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Abstract—Heterogeneity in secondary characteristics of dif-
ferent HPC target platforms is the focus of this paper. Clus-
ters, grids, and (IaaS) clouds may appear straightforward to
configure to be interchangeable — but our experiences with
mainstream parallel codes for CFD demonstrate that secondary
attributes — support software, interconnect type, availability,
access, and cost — expose heterogeneous aspects that impact
overall effectiveness of application execution. The emergence
of clouds as alternatives to grids and local resources for parallel
HPC codes portends ‘“computing as a utility” in science and
engineering domains. Our experiences provide preliminary
insights into characterizing these different types of platforms
to which users typically have access — and show where the
tradeoffs can be, in terms of deployment effort, actual and
nominal costs, application performance, and availability (both
in terms of resource size and time to gain access). For our test
application, we report that each of the platforms to which we
had access had its particular benefits and drawbacks in terms
of the above attributes. More generally, our experiences may
provide an example preview into what developers and users can
expect when selecting a “utility provider” and specific instance
thereof for a particular run of their application.

Keywords-Platform heterogeneity; Cloud computing; Scien-
tific applications; Cost characterization;

I. INTRODUCTION

Computing as a utility has become a reality in many
domains; Clouds deliver storage and processing resources on
demand via methods analogous to more traditional utilities.
Such a paradigm is evolving for high performance science
and engineering applications (High Performance Computing
— HPC). Typically, applications in the HPC domain are
characterized by computing and/or data intensive codes
that are parallelized explicitly, commonly based on the
message passing programming model. These applications
largely execute on local, on-premise clusters or on platforms
referred to as computational grids — although in practice,
grid-computing predominantly manifests simply as remote
access to clusters, just in a different administrative domain.
In both settings, it has been traditional to measure the
performance of HPC applications by a single metric viz.
time to completion for the particular application in ques-
tion, parameterized along two dimensions: problem size and
number of processing elements used. With the advent of
cloud computing, two interesting perspectives have become
relevant: (1) the viability of executing parallel applications

on the cloud (either through self-assembly or renting a pre-
built cluster); and (2) the actual dollar cost effectiveness of
executing HPC applications on different target platforms.
In this paper we report on preliminary experiences with
executing a Finite Element Method (FEM) code on four
different platforms that are heterogeneous in secondary
respects (interconnect, access method, use cost) and attempt
to characterize the overall “expense factor” of each. We
provide some background information on normal modes
of scientific application execution and subsequently outline
the FEM code used in our exercise. We then describe the
process and issues involved in preparing and deploying the
application on four different platforms. Measurements of
execution time, augmented with usage cost and (qualitative)
deployment effort are presented and discussed; the paper
concludes with a summary of factors that characterize the
effectiveness of using different kinds of platforms.

II. BACKGROUND

HPC is intrinsic and integral to most fields of scientific
endeavor. Message passing parallel programs are a staple
modality of numerical simulations and computational anal-
yses. In addition to the parallel framework, e.g. MPI, codes
depend on various other auxiliary components: scientific
and mathematical libraries, header files, particular compiler
options and flags. These parameters (or sets thereof) are
quite specific to a particular farget platform; executing the
application on a different target platform may require a
non-trivial amount of re-building effort (even if the actual
application source code is untouched). Hence, applications
continue to be executed on the default “home” platform even
if other viable options are present.

Grids and especially Clouds present real opportunities for
applications to move away from their home environments. If
an application run can be obtained in minutes on the Cloud
instead of waiting for overnight turnaround times on a local
cluster, clouds may be an attractive proposition — provided
the monetary and manpower costs are acceptable [1]. In the
ADAPT project at Emory, we are investigating the feasibility
and ease of deploying classes of applications on target
platforms other than those on which they normally execute.
As a learning exercise, we have experimented with a Finite
Element Method (FEM) CFD code based on the C++ library



LifeV [2], whose home environment is an 128-core cluster,
and ported it on other computational platforms: clusters and
Amazon’s Cloud.

