that α is unramified at the exceptional curve. Thus replacing \mathcal{X} by \mathcal{X}', we can assume that there are no cool points.

Consider the following graph:
vertices are the curves in the ramification locus of α. The edges are the chilly points. Two vertices have an edge if both the curves intersect at a chilly point.

A loop in this graph is called a chilly loop

After blowing up several times, we ensure that there are no chilly loops and no cool points.
Let P be a cool point. Let \mathcal{X}' be the blow up of \mathcal{X} at P. Then it is easy to see that α is unramified at the exceptional curve. Thus replacing \mathcal{X} by \mathcal{X}', we can assume that there are no cool points.

Consider the following graph:
vertices are the curves in the ramification locus of α. The edges are the chilly points. Two vertices have an edge if both the curves intersect at a chilly point.

A loop in this graph is called a **chilly loop**

After blowing up several times, we ensure that there are no chilly loops and no cool points.

Suppose C_i are all the curves in the ramification locus. Then we can choose, for each C_i, a non-zero $s_i \in \mathbb{Z}/n\mathbb{Z}$ such that: Suppose P is a chilly point on C_i and C_j with coefficient s with respect to C_i. Then $s = s_j/s_i \in \mathbb{Z}/n\mathbb{Z}$.
We would like to find $f \in K^*$ such that all the ramification of α is killed by the extension $K(\sqrt[q]{f})$.
We would like to find $f \in K^*$ such that all the ramification of α is killed by the extension $K(\sqrt[q]{f})$.

Let C_i be the curves in the ramification locus and s_i be integers coprime to q. Let ν_{C_i} be the discrete valuation given by C_i.
We would like to find \(f \in K^* \) such that all the ramification of \(\alpha \) is killed by the extension \(K(\sqrt[q]{f}) \).

Let \(C_i \) be the curves in the ramification locus and \(s_i \) be integers coprime to \(q \). Let \(\nu_{C_i} \) be the discrete valuation given by \(C_i \).

Let \(f \in K^* \) be such that \(\nu_{C_i}(f) = s_i \).
We would like to find $f \in K^*$ such that all the ramification of α is killed by the extension $K(\sqrt[q]{f})$.

Let C_i be the curves in the ramification locus and s_i be integers coprime to q. Let ν_{C_i} be the discrete valuation given by C_i.

Let $f \in K^*$ be such that $\nu_{C_i}(f) = s_i$.

Let R_i be the discrete valuation ring at C_i and S_i be the integral closure of R in $K(\sqrt[q]{f})$.
Let $\kappa(C_i)$ be the residue field of R_i. Since $\nu_{C_i}(f) = s_i$ coprime to q, S_i is a discrete valuation ring unramified over R_i, with residue field $\kappa(C_i)$.

α is unramified at S_i. Hence the specialization of α gives an element $\beta_{C_i} \in \text{Br}(\kappa(C_i))$. β_{C_i} is called the residual Brauer class of α with respect to f. Let $L_i/\kappa(C_i)$ be the residue of α at C_i. If α has index q, then the residual Brauer class of α is split by the extension L_i. Suppose that we find $f \in K^*$ such that α is unramified over $K(q^{1/2}f)$. Then it is easy to see that all the residual Brauer class β_{C_i} is unramified on the curve C_i.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces-d’après Saltman
Let $\kappa(C_i)$ be the residue field of R_i. Since $\nu_{C_i}(f) = s_i$ coprime to q, S_i is a discrete valuation ring unramified over R_i, with residue field $\kappa(C_i)$.

α is unramified at S_i. Hence the specialization of α gives an element $\beta_{C_i} \in Br(\kappa(C_i))$.
Let $\kappa(C_i)$ be the residue field of R_i. Since $\nu_{C_i}(f) = s_i$ coprime to q, S_i is a discrete valuation ring unramified over R_i, with residue field $\kappa(C_i)$.

α is unramified at S_i. Hence the specialization of α gives an element $\beta_{C_i} \in Br(\kappa(C_i))$.

β_{C_i} is called the **residual Brauer class** of α with respect to f. Let $L_i/\kappa(C_i)$ be the residue of α at C_i. If α has index q, then the residual Brauer class of α is split by the extension L_i.

Suppose that we find $f \in K^*$ such that α is unramified over $K(q^{\sqrt{f}})$. Then it is easy to see that all the residual Brauer class β_{C_i} is unramified on the curve C_i.

