Combinatorics Seminar

An upper bound on the size of a k-uniform family with covering number k

John Retter
Emory University

Abstract: Let $r(k)$ denote the maximum number of edges in a k-uniform intersecting family with covering number k. Erdős and Lovász proved that $\left\lfloor k!(e-1) \right\rfloor \leq r(k) \leq k^k$. Frankl, Ota, and Tokushige improved the lower bound to $r(k) \geq (k/2)^{k-1}$, and Tuza improved the upper bound to $r(k) \leq (1-1/e^2 + o(1))r^*$. We establish that $r(k) \leq (1 + o(1))k^{k-1}$. In this talk, we will present a complete self-contained proof (of the somewhat weaker result) that $r(k) \leq (\log k)k^{k-1}$. This is joint work with Andrii Arman.

Monday, April 18, 2016, 4:00 pm
Mathematics and Science Center: W301

Mathematics and Computer Science
Emory University