III. RELATED WORK

The role of cloud computing as an extension of current
HPC capabilities has been evaluated by many researchers.
In various scientific fields, the rate of increase of available
computing power is closely matched or outpaced by the
increase in model complexity and therefore of the require-
ments for fast, large scale computations — prompting seri-
ous consideration of “unlimited, on-demand resources” that
clouds promise. This however is still controversial [1], [3],
[4], [5]. Cloud vendors have been reshaping their services,
experimenting with new technologies, and exploring new
price policies while users are assessing viability. Several
cloud-effectiveness benchmarks have appeared in the liter-
ature ([3], [6]). We believe, however, that an assessment
of cloud computing as a viable choice in real-life applica-
tions requires evaluation of its support for more complex
scientific software, as we detail in the next section. The
present work also includes early benchmarks of Amazon’s
cc2.8xlarge instances, a novel computational offering
that is a candidate to match the performance of traditional
computing clusters. Furthermore, most studies focus on
time-to-completion; our study takes a broader perspective,
including a preliminary assessment of cost aspects [7],
and the set of activities required to prepare the execution
environment for scientific codes on diverse platforms.

The use of the Cloud as the computational platform for
computational fluid dynamics analysis has been explored by
several software projects. Among the open source projects
we cite CAELinux [8], a Linux distribution including a large
set of open source packages for computer-aided engineering
(Salome (Open CASCADE) [9], Code_Aster (EDF) [10],
Code_Saturne (EDF) [11], OpenFOAM (SGI Corp) [12] and
Elmer (CSC) [13]). CAELinux currently supports cloud exe-
cution on Amazon EC2 by providing a set of pre-defined vir-
tual machines to be run on the EC2 service. OpenFOAM, an
open source package for CFD analysis, can be also executed
as a standalone package on the Amazon EC2 [14] computing
service and on the SGI Cyclone Technical Computing Cloud.
We note here that our work is concerned with comparing
effort, cost, and issues in executing applications on multiple
target platforms exhibiting secondary heterogeneity rather
than the aspect of porting applications to the cloud.

IV. THE NUMERICAL PROBLEM AND ITS SOLVER

Partial differential equations (PDE) are a formidable
tool for modeling problems in different fields, ranging
from aerospace and automotive, mechanical and structural
engineering to biology and biomedicine, ecology and fi-
nance [15]. Explicit and analytical solutions to PDE’s of real
interest are seldom available and numerical approximations

are the norm [16]. FEM is a well established approach to the
numerical solution of PDE’s [17], [18]. The FEM solution
is a piecewise polynomial approximation of the exact one
and the differential problem is replaced by an algebraic
(linear) system. The accuracy of the approximation is in
general related to the size of each portion (“element”) of
the computational domain where the solution is assumed to
be polynomial. The finer the reticulation (mesh) defining the
elements, the larger the algebraic problem to be solved after
discretization — and consequently, the computational cost —
but the more precise the solution.

A. First test case: reaction-diffusion equation

As a first simple test case, in this paper we consider the
following PDE in a cubic region
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Boundary and initial conditions are selected in such a way
that the exact solution is u = t*(z3+23+2%) (figure 1). This
is generally called a Reaction-Diffusion (RD) equation. More
details about this test case can be found in [16], Chap. 5.
Exact solution is used for checking the mathematical cor-
rectness of the code execution.

Since the unknown u in equation (1) depends on time
t and on the space coordinates z;, the numerical solution
requires both time and space discretization. We use a second
order Backward Difference Formula (BDF) for the time
derivative and the FEM of order 2 for the space variables. In
particular, we use the research C++ library LifeV, developed
as a joint project among the Departments of Mathematics
at the EPFL, Lausanne, Switzerland, and the Politecnico di
Milano, Italy, the INRIA in Paris, and the Department of
Mathematics and Computer Science at Emory University.
The library has been mostly developed for applications of
the FEM in blood flow and industrial problems.