V. Suresh (UoH/Emory) Division algebras over function fields of surfaces—d’après Saltman
Let $\kappa(C_i)$ be the residue field of R_i. Since $\nu_{C_i}(f) = s_i$ coprime to q, S_i is a discrete valuation ring unramified over R_i, with residue field $\kappa(C_i)$.

α is unramified at S_i. Hence the specialization of α gives an element $\beta_{C_i} \in Br(\kappa(C_i))$.

β_{C_i} is called the **residual Brauer class** of α with respect to f. Let $L_i/\kappa(C_i)$ be the residue of α at C_i. If α has index q, then the residual Brauer class of α is split by the extension L_i.

Suppose that we find $f \in K^*$ such that α is unramified over $K(\sqrt[q]{f})$. Then it is easy to see that all the residual Brauer class β_{C_i} is unramified on the curve C_i.
Using a local patching argument, one chooses $f \in K^*$ such that $\text{div}_\mathcal{X}(f) = \sum s_i C_i + F$ for some divisor F on \mathcal{X} which does not contain any of the curves C_i and does not pass through the nodal points. Further all the residual Brauer classes with respect to f are trivial (in particular unramified). This choice of f kills most of the ramification of α, except those valuations centered at the closed points which are in the intersection of F and C_i. Finally one needs a further modification of f such that α is unramified over $K^q \sqrt{f}$. We skip the details of this and go to the consequences of the results and the methods.
Using a local patching argument, one chooses $f \in K^*$ such that $\text{div}_{\mathcal{X}}(f) = \sum s_i C_i + F$ for some divisor F on \mathcal{X} which does not contain any of the curves C_i and does not pass through the nodal points. Further all the residual Brauer classes with respect to f are trivial (in particular unramified).

This choice of f kills most of the ramification of α, except those valuations centered at the closed points which are in the intersection of F and C_i.
Using a local patching argument, one chooses $f \in K^*$ such that
\[\text{div}_\mathcal{X}(f) = \sum s_i C_i + F \]
for some divisor F on \mathcal{X} which does not contain any of the curves C_i and does not pass through the nodal points. Further all the residual Brauer classes with respect to f are trivial (in particular unramified).

This choice of f kills most of the ramification of α, except those valuations centered at the closed points which are in the intersection of F and C_i.

Finally one needs a further modification of f such that α is unramified over $K(\sqrt[q]{f})$.
Using a local patching argument, one chooses $f \in K^*$ such that $\text{div}_X(f) = \sum s_i C_i + F$ for some divisor F on X which does not contain any of the curves C_i and does not pass through the nodal points. Further all the residual Brauer classes with respect to f are trivial (in particular unramified).

This choice of f kills most of the ramification of α, except those valuations centered at the closed points which are in the intersection of F and C_i.

Finally one needs a further modification of f such that α is unramified over $K(\sqrt[q]{f})$.

We skip the details of this and go to the consequences of the results and the methods.
Let k be a field and ℓ a prime not equal to the characteristic of k.
Let k be a field and ℓ a prime not equal to the characteristic of k.

For $n \geq 0$, let $H^n(k, \mu_\ell)$ denote the n^{th} Galois cohomology group with coefficients in the group μ_ℓ of ℓ^{th} roots of unity.
Galois cohomology

Let k be a field and ℓ a prime not equal to the characteristic of k.

For $n \geq 0$, let $H^n(k, \mu_\ell)$ denote the n^{th} Galois cohomology group with coefficients in the group μ_ℓ of ℓ^{th} roots of unity.

We have

$$H^0(k, \mu_\ell) = \mu_\ell(k)$$
Let k be a field and ℓ a prime not equal to the characteristic of k.

For $n \geq 0$, let $H^n(k, \mu_\ell)$ denote the n^{th} Galois cohomology group with coefficients in the group μ_ℓ of ℓ^{th} roots of unity.

We have

$$H^0(k, \mu_\ell) = \mu_\ell(k)$$

$$H^1(k, \mu_\ell) \simeq k^*/k^{*\ell}$$
Let \(k \) be a field and \(\ell \) a prime not equal to the characteristic of \(k \).

For \(n \geq 0 \), let \(H^n(k, \mu_\ell) \) denote the \(n^{th} \) Galois cohomology group with coefficients in the group \(\mu_\ell \) of \(\ell^{th} \) roots of unity.

We have

\[
H^0(k, \mu_\ell) = \mu_\ell(k)
\]

\[
H^1(k, \mu_\ell) \cong k^*/k^{*\ell}
\]

\[
H^2(k, \mu_\ell) \cong \ell \text{Br}(k)
\]
For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_\ell)$.
For \(a \in k^* \), let \((a) \) denote its image in \(H^1(k, \mu_\ell) \).

