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Abstract

High Performance Computing (HPC) is a mainstream mode of exploration and
analysis in different fields, not only technical but also social and life sciences. A
well established HPC domain is medicine, and cardiovascular sciences in particular.
The adoption of CFD as a tool for diagnosis, prognosis, and treatment planning
in the clinical routine is however still an open challenge. The computational anal-
ysis of large numbers of patients calls for significant computational resources, and
traditional local clusters may be not adequate to deliver the computational needs.
Alternative solutions like grids and on-demand cloud resources need to be seriously
considered. This paper proposes methodologies and protocols to identify comput-
ing platforms for hemodynamics computations that will be increasingly needed in
the future. We focus on hemodynamics in patient-specific settings and present ex-
tensive results on different platforms. We propose a way to measure and estimate
performance and running time under realistic scenarios. In addition, we discuss in
detail the optimal (parallel) partitioning of the domain of a problem of interest with
different mathematical approaches. We show that an overlapping splitting is gen-
erally advantageous and the detection of optimal overlapping has the potential to
significantly reduce computational costs of the entire solution process.
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1. Introduction and Background

Computational fluid dynamics (CFD) has been progressively adopted in the last
decade for studying the role of blood flow on the development of arterial diseases (see
e. g. [1, 2]). Computational investigations - compared to more traditional in vitro
and in vivo studies - are generally more flexible and cost-effective. In combination
with appropriate image-processing techniques - see e. g. [3] - CFD can be used in a
patient-specific setting. This means that the morphological and functional conditions
of a specific patient may be reproduced in mathematical terms and quantitative
analyses can be performed by solving the corresponding partial differential equations
describing the physical and constitutive laws behind the physiopathology. There
are several uses for this kind of analysis, including a deeper understanding of the
clinical conditions, performing virtual surgery or therapy for predicting outcomes, to
a personalized optimization/customization of generic procedures [4, 5, 6, 7, 8].

Adoption of CFD as a tool for the diagnosis, prognosis, and treatment planning in
the clinical routine is however still an open challenge. In fact, the time for obtaining
results from computational studies is often too long for the fast-paced clinical envi-
ronment. Furthermore, association of computed blood-flow patterns with outcome is
still not supported by large enough sample sizes. On the other hand, computational
analysis of large number of patients calls for significant computational resources [9].
In short, we may say that computational hemodynamics is a field with great poten-
tial, but currently limited by time and cost constraints.

Increasingly however, scientists and clinicians have access to several classes of
available computing platforms which could alleviate the resource bottleneck. While
local (owned) resources are faster and cheaper, overall system and operating expenses
have led to resource sharing and resource leasing paradigms, i.e. grids and clouds,
respectively. But it is not trivial to identify the platform that best suits the problem
to be solved in each situation. Overall performance depends on two interrelated
factors: (1) the architecture of the physical resource and (2) its optimal exploitation
for the specific problem to solve. In real production settings, performance must also
be balanced with cost.

As for the first aspect, traditionally performance of HPC applications has been
measured by a single metric, i.e., time to completion for the particular application at
hand, parameterized with respect to problem size and number of processing elements
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used. Nevertheless, with the advent of cloud computing, the viability of executing
parallel applications on the cloud (either through self-assembly or renting a prebuilt
cluster) and the actual dollar cost effectiveness of executing HPC applications on
different target platforms have become relevant. On the other hand, communication
is an issue of paramount concern in the matter of efficiency. On clouds, a great deal
of attention has been devoted to data handling but there has been relatively little
focus on interconnection network capabilities. For explicit message passing parallel
programs, such as those which make use of MPI, data handling and interconnec-
tion network capabilities lead to substantial heterogeneity in communication, with
significant impact on performance. It is worth stressing that most real-life applica-
tions we are interested in are not regular or symmetric and thus their MPI process
communication graphs are unevenly weighted.

In this work we explore two viable approaches to tackle these issues.
(a) We re-map the effective topology of the application’s interconnection network by
managing the allocation of MPI processes to processor cores before the execution of
the application, so that highly coupled MPI processes are “close”, i.e. mapped on
cores within a single node. In this way the intra-node communication is maximized
and the long-distance inter-node communication is reduced.
(b) We consider well-established methods to associate mathematical formalism to
the parallel solution of complex systems of partial differential equations (PDEs). In
particular, we resort to domain decomposition techniques (DD) to detect the optimal
splitting of the tasks that minimizes the computational time. This method was
historically introduced - well before the advent of parallel computing - to compute
manually the solution of PDEs by splitting the process over different subdomains of
the region of interest to take advantage of simple geometries (e.g. a L-shape domain
was split into rectangles Fig. 2) where simple methods were available. Nowadays,
DD is a powerful approach to manage the solution over different computational
resources either with or without overlapping of subdomains, depending of the specific
problem of interest and the identification of optimal interfaces to minimize inter-node
communications.

Our reference application is the solution of problems related to computational
hemodynamics, blood flow and solutes like Oxygen. We aim at demonstrating the
relevance of all these issues in a realistic context, when dealing with a patient-specific
setting. For this reason, we consider the vascular geometry of a patient, so as to
discuss our strategies on a case of real interest. We use an object oriented C++
library for the solution of PDEs with the finite element method (FEM) called LiFEV
(“Library for Finite Elements 5”) [10], extensively adopted in several projects of
practical interest - see e.g. [8, 11, 12, 13, 14, 15].
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In Section 2 we discuss our experiences with comparing cost and utility on three
typical platform types: Infrastructure as a Service (IaaS) clouds, grids, and on-
premise local resources, with a particular focus on process-to-node mapping vis-a-vis
efficiency.

In Section 3 we consider the work balance in terms of DD and interface handling.
We present an automatic procedure to optimize the mapping of the sub-domains
to the available processing units based on graph analysis. We first consider a non
overlapping strategy, where each domain shares with the others only the interface
(e.g. a surface cutting in our case the volume of the artery of interest). However, it is
well known that this is not necessarily the best option. In fact, a faster convergence
to the desired solution in the iterative-by-subdomain approach can be attained if we
allow some overlapping.

In Section 4 we test this option in both idealized and real 3D geometries. We
show that the detection of the optimal overlapping in real cases - albeit non trivial -
has the potential to significantly reduce the computational costs of the entire solution
process.

1.1. The mathematical problem and its numerical solver

Computational hemodynamics requires the study of incompressible fluids. In-
compressible fluid dynamics represents one of the most challenging, attractive and
impactive problems in modern scientific computing. Fast and reliable numerical so-
lutions of the Navier-Stokes equations (NSE) – the basic mathematical model for
incompressible fluid dynamics – are required in several engineering fields, ranging
from automotive to geophysical and biomedical engineering [16, 17]. From the com-
putational viewpoint, these equations are very challenging, not only due to the size
(it is a vector problem involving four scalar fields, three components of velocity and
the pressure), but to intrinsic mathematical features (see, e.g. [17]). In the test we
use for our experiments, NSE - completed by appropriate initial and boundary con-
ditions - are solved for computing blood velocity and pressure in an artery affected
by a disease, called cerebral aneurysm. The latter consists of an abnormal sac in the
artery, inducing non-physiological flow patterns that can lead eventually to rupture
of the arterial wall and brain hemorrhage.