B. Second test case: incompressible Navier-Stokes equations

Incompressible fluid dynamics represents one of the most
challenging, attractive and impactive problems in modern
scientific computing. Fast and reliable numerical solutions
of the Navier-Stokes equations (NSE) — the basic math-
ematical model for incompressible fluid dynamics — are
required in several engineering fields, ranging from auto-
motive/aerospace to geophysical and biomedical engineer-
ing [19], [20]. If [u;,uz,us] denotes the velocity vector and
p the pressure of a liquid in the 3D space with coordinates
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Figure 1. Solution of equation (1) when ¢ = 2s. The isosurfaces of u
are plotted inside the cubic domain, for a set of 25 values chosen with a
constant interval of 0.5

x1, T2, T3, the incompressible NSE read
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Here p is the fluid density and p is the viscosity (that we
assume to be constant for simplicity). Vector [f1, fo, f5] is
an external forcing term. From the numerical viewpoint, this
problem is by far more challenging than RD equation (1),
not only due to size (this is a vector problem involving four
scalar fields), but owing to intrinsic mathematical features
and the non-linear term (see, e.g. [20]). In this paper, in
particular, we use for our experiments a classical problem
proposed by C. R. Ethier and D. A. Steinman [21], a popular
non-trivial benchmark for CFD solvers. The time derivative
is discretized with a second order BDF, while the unknowns
u and p are approximated using the FEM of order 2 and of
order 1 respectively. The exact solution of this problem is
shown in figure 2.

C. The organization of the program

The numerical solution of problems like the proposed
test cases involves operations that are conceptually split
into two categories. The evolution in time is solved as a
sequence of steps that compute the unknowns at selected
instants t*. Some operations are independent of the time
advancing and are performed out of the temporal loop. Other
operations need to be performed at each time step. These
typically constitute the computationally-intensive kernel of

Figure 2. Solution of the problem proposed by C. R. Ethier and D. A.
Steinman [21], based on equation (2), when ¢t = 0.003s. Arrows represent
the vector field u, while in the cubic domain are shown isosurfaces of the
scalar field p
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Figure 3.
problem

Steps for the numerical solution of a time-dependent PDE

the software. Schematically, we represent the stages of the
application as in figure 3.

Here we detail each phase. Step (i) consists of the
definition of the computational domain where the equations
have to be solved numerically. This is given by the mesh.
This task is typically accomplished with in-house mesh
generators (for structured meshes) or third-party software
such as NetGen [22] and GMSH [23]. In a parallel applica-
tion, the domain is partitioned so that each process takes
care only of a subset of the global mesh. This splitting
is achieved by resorting to graph partitioning algorithms,
such as those implemented in the library ParMETIS [24],
guaranteeing a proper load balancing among processes. The



load is measured as the number of mesh elements assigned
to each process. Other operations of this step refer to all
the computations that are time independent and can be
performed once.

Step (ii) concerns the computation (or more specifically
the assembly) of the matrices and vectors required for the
construction of the discretized algebraic problem. This is
carried out with algorithms and data structures provided
by LifeV. In a parallel application, each process can only
access a subset of the matrices and vectors, corresponding
to its own portion of the mesh. In other terms, matrices
and vectors are distributed and need to be updated via a
message passing interface. Our software uses distributed data
structures implemented in the external library Trilinos [25]
by Sandia Labs. Trilinos also provides algorithms for the
solution of the algebraic problem (step (iii)). In particular,
we use iterative preconditioned methods, where the solution
of the large linear systems assembled at each time step is
replaced by the iterative solution of simpler systems (called
preconditioners). For this reason, we distinguish a step (iiia)
for the computation of the preconditioner, and step (iiib) for
the actual solution of the preconditioned system.

Step (iv) concerns the visualization of the solution to the
differential problem, and can be delegated to third party
software such as Paraview [26]. This step may also include
the computation of quantities of interested related to the
solution wu.

For the purpose of the present paper, we are mostly
concerned with steps (ii) and (iii), which have a major
impact on the entire computational cost of the application.

D. Summary of the packages used in LifeV

The complete list of required packages to build our PDE
solver follows:

o LifeV library [2], for the formulation of the algebraic
counterparts to differential problems; this library is used
directly by the solver application;

o Third-party scientific libraries:

— Trilinos [25] for the solution of linear systems (data
structures and algorithms);

— ParMETIS [24], used for mesh partitioning;

— SuiteSparse [27], as a support library extending the
capabilities of Trilinos;

— BLAS/LAPACK libraries (generic or vendor-
specific implementations);

o General-purpose and communication libraries:

— Boost C++ libraries [28], mainly used for effective
memory management (smart pointers);

— HDFS5 [29], for the storage of large data on file. For
compatibility issues, this package has to be built
with the 1.6 version interface;

— MPI libraries (e.g., Open MPI);

o Compilers:

— C++ compiler (e.g., GCC version 4 or above);
— [optional] Fortran compiler, compatible with C++;

« Deployment tools:

— GNU make;
— Autotools;
— CMake (version 2.8 or above).