Assume that \(k \) contains all the \(\ell^{th} \) roots of unity.
For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_\ell)$.

Assume that k contains all the ℓ^{th} roots of unity.

Fix an isomorphism $\mathbb{Z}/\ell\mathbb{Z}$ with μ_ℓ.

An element of the form $(a_1) \cdot (a_2) \cdot \ldots \cdot (a_n)$ is called a symbol.
For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_\ell)$.

Assume that k contains all the ℓ^{th} roots of unity.

Fix an isomorphism $\mathbb{Z}/\ell\mathbb{Z}$ with μ_ℓ.

$a_1, \cdots, a_n \in k^*$. The cup product gives an element

$$(a_1) \cdot (a_2) \cdots \cdot (a_n) \in H^n(k, \mu_\ell)$$
For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_\ell)$.

Assume that k contains all the ℓ^{th} roots of unity.

Fix an isomorphism $\mathbb{Z}/\ell\mathbb{Z}$ with μ_ℓ.

$a_1, \cdots, a_n \in k^*$. The cup product gives an element

$$(a_1) \cdot (a_2) \cdots \cdot (a_n) \in H^n(k, \mu_\ell)$$

An element of the form $(a_1) \cdot (a_2) \cdots \cdot (a_n)$ is called a **symbol**.
For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_\ell)$.

Assume that k contains all the ℓ^{th} roots of unity.

Fix an isomorphism $\mathbb{Z}/\ell\mathbb{Z}$ with μ_ℓ.

$a_1, \cdots, a_n \in k^*$. The cup product gives an element

$$(a_1) \cdot (a_2) \cdots \cdot (a_n) \in H^n(k, \mu_\ell)$$

An element of the form $(a_1) \cdot (a_2) \cdots \cdot (a_n)$ is called a symbol.

The image of $(a) \cdot (b) \in H^2(k, \mu_\ell)$ in $\ell \text{Br}(k)$ is the cyclic algebra $(a, b)_\ell$.
Let K be a function field of a p-adic curve and D a central division algebra over K.

Theorem (Suresh (2007))

Let K be a function field of a p-adic curve. Let D be a central division algebra over K of degree q. Suppose that q is a prime not equal to p and K contains a primitive qth root of unity. Then D is either a cyclic algebra or a tensor product of two cyclic algebras.
Let K be a function field of a p-adic curve and D a central division algebra over K.

Suppose the period of D is 2 and $p \neq 2$. By the Saltman’s result, the degree of A is at most 4. In particular, either a quaternion algebra or A is isomorphic to a tensor product of two quaternion algebras (a theorem of Albert).
Let K be a function field of a p-adic curve and D a central division algebra over K.

Suppose the period of D is 2 and $p \neq 2$. By the Saltman’s result, the degree of A is at most 4. In particular, either a quaternion algebra or A is isomorphic to a tensor product of two quaternion algebras (a theorem of Albert).

Theorem (Suresh(2007))

Let K be a function field of a p-adic curve. Let D be a central division algebra over K of degree q. Suppose that q is a prime not equal to p and K contains a primitive q^{th} root of unity. Then D is either a cyclic algebra or a tensor product of two cyclic algebras.
Proof. Suppose that the degree of D is q. Then by the theorem of Saltman, D is cyclic.
Proof. Suppose that the degree of D is q. Then by the theorem of Saltman, D is cyclic.

Assume that the degree of D is bigger than q.
Proof. Suppose that the degree of D is q. Then by the theorem of Saltman, D is cyclic.

Assume that the degree of D is bigger than q.

We find two elements $f, g \in K$ such that $D \otimes (f, g)^{-1}$ has no hot points.
Proof. Suppose that the degree of D is q. Then by the theorem of Saltman, D is cyclic.

Assume that the degree of D is bigger than q.

We find two elements $f, g \in K$ such that $D \otimes (f, g)^{-1}$ has no hot points.

Hence $D \otimes (f, g)^{-1} = (a, b)$ and $D \simeq (a, b) \otimes (f, g)$.
Using the methods of *Saltman* on the study of ramification of algebras over surfaces, we have proved the following local-global principle.
Using the methods of Saltman on the study of ramification of algebras over surfaces, we have proved the following local-global principle.