The application of computational hemodynamics to the study of vascular dis-
eases is time- and cost- sensitive, as it typically entails the generation of large data
sets of simulations on patient populations, with the final goal of finding statistical
correlations of flow patterns with outcome [18, 8]. Here, in particular, we consider
a benchmark problem proposed in the Inaugural CFD Challenge Workshop [19],
i. e. the study of blood flow inside a giant brain aneurysm in an internal carotid
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artery.
The equations are approximated by FEM combined with backward difference

formulas (BDF) to handle the time dependence. With FEM, the solution is approx-
imated by a piecewise polynomial function over subdivisions of the artery, called
elements. The collection of elements is called mesh. This step reduces the partial
differential equations to a system of ordinary differential equations in time. The
latter is finally solved in selected instants by a second order BDF approximation. At
each time step a large sparse (i. e. with the majority of entries of the associated ma-
trix equal to 0) linear system needs to be solved. The more elements are introduced
in the computational domain and the more instants are collocated for the numerical
solution, the higher the computational costs of the procedure are and the more ac-
curate the solution is. In particular, here we consider a mesh with 837,154 elements,
such that the total number of unknowns in the linear system is 3,162,146. The equa-
tions are collocated in 100 instants within the cardiac cycle (i. e. the simulation time
step is 0.01s). A snapshot of the computed solution is shown in Figure 1.

Figure 1: Solution of the problem, based on NSE, when t = 0.28s. Streamlines of the velocity field,
when the flow rate is maximum over the cardiac cycle.

1.2. Domain decomposition techniques for the solution of Partial Differential Equa-
tions

As pointed out previously, DD techniques provide an important framework to
associate mathematical formalism to the parallel solution of a complex PDEs system
- see e.g. [20, 21]. The PDE problem over a region of interest Ω is decomposed
in subproblems to be iteratively solved by single processors or clusters up to the
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fulfillment of a convergence criterion stating that the solution found is equivalent
to the one of the unsplit system. Each subproblem exchanges information with the
neighborhood ones by means of interface conditions. In non overlapping splittings,
these conditions need to be properly chosen to guarantee that the split-by-subdomain
solution is equivalent to the global one. In overlapping partitions, less constraints
are required since synchronization conditions for each subdomain are prescribed on
different space locations. In fact, each subdomain has its own interfaces. Notice
that with overlap the PDE problem is solved multiple times on the overlapping
regions, with potential computational duplication overhead. However, beyond the
more freedom when selecting the interface conditions, the iterative solver requires in
general a lower number of iterations to converge. We illustrate the difference between
the two approaches for a simple problem in Fig. 2.

Ω Ω

Ω1

Ω2 Ω2

Ω1

Γ

Γ1 Γ2

(a) (b)

Figure 2: Schematic representation of (a) non overlapping and (b) overlapping DD in a L-shaped
domain Ω. In the first case conditions on the interface Γ must fulfill compatibility constraints
depending on the nature of the PDE for the split-by-subdomain solution to be equivalent to the
unsplit one.

The interplay of (i) additional numerical costs due to the overlap, (ii) efficiency

6



advantages induced by the specific iterative methods and (iii) versatility of the se-
lection of domain interfaces (and the associated conditions) for the communication
time, is not trivial in problems of practical interest. In particular, numerical analysis
focuses typically on points (i) and (ii), while in the present work we will verify the
performances of these overlapping schemes when the geometry of Ω plays a major
role, following up previous works [22, 23].

In particular, to this aim we will consider the following differential Advection-
Diffusion-Reaction (ADR) problem

−
3∑

i=1

∂

∂xi

(
µ
∂u

∂xi

)
+

3∑
i=1

βi
∂u

∂xi

+ σu = f , (1)

for (x1, x2, x3) ∈ Ω ⊂ R3 with µ > 0 and σ coefficients for simplicity assumed to be
constant. Here the unknown u may represent the density of a species in a region
where it diffuses with diffusivity µ, it undergoes to a chemical reaction with rate σ
and it is convected in the domain by the vector field β = [β1 β2 β3]

T . In particular
β denotes the blood velocity and it is function of the space coordinates x1, x2, x3.
When available, it can be prescribed analytically, as we do in the tests in idealized
geometries. More in general, it is retrieved by solving the NSE computed as in the
previous Sections. The forcing term f is a given function of space too. Hereafter
it will be set to 0 for simplicity. We associate with the equations the boundary

conditions u(ΓD) = g(x1, x2, x3),
∂u

∂n
(ΓN) = 0, where ΓD and ΓN are two disjoint

portions of the boundary of Ω such that ΓD ∪ ΓN = ∂Ω. This is a simplified model
of the dynamics of blood solutes like Oxygen in the arteries [24]. Specifically, we do
not consider time dependence, since it does not introduce significant changes for the
focus of the present paper. The NSE solution is therefore retrieved in a particular
instant of the hart beat, the so called systolic peak, corresponding to the maximum
opening of the ventricular valve.

To take advantage of domain decomposition, we split the domain Ω into two
overlapping subdomains Ω1 and Ω2, such that Ω1∩Ω2 = Ωo and Ω1∪Ω2 = Ω. Let us
denote by Γj the interfaces between the two subdomains (j = 1, 2), that is the portion
of the boundary of Ωj that is not also boundary of Ω, in short Γj ≡ ∂Ωj \ (∂Ωj∩∂Ω).
The solution of the problem in each subdomain will be denoted by uj(x1, x2, x3). We

reformulate the original problem in an iterative fashion. Given an initial guess u
(0)
j

(typically = 0), we solve on each subdomain for k = 1, 2, . . .

−
3∑

i=1

∂

∂xi

(
µ
∂u

(k)
j

∂xi

)
+

3∑
i=1

βi

∂u
(k)
j

∂xi

+ σu
(k)
j = f in Ωj, j = 1, 2 (2)
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with boundary conditions

u
(k)
j (ΓD ∩ ∂Ωj) = g(x1, x2, x3),

∂u
(k)
j

∂n
(ΓN ∩ ∂Ωj) = 0, u

(k)
j (Γj) = u

(k−1)
̂ (Γj), (3)

(where ̂ = 2 for j = 1 and ̂ = 1 for j = 2) up to the fulfillment of the convergence
condition. In our case this condition checks that the solution in the overlapping
region is not changing significantly along the iterations.

Notice that at each iteration we solve two independent problems in each sub-
domain, while the communication by subdomain occurs in the latter of boundary
conditions (3). The convergence of the iterative scheme depends on the size of the
overlapping region. In fact, if the overlapping is 100 % of Ω, convergence is trivially
guaranteed as at the first iteration (2-3) we are solving (twice) the unsplit problem.
On the other hand, if the overlapping reduces to a volume-zero region, convergence is
not guaranteed, as in general the juxtaposition of the two problems does not coincide
with the original problem (as pointed out, this occurs only if the interface conditions
are chosen properly).

The one presented here is the so called additive formulation of the overlapping
DD method, where the two subdomain problems can be solved simultaneously - as
opposed to the multiplicative version, where one subdomain can be solved only when
the problem on the other subdomain is completed. In the multiplicative formulation
a faster convergence is guaranteed in terms of number of iterations (about one half
of the additive scheme), but the advantage of the parallel setting is limited by the
sequential structure of the algorithm. From now on, we refer only to the additive
algorithm.

The selection of the interfaces Γj has the only constraint to guarantee a non
empty overlapping. The optimal selection is the result of the trade-off between the
computational cost of each subproblem and the reduction of the communication
between processors. This will be investigated in Sect. 4.