V. FOUR HETEROGENEOUS TARGET PLATFORMS

We benchmarked two applications for the numerical solu-
tion of the two test cases presented in the previous section,
on four different computing architectures.

As the starting point for our analyses, we selected an
in-house computing cluster constituting a computational
test bed for the LifeV developer team. ' As the second
architecture, we used a larger compute cluster provided on
a fee-for-use basis within our university. Next, we evaluated
the usability of on-demand resources provided by Amazon’s
Elastic Compute Cloud (EC2). From the rich resource offer-
ings provided by this vendor, we picked the most powerful
hosts, dubbed Cluster Compute. The fourth platform was the
HPC supercomputer available for scientists at the CILEA
supercomputing center, in Segrate (Milano), Italy — this
exemplifies canonical grid usage.

The four platforms are heterogeneous in many respects:
they differ in availability (measured as wait time to obtain
access to the machine), access modality (privileged vs.
unprivileged user), storage (e.g., size of user disk space),
build (e.g., presence of the compilers and basic build tools),
aggregation (e.g., presence of MPI toolsets), and execution
(e.g., presence and type of parallel job schedulers). In this
section we compare the considered architectures, pointing
out differences and similarities. Table I summarizes the
compared features; below we note a few relevant details.

A. Puma

The in-house computing cluster puma comprises thirty
two four-core nodes. Each node includes two AMD 2214
processors, 8GB memory with 80GB local scratch disk
space, while Gigabit Ethernet (1GbE) provides the network
interconnections. This cluster is controlled by Linux CentOS
5.2, Rocks 5.1, and Portable Batch System (PBS) Torque
2.3.6. Users have unprivileged access to the machine, so
they need to install any needed software (libraries etc) in user
space. As the “home” environment for LifeV developers, this
cluster was pre-provisioned with the entire set of packages
required to run LifeV-based CFD simulations. Being an
internal resource, with restricted user access, puma does
not implement a monetary accounting system for computing
resource usage.

IThis is the “home” environment where the application is run by default.



B. Ellipse

The university cluster e11ipse consists of 256 four-core
nodes with AMD 2218 processors and 8GB RAM; Gigabit
Ethernet provides the interconnection fabric. All nodes are
controlled by CentOS 4.5. Job execution is performed by
the Sun Grid Engine (SGE) 6.1 scheduler which was con-
figured to manage serial processing batches only. As with
puma users, ellipse users have unprivileged access to
the machine. The required software dependencies were not
originally installed on the cluster. They were provisioned by
building them from sources in user space. All users pay a
flat rate 5¢ per CPU core per hour.

C. Lagrange

Our third test architecture was the supercomputer clus-
ter lagrange at the CILEA supercomputer center. This
supercomputer, when assembled, was placed at the 136-
th position in the TOP500 list [30]. The machine is com-
posed of HP ProLiant server blades with two Intel Xeon
X5660 processors and 24 GB RAM each. The network
infrastructure is provided by InfiniBand (IB) 4X Double
Data Rate (DDR, 20 Gb/s bandwidth). Computing nodes
are controlled by the CentOS version 5.6 operating system.
Users have unprivileged access to the machine. However,
unlike puma and ellipse, lagrange provides some
dependencies for LifeV-based applications (in particular the
vendor-specific BLAS/LAPACK package). The cluster runs
PBS Professional version 11 as a scheduler. The cost of the
computer is €0.15 per core per hour (currently, about $0.20).

