Abstract: For a semisimple algebraic group G acting on a vector space V, it is rare that there is a dense G-orbit in the projective space $\mathbb{P}(V)$. When there is such an orbit, one can reduce the study of G-torsors to that of torsors under a smaller group H. This provides a unified view of several classical algebraic results, such as the diagonalization of symmetric matrices and Pfister’s theorems on quadratic forms of dimension ≤ 12 in I^3. We describe the general situation, the case where G is a spin group and V is a half-spin representation, and recent work with Anne Quéguiner-Mathieu that generalizes Pfister’s theorem in dimension 12.