1.3. Summary of the packages used by the numerical solver

For a more detailed description of the implementation of the numerical solver we
refer to [25, 23]. We report here the complete list of required packages:

- LifeV library [10], for the formulation of the algebraic counterparts to differen-
tial problems; this library is the direct dependency for our solver application;

- Third-party scientific libraries: (1) Trilinos [26] for the solution of linear sys-
tems (data structures and algorithms); (2) ParMETIS [27], used for mesh parti-
tioning; ad hoc MATLAB scripts were prepared to add an overlapping region to
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an existing non-overlapping partition. (3) SuiteSparse [28], as a support library
extending the capabilities of Trilinos; (4) BLAS/LAPACK libraries (generic or
vendor-specific implementations); (5) NetGen [29] for generating the mesh to
partition.

- General-purpose and communication libraries: (1) Boost C++ libraries [30]
1.44 or above, mainly used for memory management (smart pointers); (2)
HDF5 [31], for the storage of large data on file; (3) MPI libraries (e.g., Open
MPI);

- Compilers: C++ compiler (e.g., GCC version 4 or above); [optional] Fortran
compiler, compatible with C++;

- Deployment tools: (1) GNU make; (2) Autotools; (3) CMake (version 2.8 or
above).

2. CFD Experiences on clouds, grids and on-premise resources

Message passing parallel programs are a staple modality of numerical simula-
tions and computational analyses. In addition to the parallel framework (e.g. MPI),
codes depend on various other auxiliary components: scientific and mathematical
libraries, header files, particular compiler options and flags. These parameters (or
subsets thereof) are quite specific to a particular target platform; executing the appli-
cation on different target platforms may require a non-trivial amount of re-building
effort (even if the actual application source code is untouched). Hence, applica-
tions often continue to be executed only on the default “home” platform, even if
other viable and better options are present. However, grids and especially clouds
present real opportunities for applications to execute on platforms other than their
home environments [32]. In the ADAPT project at Emory, we investigated the fea-
sibility and ease of deploying classes of applications on target platforms other than
those on which they normally execute. As a benchmark test, we have experimented
LiFEV [10] whose home environment is a 128-core cluster, and ported it on other
computational platforms: clusters, grids and Amazon’s EC2 cloud. We conduct both
a detailed comparison of platforms based on utility of the computational task to the
user, function of the wait time and the cost, and further analyze strategies for process
mapping when interconnection networks are heterogeneous. 4

4Preliminary results from these exercises were presented in conference papers [25, 33].
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User-oriented performance analysis has recently been applied to research on HPC
and Grid scheduling strategies. The value that users associate with a completed job
is modeled as a utility function, with a generally non-trivial dependence on time [34].
The importance of a job to a user can be seen as a function of time, combining
an index for the importance of the results and the user sensitivity to delay. It has
been shown that a proper job scheduling strategy can significantly increase the per-
formance of HPC systems, measured as the aggregate utility of their users [35, 36].
Several works in the literature discuss an extension to this scenario, in which hetero-
geneous resources can be discovered and assembled from an arbitrary set of providers.
In this case, the utility for the user may be defined based on a more detailed analysis
of user-specific requirements. For instance, requirements may include the features
of the physical resources (memory, processor speed, presence of GPU), presence of
installed software or availability of specific services. It is then possible to discrimi-
nate between resource providers based on their ability to satisfy the requirements,
in full or in part (partial utility) [37]. The evaluation of the utility function can be
done at runtime, to decide whether or not to dynamically re-distribute resources to
obtain an optimal “quality of execution”, i. e., an optimal trade off between resource
savings and performance degradation [38].

In our approach, the platforms are considered as interchangeable – after the
conditioning process. We discuss the effort required to provision each platform with
an environment adequate to sustain the user’s task. Finally, we identify a basic set
of user requirements (minimal cost and minimal execution time of the task) to define
a user-based ranking of the tested architectures.

2.1. Heterogeneous Target Platforms

In our study, we compared five heterogeneous computational platforms support-
ing the parallel hemodynamics simulation. As the starting point for our analyses,
we selected the in-house computing cluster puma5 constituting a computational test
bed for the LiFEV developer team. As a second platform, we used a larger compute
cluster called ellipse, provided on a fee-for-use basis within our university. The
third platform was the HPC supercomputer lonestar made available to the U. S.
research community by Texas Advanced Computing Center. Next, we evaluated the
usability of on-demand resources. The first such platform was rockhopper [39] of-
fered as a part of the Penguin’s On-Demand HPC Cloud Service [40] and the second
platform was the IaaS cloud provided by Amazon’s Elastic Compute Cloud (EC2)

5This is the “home” environment where the application is run by default.
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puma ellipse lonestar rockhopper ec2

type cluster cluster/grid grid cloud cluster IaaS Cloud
cores 2x2 2x2 2x6 4x12 4x4
RAM 8GB 4GB 24GB 2.5GB/slot 66GB
network SDR IB 1GbE QDR IB QDR IB 10GbE
storage NFS NFS Lustre Lustre local fs
support full very limited limited online none
OS Rocks 5.1 CentOS 4.8 CentOS 5.5 CentOS 5.6 AMI 12.03
access user space user space user space user space privileged
MPI Open MPI none MVAPICH2 Open MPI none

Table 1: Specification of a single node of the test architectures.

service. From the rich EC2 resource offerings, we picked the most powerful instances
cc2.8xlarge from Cluster Compute (referred to as ec2 in the following).

The five platforms are heterogeneous in many respects: they differ in hardware
configuration, availability (measured as wait-time before execution), access modality
(privileged vs. unprivileged user), storage (e.g., size of user disk space and presence
of a shared file system), build (e.g., the compilers and system tools availability),
computational aggregation (e.g., presence of configured MPI environment), and ex-
ecution (e.g., interactive shell). Table 1 collects the main features of the chosen
targets. We refer to [25, 33] for further details.

2.2. Metrics

We aim to compare different hardware platforms with respect to the execution
of the same task, evaluating several different metrics.

As previously mentioned, hemodynamics applications are both time- and cost-
sensitive. It is worth noting that optimizing these two aspects separately leads
in general to conflicting strategies, as it is often the case that the most expensive
hardware resource provides the result in the shortest time, as we will see later on.
We therefore consider both traditional metrics (“time to completion” and “cost per
simulation”), and a user-specific combination of these two, corresponding to the
“perceived cost” of the computational experiment.

Time to completion. This is the wall clock time from program launch to final exit.
In the mainstream HPC community, in which it is a primary focus, it is not common
to include the queue waiting time. In terms of utility in the sense adopted in this
work, queue time is certainly important but it is highly variable and, in fact, our
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platforms presented few queue delays compared to the execution time of the applica-
tion. We decided to exclude queue time in our analysis for the sake of simplicity and
uniformity, especially since “on-demand” IaaS clouds are practically characterized
by zero waiting time.

Cost per simulation. The overall cost for the execution of the job depends mainly
on the unit cost of the hardware resource (cost per core-hour), its pricing policy (by
core or by node, by hour or prorated), and on the execution wall-clock time. Other
factors, that we consider negligible relative to the former (for our application), are
the size of occupied storage and/or volume of data staged in and out.

Utility function. The utility function expresses the job’s value to a user, as a func-
tion of time. This has a user-specific, complex dependency on several parameters,
including expenditures, time to completion, and significance of the task. Following
[36, 41], we consider a simple linear utility function with customizable maximum
(starting) value and slope, as shown in figure 3. The equation reads

U(t) =


Umax if t ≤ T ∗

Umax

(
T0 − t
T0 − T ∗

)
if T ∗ < t ≤ T0

0 if t > T0.