D. EC2

Our final target architecture was a infrastructure as a
service (IaaS) cloud offered by Amazon EC2. IaaS resources
provide on-demand computing in the form of computing
chunks virtualized from the vendor’s multi-tenant machines.
These chunks are delivered for users as standard ssh-
able root-accessible computational hosts. Users requesting
these chunks specify the quantity of hosts, a resource class
(characterized by computational power, number of CPU
cores, memory capacity, and network interconnect) and the
Operating System (OS) controlling the hosts (from public
or users’ private OS images). The vendor offers several
sizes of virtualized hosts, ranging from small instances
(tl.micro/ml.small; one 32bit CPU, below 1GB of
RAM, and slow network interconnections) to modern HPC-
class cluster nodes (cc2.8xlarge/cgl.4xlarge; 16
cores, 60GB of RAM, 2 GPGPU processors, and 10 Gi-
gabit Ethernet (10GbE), with network-aware host allocation
strategy [placement groups]). All setup conditions, as well
as management and monitoring measures can be controlled
by users in various ways, including direct interactions with
the AWS (Amazon Web Services) Management Console
web toolkit or Amazon EC2 API command-line tools [31],
programming libraries [32], or frameworks providing higher

[ [[ puma [ ellipse [ lagrange [ ec2
cpu arch. Opteron Opteron Xeon Xeon
# cpu/cores 2/2 2/2 2/6 2/8
RAM/core 1GB 1GB 1.3GB 3.8GB
network 1GbE 1GbE IB 4X DDR | 10GbE
storage OK insufficient | OK insufficient
access user space user space user space root
support full very limited | limited none
build env. yes yes yes none
compiler GCC 434 GCC 4.1.2 GCC 4.1.2 none
dependencies|| all none blas, lapack | none
MPI Open MPI none Open MPI none
parallel jobs || yes no yes no
execution PBS SGE PBS shell

Table I

SPECIFICATION OF THE TEST ARCHITECTURES DIFFERENCES. IN
COLOR: HOW WE ADDRESSED THE MISSING CAPABILITIES

level services over laaS clouds [33], [34]. In contrast to
conventional computational resources, EC2 users obtain full
access to hosts instantiated on the Amazon’s service. As
a result, we could use a system package management tool
(yum, in our case) and modify the system configuration.
Amazon does not levy any upfront costs and charges users
merely for the actual use of resources (time and compu-
tational power), external data transfers, and scratch space
(size); however, some OS images and additional services
(e.g., static IPs) incur additional costs. In this study, we
focused on evaluating the cc2.8xlarge instance.

VI. PORTING EXPERIENCES

Execution of our two applications on the target architec-
tures requires (1) providing all software dependencies, (2)
running the actual build program (make) that links against
the appropriate libraries and produces the final executable
file, and (3) providing the parallel execution environment.

A goal of this exercise to keep the porting effort to the
absolute minimum possible. Thus, no changes were made
to the application source codes. We utilized all compatible
software that was already available on the target (even if
it was not the latest version) and resorted to installation
(preferably from package repositories) only if the depen-
dency was missing or incompatible. In the ec2 case, we had
to commit a minimal configuration allowing aggregation of
computational hosts for a single parallel execution.

Table I shows, in brief, the state of capabilities provided
by the test resources before porting. Below, we provide a
full report describing all the activities required to elevate
the resource capabilities to the LifeV build and execution
environment.



A. Puma

This computer is fully sustain the build and execution of
LifeV-based applications. As the result, we needed to use
a generic Makefile to create the executable. To launch the
simulations, we used the PBS job submission command.

B. Ellipse

The Ellipse environment already provided the GNU com-
piler collection in a compatible version (4.1.2) with C, C++,
and Fortran compilers, as well as all needed deployment
toolkits. We began assembling dependencies by provisioning
the MPI package (Open MPI 1.4.4). Then, MPI tools were
used to build ParMETIS 3.1.1, HDFS 1.8.7, Trilinos 10.6.4,
and SuiteSparse 3.6.1. Additionally, we provisioned the
Boost libraries 1.47. For the BLAS/LAPACK package we
resorted to CPU vendor-specific implementation, available
as ACML [35] 4.0.1. The last step was updating the
Makefile for the simulation applications and building
them. All software preconditioning actions took about 8
man-hours of work by an experienced member of the LifeV
developers team.

The SGE on ellipse was not configured to support
parallel tasks; however, Open MPI could detect and liaise
with SGE to start and end tasks on assigned nodes. Thus
we were able to use SGE commands to reserve and submit
mpiexec jobs.

