Abstract: A graph \(G \) is considered 2-factor isomorphic if it contains a 2-factor \(F \), and all other 2-factors are isomorphic to \(F \). In other words, if \(F \) is viewed as a multiset of the unlabeled cycles it contains, then all other 2-factors may be viewed as the same multiset. Faudree, Gould, and Jacobson calculated the maximum number of edges for 2-factor hamiltonian graphs as a function of \(-V(G) \). In this talk I will generalize this result to any chosen 2-factor, any 2-factor with a fixed number of cycles, and any unspecified 2-factor. Constructions of graphs that attain these bounds arise naturally from the calculations.