Umax is a measure of the importance of the job to the user, and we assume that it
can be given a monetary value, as the price that the user would be willing to pay
for the simulation. T ∗ is the expected completion time, which can be estimated in
several ways. We use a simple averaging method defined in section 2.3.2, based on
the performance of the available platforms. T0 is the user-defined time at which the
utility is zero, while the distance (T0− T ∗) is a measure of the user’s delay tolerance
and can be measured as a multiple of the expected completion time T ∗.

With this formulation, we assume that there is no loss of value during the expected
duration of the job (when t ≤ T ∗). An extension of the model could take into account
the decrease in the utility function during runtime, reflecting the fact that faster
runtime is valuable to users [34].

2.3. Experimental Results

Our experiments on different architectures yielded interesting results. This dis-
cussion centers on cost and utility.
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U

t

Umax

T0T ∗

Figure 3: The considered utility function. Umax is a measure of the importance of the job to the
user, T ∗ is the expected completion time, T0 is the time at which the utility is zero [36].

2.3.1. Performance, scaling and time to completion

In our study we tested the selected platforms executing a fixed-size simulation
(over 3.1M unknowns) with varying numbers of processors, i.e., a strong scalability
benchmark. All tested clusters allowed the reservation of computing resources by
specifying the number of processes (or slots) used by the parallel job. However,
in the case of the Amazon EC2 cloud, we needed to set the execution policy: we
assumed that each ec2 instance can host a maximum of 16 processes (as they have
16 physical cores) and we decided to map the MPI processes onto the physical nodes
in round-robin fashion. As Amazon charges users on the basis of running instances,
we decided to optimize the cost of the benchmark by testing small assemblies of
ec2 first, and then to increase the number of nodes in the assembly by powers of 2.
For this reason, we present several configurations of cloud instances; we label such
separate assemblies as ec2-i, where i is the number of ec2 nodes.

The application repeats the same set of operations in each simulated time frame
(in our case corresponding to 0.01s intervals). For each considered hardware platform,
the time required to compute a single frame was observed to be constant during the
course of the simulation. We, therefore, use the average computing time for a single
frame as a proxy for the performance of the hardware resource. This facilitates a
side-by-side comparison of all platforms, including cases when the simulation could
not be completed due to cluster usage policies (e.g., ellipse limits the job execution
time to 12 hours so for jobs that spanned small numbers of cores only a fraction of
the entire simulation could be done).

The graph in Figure 4a shows a comparison of the performances of the different
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platforms, as a function of the number of computing cores. The clusters puma and
ellipse, the grid lonestar and the cloud cluster rockhopper achieve good strong
scaling up to 128 computing cores, while they show a significant decrease in perfor-
mance for larger numbers of cores. In particular, Point A in the figure corresponds
to the fastest execution case in our experiment, that is running the simulation with
128 computing cores on lonestar. If this metric is used to represent utility or value
to the user, it is clear that when using more than 32 cores, lonestar is the best
platform.

ec2 resources scale less well. ec2-1 achieves good scaling only in the range 4-8
cores, ec2-2 up to 16 cores, ec2-4 up to 32, ec2-8 up to 16 cores, while ec2-16

does not achieve strong scaling in any range. Point C in Figure 4a corresponds to
the case when the simulation was sustained by 16 computing cores on a single ec2

instance. It is worth noting that the time to completion in this case matches the time
to completion obtained using 16 computing cores on lonestar. Most significantly,
the time to completion required by ec2-1 when using 8 computing cores is lower
than the time required by lonestar with the same number of computing cores. This
result suggests that one of the advantages of IaaS clouds is the availability of powerful
hardware configurations (both in terms of memory and CPU clock speed), that can
match and outperform the computing nodes provided by standard grid resources.
This finding is in agreement with previous reports. A study [42] pointed out that
when an EC2 user reserves an entire computing node (this happens in our case using
cc2.8xlarge instances) the impact of virtualization is negligible since processor
cores are not shared among users (see also [43, 44]). This results in performance
comparable to “bare metal” hardware. As predicted by Iosup and coworkers [45],
this is a significant advantage of Cluster Compute instances over former offerings
by EC2, that were suffering from performance degradation due to concurrency of
multiple users or applications using the same processor. On the other hand, the
performance of ec2 platforms seems to be sensitive to overload of the instances, as
shown by the poor strong scaling achieved by ec2-1 when all of the 16 available
computing cores are used for the execution of the simulation.

Point D corresponds to the fastest execution on ec2 resources, that is running
the simulation with 32 computing cores using ec2-16. In this case, we launched 16
EC2 instances and allocated 2 computing cores on each instance in a round robin
fashion. The loss of performance of ec2-16 as the number of cores per instance
increases suggests that when requiring a relatively large number of instances, the
physical connectivity of the nodes may become an issue, and the timings seem to
be dominated by communication overheads. The severe impact of network latency
and bandwidth on EC2 performance is a known issue, especially for large assemblies
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of instances [43, 44, 45]. In terms of utility, therefore, individual EC2 nodes offer
high performance but when communication across nodes or racks is involved, this
platform is less attractive.
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Figure 4: The average computation time per simulated time step (a) and the relation between the
cost and time of the simulation (b).

Based on the metric time to completion we can rank the different resources –
Table 2 shows the wall clock times for the fastest run on each platform. The grid
lonestar is by far the fastest resource, while ec2 is generally the slowest. However,
one of the solutions provided by ec2 (namely ec2-16) matches the performance of the
clusters ellipse and puma, using a significantly smaller amount of computing cores.
This result further demonstrates one of the strengths of on-demand resources as
compared to on-premise resources, i.e., ec2 can count on a more efficient hardware
configuration. The cloud cluster rockhopper performs best among the tested on-
demand resources and better than the tested on-premise resources. However, it is
still significantly slower than the tested HPC cluster.

2.3.2. Utility function

Ideally, users desire to minimize both simulation cost and time to completion
but these objectives compete with each other. This is confirmed by our tests where
the cheapest resource, namely ec2-1, was also the slowest one. In Figure 4b we
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rank time to completion [s] target # of MPI proc.

1 1h 31m lonestar 128
2 3h 33m rockhopper 128
3 3h 50m ellipse 128
4 3h 53m ec2-16 32
5 4h 05m puma 124∗

6 4h 30m ec2-8 32
7 5h 00m ec2-4 64
8 6h 33m ec2-2 16
9 9h 43m ec2-1 16

Table 2: The performance ranking of the hardware resources based on the metric time to completion.
∗ One node is permanently down.

present how the cost per simulation relates to the time to completion for the differ-
ent architectures. The closest points of the graphs to the origin of the axes represent
execution cases that minimize both metrics. Clearly, the decision on which architec-
ture to prefer cannot be made based on a single attribute. The general trend of these
characteristics shows an increase in the cost per simulation with the decreasing time
to completion. A remarkable exception is ec2, for which cost increases with time to
completion. In fact, on this platform slower executions achieved with few comput-
ing cores are actually more expensive due to the policy requiring the reservation of
16-core instances.

To define a ranking of the tested platforms based on a user-centric performance
analysis we evaluate the utility function defined in Section 2.2. We consider three
user profiles,

Case 1. The job has high priority, and the user has little delay tolerance;

Case 2. The job has average priority, and the user has average delay tolerance;

Case 3. The job has low priority, and the user has large delay tolerance.