C. Lagrange

CILEA presented a pre-prepared environment for building
and executing parallel, MPI-based applications. The admin-
istrators provided a choice of C++ and Fortran compilers
(GCC version 4.1.2 and Intel Compiler suites 12.1); MPI
packages (Open MPI, Intel MPI), and BLAS/LAPACK rou-
tines were available from the CPU vendor-specific libraries
(MKL [36]). In order to provision the software dependen-
cies for our software, we used GCC to build the Boost
libraries 1.47 and SuiteSparse 3.6.1. The remaining software
dependencies (HDF5 1.8.7, ParMETIS 3.1.1, Trilinos 10.6.4,
LifeV 2.0.0) were built against Intel MPI compiler wrappers.
All the preparatory actions took about 8 man-hours for the
LifeV developer.

D. EC2

To exercise the port of our software to EC2, we initially
selected the ccl.4xlarge instance (when we started
our experiments cc2.8xlarge was not available) and
the EC2 CentOS 5.4 HVM AMI (ami-7ea24al7) image.
To facilitate software preconditioning steps we used the
root access. As this version of CentOS Linux contained
obsolete versions of software, we began with an update of
the system using the yum update command. The chosen
image contains only the essential packages, with neither
development software nor scientific library support. In order
to provide the source code build environments, we installed,

using yum, GCC 4.4.5, GFortran 4.4.4, libtool 1.5.22 (with
autoconf 2.59, automake 1.9.6), and Open MPI 1.4.4. To
install CMake 2.8 we resorted to a source code installation as
the required version was not available from the repositories.
After this phase, we downloaded all required dependencies
as the source codes, built, and installed them: GotoBLAS2
1.13, LAPACK 3.3.1, Boost 1.47, HDF5 1.8.7, ParMETIS
3.2.0, SuiteSparse 3.6.1, Trilinos 10.6.4, and LifeV 2.0.0.
After these preconditioning steps, building the simulation
application was straightforward.

We also encountered cloud-specific issues not seen on
traditional resources. One concerned ssh host mutual au-
thentication to enable automatic launch of remote MPI
processes by mpiexec requiring pre-generation and storage
of keys. The second issue was related to configuration
of the EC2 service. We modified the security group by
enabling all intranet TCP ports to allow MPI processes
intercommunication. Additionally, we required more disc
space for staging the problem meshes (originally, the utilized
image provided 20GB partitions). We could fulfill this
requirement by instantiating the NFS service or using the
Elastic Block Store volumes with copies of the files (one
volume may be mounted to a single EC2 instance only).
However, we decided to increase the size of the original
boot partition, consequently supplying the input files from
the same volume.

All the changes committed on the running instance can
be preserved by creating a private image stored on the
Amazon service. This image, in turn, may be used to launch
several identical copies of the instance. Such on-demand
hosts behave like cluster nodes. Further conditioning may
provide a high-availability computing cluster with services
such as monitoring or automatic checkpointing. However,
we prepared an image that contains merely the essential
software packages and services that allow the on-demand
resource to sustain our CFD simulations.

In order to execute a simulation, we instantiated an
appropriate number of copies of the prepared image. The
service assigned intranet IP addresses for the on-demand
hosts and we used these IPs to create the run-specific hosts
list for the mpiexec command. Finally, this command was
executed directly from the command line.

VII. EXPERIMENTAL RESULTS

As mentioned, we benchmarked the four described archi-
tectures using two test cases: a simple RD test with boundary
conditions specifying the exact solution on the boundaries;
and a solution of the Navier-Stokes problem where, again,
we prescribe the exact solution on the boundary.

A. RD test

We executed the simple RD 3-D problem on four comput-
ing architectures: two in-home clusters (puma, ellipse),
the HPC-class computer (Lagrange), and the on-demand



instantiated Amazon’s hosts (ec2). In the case of EC2
resources, we utilized the newly introduced, most powerful
Amazon’s instance driven by two eight-core Intel Xeon
E5 processors with 60.5GB of RAM (cc2.8xlarge).
Though, this instance type was different from the build
target, the transition was streamlined — the preconditioned
image was fully compatible with both types and the com-
pilers used generated optimized, binary-compatible executa-
bles. As this node type includes sixteen computing cores, it
allowed us to conduct our experiment with a 200% element
input mesh on 103 MPI processes on just 63 instances.

