Real-Time Aggregate Monitoring under Differential Privacy

Liyue Fan, Li Xiong
Department of Math & Computer Science
Emory University
Real-Time Aggregate

- **Disease Surveillance**
 - E.g. daily count of flu cases at a hospital
- **Traffic Monitoring**
 - E.g. hourly count of vehicles at a highway junction

Goal:
Strong Privacy, High Utility
Differential Privacy [BLR08]

Privacy Budget

\[\Pr[A(D) \in S] \leq e^\alpha \times \Pr[A(D') \in S] \]

Randomized Algorithm

Neighboring Databases: differ in exactly one entry

Any Measurable Set

\[A(D) = f(D) + \text{Lap}(\Delta f) \]

\[\Delta f = \max_{D,D'} \| f(D) - f(D') \|_1 \]

Function Sensitivity

\[\text{Lap}(\lambda) \sim \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}} \]

e.g. \(\Delta \text{count} = 1 \)
Problem Statement

• A univariate, discrete Time-Series $X = \{x_k\}$ with $0 \leq k < T$

• **Problem**: Given time series X and differential privacy budget α, release α-differentially private series R with high utility.

• Utility: relative error
Challenges

- High sensitivity - T
- Low utility - Lap(T/α)
- Real-time requirement

• **Existing methods:**
 - Baseline LPA
 - Applies Laplace perturbation at every time stamp
 - Low Utility
 - State-of-the-art DFT
 - Performs Discrete Fourier Transform to the raw aggregate series
 - Reduced sensitivity, not applicable to real-time applications

• **Sampling**
• **Model-based Estimation**
• **Feedback**
FAST: a real-time system with Filtering and Adaptive Sampling for monitoring aggregate Time-series

Diagram:
- Time-series
 - Sampling point
 - Laplace Perturbation
 - Prediction
 - Correction
- Adaptive Sampling
 - error
- output
 - Sampling rate
Filtering

- Process Model

 \[x_{k+1} = x_k + \omega \]
 \[\omega \sim \mathcal{N}(0, Q) \]

 Process noise

- Measurement Model

 \[z_k = x_k + \nu \]
 \[\nu \sim \text{Lap}(\lambda) \]

 Measurement noise

- Approximate measurement noise with Gaussian

 \[\nu \sim \mathcal{N}(0, R) \]

→ the Kalman filter
Sampling

- **Fixed-Rate Sampling**
 - Periodically sample the time series
 - Difficult to determine optimal sampling interval a priori

- **Adaptive Sampling**
 - Adjust the sampling rate/interval based on feedback
 - Implemented by PID control
 - Error to measure the performance of the sampling process
Evaluation: Data Sets

- Flu: CDC/flu, 209 data points
- Traffic: UW/intelligent transportation systems research, 540 data points
- Unemployment: St. Louis Federal Reserve Bank, 478 data points
Utility vs. Privacy

Flu

Traffic

Unemployment

Average relative error vs. α for different methods: FAST, LPA, DFT.
Conclusion

• **Contributions:**
 • Establish the *state-space* model for real-time aggregate under *differential privacy*
 • *Adaptively sample* the data series to reduce perturbation noise
 • Dynamically adjust the sampling rate and estimation based on *feedback*
 • Demonstrate the superior performance of FAST with real-world data sets

• **On-going Work:**
 • Accurate posterior estimation
 • Extension to sharing spatio-temporal data sets

• **Questions?**
 • Contact: liyue.fan@emory.edu
 • AIMS Group: www.mathcs.emory.edu/aims