Referring for the sake of example to the results of our benchmark, we assume
that the value of a simulation to the user (i.e., the cost the user would be willing
to pay) is in the range between $3.53 (low) and $22.59 (high). More precisely, we
assume that a job with low priority has a value to the user equal to the average
cost of the simulation over the tested architectures, i.e., $10.31. We assign double
this value to a high priority job ($20.62) while an average priority job will have an
intermediate value between the previous two ($15.465). We further assume that for
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all the user profiles the expected time to completion T ∗ is the average value of the
times measured on the different architectures (cf. table 2), i.e., T ∗ = 4h 44m. A
user with an average delay tolerance is represented by a utility function that remains
non-negative for a runtime up to twice the expected value (i.e., T0 = 2T ∗). A user
with large delay tolerance accepts twice as much delay (T0 = 3T ∗), while a user with
small delay tolerance accepts half as much (i.e., T0 = 1.5T ∗).

We plot in Figure 5 the user-specific utility functions together with the graphs
shown in Figure 4b. As discussed in previous sections, each platform was tested in
several use cases (varying the number of computing cores); a case is considered useful
to the user if it is represented by a point on the cost/time plot located below the
graph of the user’s utility function. For the sake of example, we reported on the plot
the points corresponding to the cases discussed in detail in the previous sections.
Point A corresponds to the fastest execution of the simulation in our experiment,
obtained when using 128 cores on lonestar. This case is useful to user profiles 1
and 2, for which the importance of the simulation is greater than the actual cost.
User profile 3 would not consider this case useful due to its high cost.

Despite the cost being relatively lower, the use case of lonestar represented by
point B (8 computing cores) is not useful for any user profile, because for all of
the profiles the time to completion of the simulation exceeds the time T0 for which
the utility function is zero. The use case of ec2-1 corresponding to the cheapest
execution in our experiment (16 computing cores) is represented by point C; because
of the long time to completion, this use case is only useful to user profile 3. The
fastest execution achieved on ec2 resources (2 computing cores on each instance of
ec2-16) is represented by point D. This use case has a cost exceeding the maximum
value of the utility function for all the user profiles, so it is useful to none of them.

In our experiment, a variety of platforms can meet the requirements of user profile
1. Fast and expensive architectures (e.g., lonestar) can be chosen in alternative to
slower and cheaper ones (e.g., ec2). However, because of a small delay tolerance, a
cheap option (ec2-2) has to be ruled out, being penalized by high execution times.
The second user profile has the largest pool of useful choices, including the cheaper
(and slower) ec2-2. For user profile 3, because of the low priority assigned by the user
to the job, most of the fastest options (lonestar, ellipse) have to be discarded.
On the other hand, the on-premise cluster puma and some of Amazon’s instances
(most significantly the very cheap ec2-1) can meet the user’s requests.

According to this model, one of the on-demand resources (rockhopper) is not use-
ful to any of the considered user profiles. Amazon’s diverse offering allows instead
this service to be competitive for a wide range of user profiles, being able to pro-
vide reasonably small execution times (ec2-8) or extremely cheap solutions (ec2-1).
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Figure 5: Evaluating the cost/time characteristics of the different platforms against the user-specific
utility function. T0,1, T0,2 and T0,3 are the times at which the utility function is zero for user profiles
1, 2 and 3, respectively.

On-premise resources do not perform well compared to HPC machines, being signif-
icantly slower, and in most cases they are also outperformed by cheaper on-demand
resources. As a result, they are competitive only in specific execution cases (i.e., with
the proper choice of the number of computing cores). Finally, lonestar is a very
strong competitor in the first two user scenarios (average to high job priority), while
its performance is matched and outperformed both by on-demand and on-premise
resources in the third scenario (low job priority and high delay tolerance).

Notably, the on-demand cutting edge offering by Amazon EC2 has the advantage
of availability. In fact, our analysis does not consider queue waiting times that may
diminish the attractiveness of shorter execution time on grid resources. This feature
would make the IaaS choice even more convenient. Moreover, the cost per simulation
on the resources offered by Amazon can be optimized with a proper scheduling policy
that takes into account the specific pricing policy of Amazon (per-node rather than
per-core). Furthermore, if cost needs to be minimized, it is possible to select cheaper
Amazon instances such as cc2.4xlarge.
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3. Adaptive mapping of parallel components on physical resources

Improving the layout of the tasks of a parallel application on a particular hardware
architecture is an attractive research subject as it may increase the performance of
the application without requiring modifications to the source code. The advantages
may be particularly significant if the supporting computing machines are high per-
formance clusters and the optimized placement harnesses the capabilities of cutting
edge network solutions. Rubik [46] is a software toolkit that applies simple geometry
transformations (e.g., splits, tilts) to the Cartesian task topology of an application,
altering its mapping to the Cartesian network topology. Thanks to the tasks shuf-
fling, the underlying hardware may better support MPI collective operations by
utilizing more hardware links while avoiding excessive latency or congestion [47].
Our solution follows a similar approach: we design the layout of MPI tasks before
we execute the application. However, as our hemodynamic CFD code mainly uses
point-to-point communication and has no statically defined communication topology
we need to analyze a data exchange graph for a particular execution use case in order
to optimize the tasks mapping.

A successful mapping strategy has to consider also the properties of the network
backend. Eliminating unnecessary network hops may improve the overall latency
and lead to better performance of the executed application. The project described
in [48] considers the homogenous, multilevel IB network and offers an improved MPI
implementation that exploits the network topology to increase intra-node communi-
cation and reducing the long distance inter-node communication. While this is an
end point also for our project, we do not force a different MPI framework implemen-
tation. Moreover, even though currently we consider a simple, single hop network
topology, we propose methods that can be extended to different scenarios. In partic-
ular, when considering wider networks, a more aggressive planning of the mapping
can be applied, aggregating machines from even geographically separated data cen-
ters to provide the computational platform for the distributed applications. The
possibility of the inter-cloud aggregation and the performance of such conglomerate
were evaluated by two of the authors in [49].

3.1. Test case

The model problem used in our experiment is blood flow in an internal carotid
artery affected by a saccular brain aneurysm. Aneurysms are localized dilations
of the arterial wall, often times in the form of a blood-filled sac. They may rup-
ture, causing severe brain damage and even death. Fluid dynamics is considered
one of the risk factors that may help predict the outcome of the disease [8, 18].
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We consider a subject-specific arterial geometry, extracted from medical images ac-
quired and processed during the multi-center research project Aneurisk [50]. This
kind of geometries are available for download through the web portal AneuriskWeb
(http://ecm2.mathcs.emory.edu/aneuriskweb). To compute blood velocity and
pressure in the subject specific geometry we solve numerically the NSE equations,
using LiFEV. We simulate blood motion under pulsatile flow conditions, represent-
ing the pumping action of the heart. Blood is described as a Newtonian fluid with
density 1 g/cm3 and dynamic viscosity 0.035 dyn/cm2. For the sake of the analy-
ses presented here, we limit our simulation to a short time interval (0.10 seconds),
solving the discretized NS equations at 10 instants (i.e., the simulation time step is
0.01s). A snapshot of the computed solution is shown in Fig. 6a.

(a) Solution of Navier Stokes
Equations for blood flow in
an aneurysmatic vessel, for t
= 0.05s. Streamlines of the
velocity field colored by the
blood speed.

(b) Different mappings of the coarse mesh
for four 4-way nodes. Each color repre-
sents a part for a single host. Edge thick-
ness represents the number of common
vertices between parts. In this case, the
partitioning using M and D are the same.