During the execution phase on ellipse and
lagrange, we encountered system difficulties that
limited our experiments on these targets. The former
machine was not natively configured to execute the parallel
jobs and our tasks spanning above 512 processes could not
be launched (mpiexec was unable to initialize a huge
number of remote MPI daemons). On the former target,
our simulation codes reached the configured limit of data
volume sent by the IB network adapters. As a result, we
could not execute tasks bigger than 343 processes there.

In figure 4, we present results from a weak scaling test of
the RD application. We started from a single process loaded
with the input mesh of size 203 elements and incremented
the number of processes (as well as the input mesh size) as
cubic powers, to the limits of the platform in question. We
recorded iteration wall-clock times across the whole MPI
execution: the average times of assembly, preconditioning,
and solver phases with the total maximal iteration time. We
discarded timings from the first 5 iterations to guarantee
that the acquired results are not influenced by Open MPI
startup artifacts. Finally, all the consecutive measurements
were averaged and are presented in the chart.

As shown in the figure, the problem scales well for all
targets in the range 1-125 MPI processes — when the problem
size is increased with the machine size, execution times
remain reasonably steady (perfect weak scaling would result
in constant times). We assume that network performance
is the major factor degrading performance in the larger
cases — as the problem size grows, processes exchange more
data and the overall performance drops. After a certain
problem size, only the HPC machine 1agrange maintains
a good weak scaling characteristic. However, we need to
investigate why the solver phase on lagrange performs
better for an increasing number of processes; we think that
the placement of nodes in the cluster may play an important
role in this phenomenon. Another interesting observation
is that in case of Amazon’s hosts, there are certain sizes
where the performance significantly deteriorates. As differ-
ent computation phases exchange different volumes of data
(the assembly phase needs more data than preconditioning
which needs more data that the solver) these characteristic
locations appear for various numbers of processes. One more
striking aspect is that the ec2 configuration characterizes by

# full mix
mpi || # | time[s] | real cost[$] [ time[s] [ est. cost[3]
1 1 4.83 0.0032 4.77 0.0007
8 1 5.83 0.0039 5.78 0.0009
27 2 7.28 0.0097 7.58 0.0023
64 4 8.69 0.0232 8.82 0.0053
125 8 21.65 0.1155 21.24 0.0255
216 || 14 31.47 0.2937 31.47 0.0661
343 || 22 66.34 0.9729 62.57 0.2065
512 || 32 92.20 1.9670 94.52 0.4537
729 || 46 | 127.76 3.9179 128.10 0.8839
1,000 || 63 | 162.09 6.8077 148.98 1.4079

Table II

COMPARISON OF TWO EC2 cc2.8xlarge ASSEMBLIES: FULL PAID
INSTANCES IN A SINGLE PLACEMENT GROUP (FULL) AND SPOT
REQUESTS IN VARIOUS PLACEMENT GROUPS (MIX)

the worse performance degradation in comparison to puma
and ellipse (both with 1GbE network). Due to the fact
that each utilized EC2 instance incorporates sixteen CPU
cores, the on-demand assembly exploits notably fewer hosts
hence the smaller volume of data is exchanged by the 10GbE
network.

B. Placement group benchmark

We also analyzed how the placement group setting influ-
enced the performance of on-demand machines. In order to
test this, we executed the RD code in two configurations,
both utilizing the same cc2.8xlarge instances and pre-
conditioned image. The first configuration exploited the fully
paid 63-node assembly located in a single placement group,
while the second configuration used 63 nodes acquired both
from spot requests (instances sold for bid prices) and fully
paid requests from four different placement groups in the
same availability zone us—east-1a.

Table II presents the test results: the average total time
for a single iteration and its cost in both configurations
(during the test, the regular instance cost $2.40 and the
spot-requested — 54¢, both prices per host per hour). The
results show that regular allocation in a single placement
group does not introduce any performance benefits despite
costing four times as much. Of course, the unpredictable
nature of spot requests makes it impossible to estimate when
instances start, how long they are available, and their actual
price (although a maximum can be specified). Indeed, we
never succeeded in establishing a full 63-host configuration
of spot request instances.