- \mathcal{X} - a regular, integral surface
- K - the function field of \mathcal{X}
- ℓ - a prime not equal to the characteristic of K
- Assume that ℓ is a unit in $\mathcal{O}_\mathcal{X}$
- Also assume that K contains a primitive ℓ^{th} root of unity.
- \mathcal{X}^1 - the set of all codimension one points of \mathcal{X}
- For $x \in \mathcal{X}^1$, K_x - completion of K with respect to the discrete valuation ν_x given by x.
- $\kappa(x)$ - the residue field at x
Unramified cohomology

\[H^\text{nr}_n(K/X, \mathbb{Z}/\ell\mathbb{Z}) = \{ \zeta \in H^n(K, \mathbb{Z}/\ell\mathbb{Z}) | \zeta \in \text{Image}(H^n(\mathcal{O}_X, x, \mathbb{Z}/\ell\mathbb{Z}) \rightarrow H^n(K, \mathbb{Z}/\ell\mathbb{Z})) \text{ for all } x \in \mathcal{X}^1 \} \]
Unramified cohomology

\[H^n_{nr}(K/\mathcal{X}, \mathbb{Z}/\ell \mathbb{Z}) = \{ \zeta \in H^n(K, \mathbb{Z}/\ell \mathbb{Z}) \mid \zeta \in \text{Image}(H^n(\mathcal{O}_{\mathcal{X}, x}, \mathbb{Z}/\ell \mathbb{Z}) \to H^n(K, \mathbb{Z}/\ell \mathbb{Z})) \text{ for all } x \in \mathcal{X}^1 \} \]

\[H^n_{nr}(K/\mathcal{X}, \mathbb{Z}/\ell \mathbb{Z}) \] is called the **unramified cohomology**.
\[H_{nr}^n(K/\mathcal{X}, \mathbb{Z}/\ell\mathbb{Z}) = \{ \zeta \in H^n(K, \mathbb{Z}/\ell\mathbb{Z}) \mid \zeta \in \text{Image}(H^n(\mathcal{O}_{\mathcal{X}, x}, \mathbb{Z}/\ell\mathbb{Z}) \rightarrow H^n(K, \mathbb{Z}/\ell\mathbb{Z})) \text{ for all } x \in \mathcal{X}^1 \} \]

\[H_{nr}^n(K/\mathcal{X}, \mathbb{Z}/\ell\mathbb{Z}) \] is called the **unramified cohomology**.

For a field \(F \), let

\[H_{nr}^n(F, \mathbb{Z}/\ell\mathbb{Z}) = \{ \zeta \in H^n(F, \mathbb{Z}/\ell\mathbb{Z}) \mid \zeta \in \text{Image}(H^n(\mathcal{O}_v, \mathbb{Z}/\ell\mathbb{Z}) \rightarrow H^n(F, \mathbb{Z}/\ell\mathbb{Z})) \text{ for all discrete valuations } v \text{ of } F \} \]
We have the following:
We have the following:

Theorem (Parimala-Suresh (2010))

Let \mathcal{X} and K be as above. Suppose that for every irreducible closed curve C on \mathcal{X}, $\kappa(C)$ is a global field or a local field. Let $\zeta \in H^3(K, \mathbb{Z}/\ell\mathbb{Z})$ and $\alpha \in H^2(K, \mathbb{Z}/\ell\mathbb{Z})$ is a symbol. If for every $x \in \mathcal{X}^1$, there exists $f_x \in K_x^*$ such that $\zeta - \alpha \cdot (f_x) \in H^3_{nr}(K_x, \mathbb{Z}/\ell\mathbb{Z})$, then there exists $f \in K^*$ such that $\zeta - \alpha \cdot (f) \in H^3_{nr}(K/\mathcal{X}, \mathbb{Z}/\ell\mathbb{Z})$.
Using the above local-global principle and the results of Saltman mentioned above, we have proved the following:
Using the above local-global principle and the results of Saltman mentioned above, we have proved the following:

Theorem (Parimala-Suresh(2007))

Let K be the function field of a p-adic curve and q a prime not equal to p. Suppose that K contains a primitive n^{th} root of unity. Then every element in $H^3(K, \mathbb{Z}/q\mathbb{Z})$ is a symbol.
Using the above local-global principle and the results of Saltman mentioned above, we have proved the following:

Theorem (Parimala-Suresh(2007))
Let K be the function field of a p-adic curve and q a prime not equal to p. Suppose that K contains a primitive n^{th} root of unity. The every element in $H^3(K, \mathbb{Z}/q\mathbb{Z})$ is a symbol.

Theorem (Parimala-Suresh(2007))
Let K be the function field of a p-adic curve. If $p \neq 2$, then every quadratic form over K in at least 9 variables is isotropic.