Dissertation Defense

On Saturation Spectrum

Jessica Fuller
Emory

Abstract: Given a graph \(H \), we say a graph \(G \) is \(H \)-saturated if \(G \) does not contain \(H \) as a subgraph and the addition of any edge not already in \(G \) results in \(H \) as a subgraph. The question of the minimum number of edges of an \(H \) saturated graph on \(n \) vertices, known as the saturation number, and the question of the maximum number of edges possible of an \(H \)-saturated graph, known as the Turn number, has been addressed for many different types of graphs. We are interested in the existence of \(H \)-saturated graphs for each edge count between the saturation number and the Turn number.

We determine the saturation spectrum of \((K_t-e)\)-saturated graphs and \(F_t \)-saturated graphs. Let \((K_t-e)\) be the complete graph minus one edge. We prove that \((K_t-e)\)-saturated graphs do not exist for small edge counts and construct \((K_t-e)\)-saturated graphs with edge counts in a continuous interval. We then extend the constructed \((K_t-e)\)-saturated graphs to create \((K_t-e)\)-saturated graphs. Let \(F_t \) be the graph consisting of \(t \) edge-disjoint triangles that intersect at a single vertex \(v \). We prove that \(F_2 \)-saturated graphs do not exist for small edge counts and construct a collection of \(F_2 \)-saturated graphs with edge counts in a continuous interval. We also establish more general constructions that yield a collection of \(F_t \)-saturated graphs with edge counts in a continuous interval.

Tuesday, March 28, 2017, 2:45 pm
Mathematics and Science Center: E406

Advisor: Ron Gould

Mathematics and Computer Science
Emory University