C. Navier-Stokes test

In figure 5, we present the weak scaling results achieved
on our four basic test architectures, using the second applica-
tion — Navier-Stokes 3-D simulation. We loaded computers
as in the first case — every MPI process held 203 elements
of the input mesh. As with RD, we could not execute this
test on all available cores on ellipse and lagrange. As
before, we also discarded the first few iterations to insulate
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Figure 6. Per iteration costs of the test architectures for the RD application
weak scaling benchmark

the timings from MPI startup impact; the chart presents
averaged times for all observed iterations.

The Navier-Stokes test is more computationally demand-
ing than the simple RD test. Moreover, the data volume
exchanged among the MPI processes during the computation
increases as this problem involves two variables. This test
does not scale well in any range; however, again the most
efficient machine is the HPC 1agrange cluster. We believe
that the results manifest the obvious explanation, i.e. that
this type of CFD simulation is critically dependent on
network performance. Again, the performance of Amazon
cluster nodes declines sharply as the problem size/number
of processes increases. However, for computationally inten-
sive tasks for a small number of processes, Amazon EC2
performance is comparable to the HPC class machine and
can considerably improve time to completion in comparison
to the department class computing clusters.

D. Cost analysis

Figures 6 and 7 compare costs for resource utilization.
We estimate the cost of our department cluster puma, based
on its real capital cost and operating expenses, at 2.3¢
per core-hour, which is consistent with other published
estimations [37]. For our university cluster e11ipse, users
pay a flat rate of 5¢ per core-hour. The cost per core
for the 16-core EC2 instances applied in the study starts
from 3.375¢, if spot requests are used, or 15¢ for flat-price
nodes. However, as Amazon charges the users for the entire
machine, this price increases if not all cores are utilized, as
shown on both charts for two first cases. Finally, the cost of
lagrange was set at 19.19¢ per core-hour based on the
prevailing currency exchange rate.

Perhaps unsurprisingly, compute-intensive applications
are most cost effective — one obvious reason being that
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Figure 7. Per iteration costs of the test architectures for the Navier-Stokes
application weak scaling benchmark

neither clouds nor grids charge for network utilization and
all charges are based on nodes. This is readily apparent
in the case of the Navier-Stokes application — EC2 costs
less than our on-premise cluster and is faster as well. Both
figures contain the “ec2 mix” curves which could be
viewed as a cost-aware strategy for Amazon’s resources.
However, obtaining a large number of hosts via spot requests
is difficult if not impossible. In our experiments, we were
compelled to add regularly-priced hosts to spot-request hosts
to obtain the size configuration needed; this is apparent in
the convergence of the mix and regular curves.

VIII. SUMMARY AND FUTURE WORK

We have presented preliminary experiences and observa-
tions based on our exercise to deploy two production CFD
codes on four different target platforms characterized by
heterogeneity in secondary attributes. Noteworthy are the
difficulties that we had to overcome to simply provision the
application, including package and library installation and
other logistical hurdles.

Comparing on-premise and on-demand targets for the ap-
plications we tested, we found some evidence to support the
claim that IaaS resources may be utilized for scientific CFD
simulations possibly at lower cost than incurred locally. In
particular, the spot-request feature coupled with availability
of cutting edge resources (16-core nodes, 60GB RAM as
opposed to 3-year old, 2-4 core nodes with 4GB RAM),
suggests that small on-demand assemblies may be a viable
alternative to local clusters. It is not without significance
that IaaS’s provide resources immediately, while local and
grid resources are often subject to long queue wait times —
an aspect that might offset any additional expense. Another
factor is size; at least in our case, only Cloud providers could



provide a large enough offering to sustain the biggest, 1000-
core task. Furthermore, while a modern local computing
cluster, with an efficient interconnection network will out-
perform an on-demand assembly (which is highly vulnerable
to network performance), the cloud solution might be useful
for other reasons.

Another issue concerns the effort required for prepar-
ing the target platforms. In this study, we provisioned all
machines manually and we installed only the necessary
and sufficient packages. We observe that provisioning of a
machine took about a day for an experienced member of the
development team, in addition to multiple requests to and
interactions with system administrators. Use of third party
software to address mundane, repeatable tasks (e.g. [38]) or
predefined images for IaaS ([33], [14]) could significantly
reduce this cost and will form the focus of our future work.
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Figure 4. Weak scaling test of the RD 3-D simulation. The initial size of the problem mesh is 203
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