Figure 6
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3.2. Offline mesh partitioning

The global mesh consists of the set of all elements, faces, edges and vertices in the
tessellation. To each of those entities a unique identifier (global id) is assigned. We
will denote by Nel, Nf , Ned, Nv the total number of elements, faces, edges, and vertices
in the global mesh. The topology of the mesh is described by the relationship between
different geometric entities and can be expressed in table format (connectivity tables).
For instance, the element-to-face table B0, with size Nel ×Nf is such that

(B0)ij =

{
1 if face j belongs to element i

0 otherwise.

We have similar definitions for the face-to-edge table B1, with size Nf ×Ned, and
the edge-to-vertex table B2, with size Ned × Nv. Other connectivity tables can be
obtained by composition of these.

In the parallel application, the computational domain may be partitioned by
subdomains so that each process takes care of only a subset of the global mesh. In this
section we consider non overlapping partitions and we refer to these subsets as “local”
meshes. The splitting is achieved through the use of graph partitioning algorithms,
such as those implemented in the libraries ParMETIS or Scotch, guaranteeing a
proper load balancing among processes. The load is measured as the number of
mesh elements assigned to each process. When local meshes are not overlapping,
each element belongs to one and only one process; however some faces, edges, and
vertices are shared among two or more local meshes (interface entities). In any case,
high quality partitionings should minimize the edgecut or the number of connections
between disjoint partitions. This property is valuable to reduce the communication
between processes necessary to synchronize interface unknowns.

For large scale simulations, mesh partitioning is a highly memory intensive opera-
tion due to the size of the global mesh and it is usually performed offline on dedicated
machines since many times memory on computational nodes is a limiting resource.
In more detail, in [51] the following strategy for mesh partitioning was considered.

1. The element adjacency graph A is built from the topological information stored
by the mesh as A = B0∧BT

0 . Here and in the following we denote by the symbol
∧ the Boolean multiplication operator between tables. The element adjacency
graph is an unweighted symmetric graph such that two elements of the mesh
are connected by a link if they share a common face.

2. The element adjacency graph A is partitioned in np connected components by
using the recursive bisection multilevel partitioning algorithm implemented in
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ParMETIS, where np is the number of desired processes to run the simulation.
The result of the partitioning algorithm is a vector p of integer numbers of
length Nel, in which the value of entry i (0 ≤ i ≤ Nel−1) specifies the partition
element i was assigned to.

3. The global mesh is split according to the partitions of the elements induced by
p. By introducing the Boolean table P , of size np ×Nel,

(P )ij =

{
1 if p[j] == i

0 otherwise

the local mesh corresponding to process i is associated to its own set of elements,
faces, edges, vertices evaluating the non-zeros entries of the i-th row of the
matrices Pf = P ∧ B0, Ped = Pf ∧ B1, Pv = Ped ∧ B2, respectively. The above
matrices are also used to define proper mappings between the local meshes and
the original global mesh, while local connectivities tables Bl

i are obtained by
extracting the appropriate rows and columns from the global tables Bi.

4. Finally, the partition connectivity graph M is computed. This is used to es-
timate the communication volume due to synchronization of the variables as-
sociated to interface entities. In particular Mij is proportional to the number
of variables shared by processor i and j, i.e., to the number of shared faces,
edges and vertices. Thus, we have M = αfPfP

T
f +αedPedP

T
ed +αPvP

T
v , where

αf , αed, αv are constant values expressing the number of unknowns associated
to each face, edge, and vertex, respectively. These constants depend only on
the polynomial degree of the finite element basis.

3.3. Evaluation procedure and results

To determine the performance of the different process placement scenarios, all
simulation configurations were tested, i.e., three mesh resolutions, from 8 to 128
MPI processes, for three target architectures, using five different placement strate-
gies (total 45 benchmark tests). The first three allocation techniques were formed
using the information in the communication graph D, M , and an additional inverted
communication graph I defined as Iij = M −Mij, where M is the maximal entry
in M . We will refer to these strategies as data, part and invert, respectively. The
partitioning of these graphs was performed using the gpart tool from the Scotch 6.0
software package, that implements graph k-way partitioning heuristics. As a result,
we obtained three clusterings CD, CM , and CI , such that each cluster included the
same number of parts equal to the number of processing units available in a single
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node of the target machine and the graph cut-sets were minimized. CD gave us
the process placement optimized to the actual communication statistics. CM was
the mapping optimized with respect to the partition connectivity graph M that is a
by-product of the partitioning algorithm and does not require any additional work.
However, given the strong correlation between D and M, similar results were expected
in these two cases. Finally, using CI , the worst placement choice was expected.

The second group of allocation strategies were methods commonly used to exe-
cute parallel applications with the OpenMPI: by-node round-robin (rr) and by-cores
(pcore) placements. The first allocation strategy places processes one per node, cy-
cling by node in a round-robin fashion, while the second uses all CPU cores on one
node before moving to the next node (Fig. 6b). All tests were repeated twice and
the data were averaged. Figure 7 shows the execution times for different MPI pro-
cess placements for all configurations relative to the maximal execution time for that
configuration (i.e., a chart bar having execution time 1 represents the least effective
process placement in the configuration). A detailed description of the results can be
found in [51]: a brief summary follows.

As expected, the execution times for different MPI process placements for all
configurations demonstrate that deliberate MPI process placement significantly in-
fluences the overall performance of the application. In specific situations, the worst
mapping in the configuration is almost one order of magnitude slower than the fastest.
The standard pcore placement mapping is well-suited for processing the CFD appli-
cation implemented with the LiFEV library. The reason for this behavior has its
source in the implementation of the ParMETIS partitioning used by the application.
ParMETIS uses recursive bisection, which matches the common 2i-way multipro-
cessing architecture of contemporary computers. However, this allocation may be
improved by the resource-oriented part placement, especially for larger numbers of
hosts performing the computation. Moreover, to design such enhanced placement no
extra computations - for instance evaluating communication statistics - are needed.
The by-product information regarding the pairwise shared mesh entities from the
partitioner phase can be utilized instead. As a result, this shows that it is possible
to adapt performance of parallel MPI applications by communication-aware place-
ment of their MPI processes if the computation structure, input geometry as well as
target architecture and network wiring is known and it may be done automatically
by ADAPT.
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Figure 7: Relative execution times for all simulation configurations. Each value represents the
speed-up of the mappings in relation to the less efficient mapping for the configuration.
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4. Experimental optimization of parallel 3D overlapping domain decom-
position schemes

In the previous section we dealt with process placement. Here we notice an ad-
ditional opportunity to improve the overall performances on the algorithmic side by
resorting to DD techniques. As pointed out, DD methodology relies on the segregated
solution of the problem of interest on each subdomain and the iterative synchroniza-
tion of the partitioned solutions. The advantage of non overlapping splittings is that
each local problem is smaller, so we may expect a faster solution of each local solver.
On the other hand, the final solution is the result of the iterative synchronization and
the number of iterations depends in general on the shape of each subdomains, the
interface conditions and the way the subdomains are synchronized. In this respect,
the introduction of overlap introduces generally some advantages, since the number
of iterations can be reduced. In addition, the interfaces can be positioned in a more
flexible way, so to reduce the communication times. We investigate these aspects in
a series of tests with different geometries.

In our tests we consider only the iterative-by-subdomain solution in the compu-
tational time. Meshing, partitioning and matrix assembly are not included in this
analysis, since they are off-line costs that do not depend on the specific solution
procedure. The time T

(k)
it of each iteration (k) is computed as the maximum of the

two parallel subdomain solution times T
(k)
j ,

T
(k)
it = max

j=1,2
T

(k)
j .

