The complexity of perfect matchings and packings in dense hypergraphs

Jie Han
University of Sao Paulo

Abstract: Given two k-graphs H and F, a perfect F-packing in H is a collection of vertex-disjoint copies of F in H which together cover all the vertices in H. In the case when F is a single edge, a perfect F-packing is simply a perfect matching. For a given fixed F, it is generally the case that the decision problem whether an n-vertex k-graph H contains a perfect F-packing is NP-complete.

In this talk we describe a general tool which can be used to determine classes of (hyper)graphs for which the corresponding decision problem for perfect F-packings is polynomial time solvable. We then give applications of this tool. For example, we give a minimum l-degree condition for which it is polynomial time solvable to determine whether a k-graph satisfying this condition has a perfect matching (partially resolving a conjecture of Keevash, Knox and Mycroft). We also answer a question of Yuster concerning perfect F-packings in graphs.

Tuesday, December 5, 2017, 4:00 pm
Mathematics and Science Center: W303

Mathematics and Computer Science
Emory University