The single processor time is given by the time for solving the linear system added
by the communication time to read from the other processor the last of conditions
(3), T

(k)
j = T

(k)
j,sol + T

(k)
j,com. For this particular problem, the computational cost per

iteration is constant (denoted by Tsol + Tcom) , so we get

T =

Nit∑
k=1

T
(k)
it ≈ Nit(Tsol + Tcom).

If we denote by p the percentage of overlap in the domain splitting (i.e. the ratio of
the volume of the intersection of the domains to the total volume of the geometry),
theory of overlapping DD proves that Nit decreases with p, Tsol increases with p while
Tcom depends on the position of the interfaces (precisely on the number of vertexes
of the mesh on the interface), so it may change with p in an unpredictable way for
a complicated geometry. We therefore expect that the value p has a major impact
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on the solver performances depending on the different geometries. It is worth noting
that the total cost is a function of the mesh size N too. In this case, both factors
Nit and Tsol + Tcom get larger with h, as a price to pay to the improvement of the
accuracy of the approximated solution achieved in this way.

In [23] we have presented several test cases in both academic and nontrivial ge-
ometries for a symmetric diffusion reaction problem (i.e. for β1 = β2 = β3 = 0). The
results point out that a small overlap, symmetric with respect to the non overlapping
partition originally determined by ParMETIS, guarantees the best performances in
terms of computational time. Here we investigate the same test cases in the more gen-
eral cases of ADR, when the presence of the ”directional” term weighed by β1, β2, β3

is expected to have an impact on the detection of the optimal overlap.
We considered the following test cases.

Idealized geometries
(1) Cylinder - We consider a cylinder of length L = 6cm and radius R = 0.5cm.
The coefficients µ and σ are set as in [23] and the convective field has been selected
to be constant throughout the domain. We use five meshes with different level of
refinement, for each of the sizes of the overlap. We comment only the simulations
we ran on the fine and very fine meshes as these are the cases of practical interest.
(2) Idealized Aneurysm - We consider an idealized representation of a cerebral
aneurysm where a torus with radius 2cm is merged with a sphere of radius 0.5cm,
representing the sac of the aneurysm. This test emphasizes the role of communica-
tion time. In fact a splitting with an interface intersecting the sac has more vertices
than with interfaces involving only the artery. Overlapping DD allows to manage the
location of the interfaces so to avoid many vertices on the interface yet preserving
workload balance between the subdomains. For more details, see [23]. The convec-
tive field has been selected to be tangential with respect to the centerline of the torus
and constant in modulus.

Real geometry We consider the real morphology reported in Fig. 1. The convective
field β is given by the solution represented there.

4.0.1. Numerical results

Cylinder. Figure 8a shows the parallel running time as a function of p. The varying
dependence of number of iterations and cost per iteration on p results in a convex
behavior of the computational time. This behavior is expected, since for small p the
high number of iterations dominates the cost, while beyond a certain value it does
not decrease any longer, while the cost per processor increases. When compared
with the similar tests presented in [23], we notice that the performances are not
significantly affected by the presence of the convective field β. Precisely, the optimal
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size of the overlap is achieved at the same percentage as the one obtained for the
problem with β = 0, around 25% and 15% for a fine and very fine mesh, respectively.
In fact the simplicity of the domain makes the presence of the convective field not
relevant for the DD iterations. Nevertheless, it is remarkable that the solution of
the problem on the finest mesh (black line) takes fewer (or the same) iterations than
those needed for a coarser grid (Figure 8b). Indeed, a higher concentration of nodes
on the interfaces allows a more detailed exchange of information between the two
partitions through the enforcement of the interface conditions and, consequently, it
boosts the convergence speed by reducing the number of iterations.
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(b) Number of iterations of the parallel solver.

Figure 8: Parallel time performed as a function of p for two levels of refinement of the mesh for
the solution of an ADR problem on a cylinder (a). Corresponding number of iterations for fine (�)
and very fine (#) meshes (b).

Idealized Aneurysm. Figure 9d shows that the curve related to the very fine mesh
features a minimum at a fraction of overlap of ∼ 30%, like in the advection-free case
[23], i.e., the trend of the estimated parallel time is still invariant with respect to the
presence of the convective field.

On the contrary, it is interesting to notice that if we do not have a physical
convection (β = 0) the minimum of the curve for a coarser grid happens at a larger
size of the overlap (45% vs. 35%, see Figure 9c). Numerical performances are here
explained by physical arguments. In fact the solute concentration u at the inflow
is convected through the domain, determining a rapid exchange of information that
accelerates the convergence by subdomains (see Figure 9a-9b).

Real Aneurysm. In this case the geometry is twisted and the convective field repro-
duces the real blood flow into the vessel. As we can see from Figures 10a-10b, the
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(a) Solution on a slice of the domain.
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(b) Number of iterations for a fine (�) and very
fine (◦) mesh.
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Figure 9: Solution to an ADR problem on an idealized aneurysm (a) and number of iterations (b).
Parallel time performed as a function of p for a fine (c) and very fine (d) mesh.
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(a) Contour surfaces at inflow. (b) Contour surfaces in the aneurysm.
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Figure 10: Solution to an ADR problem on a real aneurysmatic vessel (a-b). Parallel time performed
as a function of p for a very fine mesh (c) and number of iterations (d).
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% overlap DoF0 DoF1 InterNodes0 InterNodes1

5% 86,265 85,096 2046 1491
15% 93,255 89,009 3358 1721
25% 104,465 93,791 5068 1947
40% 118,632 97,760 6161 1584
60% 135,228 101,729 6897 1646

Table 3: Number of nodes of each partition (DoF0, DoF1) and total number of nodes on the
interfaces (InterNodes0, InterNodes1) for different levels of overlap on a very fine mesh for Test 5.

solute at the inflow section is convected through the vessel and it stagnates into
the aneurysmatic sac. Table 3 shows the increment of degrees of freedom when the
overlapping is extended. This number is proportional to the computational cost re-
quired for solving each subdomain. On the other hand, for the different partitions
we have a different number of nodes at the interface, depending on the position of
the two cuts. For instance, passing from 25% to 40% the number of nodes at the
interface of partition 1 decreases. As the optimal trade-off between the reduction of
the iterations attained by a larger overlapping (that however does not improve after
25%), the increased computational cost per subdomain and the communication cost,
results indicates 15%. This actually yields a well balanced load for the two subdo-
mains, and a total number of interface degrees of freedom of about 5,000, even if the
total number of iterations is 6 vs the minimum of 4 reached with 25% overlapping
or more (see Figure 10c-10d).

5. Conclusions

High Performance Computing (HPC) quantification of dynamics traditionally
described more in empirical qualitative terms is expected to bring strong improve-
ments for understanding and optimizing processes with a major impact on industry
and society. A well established example is medicine and cardiovascular sciences in
particular. Numerical analysis of patient-specific settings is becoming a consolidated
tool for clinical routine. This allows to improve the level of knowledge available to
medical doctors thanks to mathematical models and numerical tools that compute
quantities difficult or impossible to measure and overall to enhance the reliability of
measures.

However, the intrinsic complexity of the dynamics of interest - reflected by com-
plicated systems of Partial Differential Equations - the constraining timelines of the
clinical routine as well as the large volumes of patients typically needed by clinical
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trials rise formidable challenges in terms of computational resources. Traditional
local clusters may be not adequate to afford the computational requests and alter-
native solutions like grid/cloud resources on demand need to be deeply evaluated.
The performance evaluation of these resources is however much more complex for the
variety of user needs and availability scenarios that may present. A general recipe
for the identification of the optimal strategy is currently out of reach. Neverthe-
less, in this paper we aim at presenting the results of years of experience in a vital
environment like Emory University, where mathematicians and computer scientists
routinely assist medical doctors in their daily activity. We focused on a real problem,
such as hemodynamics in patient-specific settings and presented extensive results on
different platforms. We propose a way for measuring the performances under realis-
tic scenarios. Comparing execution time and cost of the application on on-premise
and on-demand targets, we found some evidence to support the claim that IaaS re-
sources may be utilized for scientific CFD simulations possibly at lower cost than
incurred locally. In particular, our test with Amazons spot-request feature coupled
with availability of cutting edge resources (16-core nodes, 60GB RAM) suggests that
small on-demand assemblies may be a viable alternative to local clusters. It is cru-
cial that IaaSs provide resources immediately while local and grid resources are often
subject to long queue wait times - an aspect that might offset any additional expense.
Furthermore, while a modern local computing cluster with an efficient interconnec-
tion network will outperform an on-demand assembly (which is highly vulnerable
to network performance), the cloud solution might be useful when cost needs to be
minimized.

Among clusters, grids and cloud platforms there is a tremendous variation in com-
munication performance. In order to reduce the heterogeneity due to data handling
and interconnection network capabilities, we analyzed performance variations and
process placement strategies for a parallel CFD application based on the finite ele-
ment library LiFEV. The communication profile for this parallel application depends
greatly on the partitioning of the mesh representing the physical geometry of the in-
put. Such communication imbalance invites exploration of the possible mappings
of the parallel tasks onto diversely performing networks of processors. As parallel
target platforms universally present heterogeneous inter-process communication ca-
pabilities when nodes are multicore, performance advantages are possible through
process placement that exploit this knowledge. We studied five process placement
strategies: three of them use problem-related information and the others are typical
OpenMPI process allocations. We found that the standard pcore placement mapping
is well-suited for processing our CFD application. However, we showed that this al-
location may be improved by our part placement, especially for larger numbers of
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hosts performing the computation. As a result, we showed that it is possible to
adapt performance of parallel MPI applications by communication-aware placement
of their MPI processes if the computation structure, input geometry as well as tar-
get architecture and network wiring is known and it may be done automatically by
ADAPT.

As a complementary approach, we discuss in detail the optimal splitting of a
problem of interest with different mathematical techniques. The introduction of
overlap in the partition of problems featuring complex morphology gives more free-
dom in the optimal selection of interfaces and consequently may outperform more
traditional nonoverlapping approaches. Different aspects have competitive dynamics
resulting in a nontrivial optimization. The dependence of the number of iterations
on the iterative-by-subdomain method decreases with the overlap, while the cost of
the solution on each subdomain increases. The communication time depends on the
location of the interface. Our results in realistic geometries point out the efficacy
of an appropriate selection of overlapping to reduce costs in a parallel computing
setting. In general, a small amount of overlap results in a good trade-off of all the
competitive mechanisms affecting the total computational time. This shows that a
more thoughtful positioning of the interfaces can benefit the overall computing per-
formance, at a small additional computational cost on each processing unit. This
complements discussion of sections 2 and 3, highlighting the trade-offs that can be
achieved on different types of parallel platforms.

This paper has highlighted three dimensions of hemodynamic simulations on clus-
ters, grids and clouds, both algorithmic- and platform-specific. While no universal
conclusions can be drawn, our work proposes indications to the identification of pro-
tocols for hemodynamics computations in outsourcing that we think are needed - and
progressively will be more requested in the next future - by clinical applications. We
plan to include overlapping partitions more extensively in the current activities to
have a more solid experience on the identification of optimal location of the interfaces
and in general of the workbalance.
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[6] D. A. de Zélicourt, C. M. Haggerty, K. S. Sundareswaran, B. S. Whited, J. R.
Rossignac, K. R. Kanter, J. W. Gaynor, T. L. Spray, F. Sotiropoulos, M. A.
Fogel, A. P. Yoganathan, Individualized computer-based surgical planning to
address pulmonary arteriovenous malformations in patients with a single ventri-
cle with an interrupted inferior vena cava and azygous continuation, J. Thorac.
Cardiovasc. Surg. 141 (2011) 1170–1177.

[7] F. Migliavacca, G. Pennati, G. Dubini, R. Fumero, R. Pietrabissa, G. Urcelay,
E. Bove, T.-Y. Hsia, M. De Laval, Modeling of the norwood circulation: ef-
fects of shunt size, vascular resistances, and heart rate, American Journal of
Physiopathology 280 (2001) H2076–H2086.

[8] T. Passerini, L. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga,
E. Boccardi, P. Secchi, A. Veneziani, An integrated statistical investigation of
internal carotid arteries of patients affected by cerebral aneurysms, Cardiovas-
cular Engineering and Technology 3 (2012) 26–40.

33



[9] B. Gogas, Coronary stents, innovations in 2015, 2015. URL:
https://www.dropbox.com/s/5bz4j92kxr64aqh/Coronary%20Stents%

20Innovations%2015.pdf?dl=0, chapter “The future of coronary stent-
ing, A mathematical view” by A. Veneziani.

[10] LifeV Project, http://www.lifev.org, 2012.

[11] T. Passerini, A. Quaini, U. Villa, A. Veneziani, S. Canic, Validation of an
open source framework for the simulation of blood flow in rigid and deformable
vessels, Int J Num Meth Biomed Eng 29 (2013) 1192–1213.

[12] S. Guzzetti, Hierarchical model reduction for the incompressible navier-stokes
equations, 2014.

[13] L. Mirabella, C. Haggerty, P. T., M. Piccinelli, P. J. Del Nido, A. Veneziani, A. P.
Yoganathan, Treatment planning for a tcpc test case: a numerical investigation
under rigid and moving wall assumptions, Int J Num Meth Biomed Eng 29
(2013) 197–216.

[14] G. H. W. van Bogerijen, F. Auricchio, M. Conti, A. Lefiueux, A. Reali,
A. Veneziani, J. Tolenaar, M. Moll, V. Rampoldi, S. Trimarchi, Aortic hemo-
dynamics after thoracic endovascular aortic repair with the role of bird-beak, J
Endov Therapy 21 (2014) 791–802.

[15] B. Gogas, L. Timmins, T. Passerini, M. Piccinelli, S. Kim, D. Molony,
A. Veneziani, D. Giddens, S. King, H. Samady, Biomechanical assessment of
bioresorbable devices, JACC: Cardiovascular Interventions 6 (2013) 760–761.

[16] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equa-
tions, volume 113, Birkhauser Basel, 1993.

[17] H. Elman, D. Silvester, A. Wathen, Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics, Oxford University Press,
USA, 2005.

[18] J. Cebral, F. Mut, J. Weir, C. Putman, Quantitative characterization of the
hemodynamic environment in ruptured and unruptured brain aneurysms, Amer-
ican Journal of Neuroradiology 32 (2011) 145–151.

[19] I. C. C. Workshop, The asme 2012 summer bioengineering conference, www.

asmeconferences.org/SBC2012/InauguralCFDWorkshop.cfm, 2012.

34



[20] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential
Equations, Technical Report, Oxford University Press, 1999.

[21] A. Toselli, O. Widlund, Domain Decomposition Methods: Algorithms and The-
ory, volume 34 of Springer Series in Computational Mathematics, Springer
Berlin Heidelberg, 2005.

[22] D. Darjany, B. Englert, E. H. Kim, Implementing Overlapping Domain Decom-
position Methods on a Virtual Parallel Machine, in: G. Min, B. Di Martino,
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