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Abstract. We consider the computation of the Iwasawa decomposition of a symplectic matrix
via the QR factorization. The algorithms presented improve on the method recently decribed in [8].
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1. Introduction. A matrix S ∈ R
2n×2n is called symplectic if it satisfies StJS =

J , where

J =

(

0 In

−In 0

)

.

In this note we are concerned primarily with the real case; the complex case can be
treated along similar lines. Under matrix multiplication, the symplectic matrices form
a (non-compact) Lie group denoted by S = Sp(n, R) = {S ∈ SL2n(R) : StJS = J},
where SL2n(R) denotes the group of 2n × 2n matrices with unit determinant. The
symplectic group is closed under transposition. Consider the following subgroups of
S:

K =

{

K =

(

K11 K12

−K12 K11

)

: K11 + iK12 ∈ U(n)

}

= O(2n) ∩ Sp(n, R),

A =

{(

A11 0
0 A−1

11

)

: A11 positive diagonal

}

,

N =

{(

N11 N12

0 N−t
11

)

: N11 unit upper triangular, N11N
t
12 = N12N

t
11

}

.

The first of these three subgroups is compact, the second is abelian, and the third is
nilpotent. The decomposition S = KAN is called the Iwasawa decomposition of S.
Any S ∈ Sp(n, R) can be written as S = KAN , where K ∈ K, A ∈ A, and N ∈ N ;
moreover, this decomposition is unique. It is a special case of the general Iwasawa
decomposition of a connected semisimple Lie group first given in [7]. For a more
detailed discussion of the Iwasawa decomposition, see [9] or [5]. The importance of this
decomposition is both theoretical and practical, in particular in the area of dynamical
systems. Note that the factorization S = KAN (more precisely, the factorization
S = KM with M = AN) differs from the QR factorization [10], since N is not
upper triangular. (Note that the factors in the usual QR factorization of S are not
symplectic, in general.) It is also not to be confused with the SR factorization (see,
e.g., [3, p. 20]). The decomposition S = KM with M = AN is called a unitary SR
decomposition in [2, pp. 68–69].

In the recent note [8], Tam presents an algorithm and Matlab code for explicitly
computing the Iwasawa decomposition S = KAN of a symplectic matrix using the
Cholesky factorization of StS. Unfortunately, this algorithm is problematic in many
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ways from a computational point of view, and furthermore the Matlab code in [8] is
incorrect. With the present note we intend to rectify these problems.

2. Computing the Iwasawa decomposition. The approach in [8] is based on
the following result.

Theorem 2.1. Let S =

(

S11 S12

S21 S22

)

∈ S and StS =

(

A1 B1

Bt
1 D1

)

(also in

S). Let A1 = U tHU be the root-free Cholesky factorization of the symmetric positive
definite matrix A1, where U is unit upper triangular and H is positive diagonal. Then
S = KAN , where

A =

(

H
1

2 0

0 H−
1

2

)

, N =

(

U H−1U−tB1

0 U−t

)

, and K = S(AN)−1,

is the Iwasawa decomposition of S.
Based on Theorem 2.1, the author of [8] proposes a Cholesky-based algorithm

and a Matlab implementation for explicitly determining the Iwasawa factors K,
A, N of a given symplectic matrix. This approach suffers from several drawbacks.
To begin with, the Matlab code in [8] contains a mistake in the way the root-free
Cholesky factor of A1 is obtained from the standard Cholesky factorization; as a
result, the computed factors K, A, N are very far from the actual Iwasawa factors.
In particular, the computed K is not orthogonal, in general. Correcting the mistake
results in a formally correct algorithm which, however, suffers from potential numerical
instabilities. It is well known that forming the product StS explicitly may lead to
significant loss of information in finite precision computations; see [6, p. 386]. If S is
ill-conditioned (which can happen, since the group S is not compact), forming StS

may even result in loss of positive definiteness, with the consequent breakdown of the
Cholesky factorization. Although efficiency is not the primary concern of this note,
it is also worth noting that forming the entire product StS when only the first n

columns of it are needed is wasteful and can be easily avoided.
Another concern lies in the repeated usage of the function inv in the Matlab

code in [8]. These matrix inversions are another potential source of instability, are
inefficient, and can be easily avoided. Finally, the implementation in [8] contains some
redundancies (the same matrix products are performed repeatedly).

We can extract from [2, pp. 64–69] a method for computing the Iwasawa decom-
position of a symplectic matrix, which proceeds as follows. Given a real symplectic

matrix S =

(

S11 S12

S21 S22

)

, the following algorithm computes the factors K, A, N of

the Iwasawa decomposition of S.

Algorithm 2.2.

1. Compute the QR factorization of S11 + iS12; denote by U the unitary factor
of S11 + iS12.

2. Compute the Iwasawa factors K, A and N of S as follows:
K11 = 1

2
(U + Ū), K12 = i

2
(Ū − U),

K =

(

K11 K12

−K12 K11

)

,

N̂ = KtS

A = diag(n̂11, . . . , n̂2n,2n), where n̂ii are the diagonal entries of N̂ ,

N = A−1N̂ .
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Note that Algorithm 2.2 necessitates complex arithmetic even if the symplectic
matrix S and its factors are real, an undesirable feature. Motivated by this, we exam-
ine here another algorithm for computing the Iwasawa decomposition of a symplectic
matrix. This approach is based on the “thin” QR factorization [4, p. 230] and does not
require complex arithmetic. Let S be partitioned into four blocks as in Theorem 2.1.
The following algorithm computes the factors K, A, N in the Iwasawa decomposition
of S.

Algorithm 2.3.

1. Let S1 =

(

S11

S21

)

.

2. Compute the thin QR factorization of S1, where Q =

(

Q11

Q21

)

and R = R11.

3. Factor the upper triangular matrix R11 as R11 = HU with H diagonal and
U unit upper triangular. Then Rt

11R11 = U tDU , where D = H2.
4. Compute the Iwasawa factors A, K and N of S as follows:

A =

(

D
1

2 0

0 D−
1

2

)

∈ A,

K11 = Q11HD−
1

2 , K12 = −Q21HD−
1

2 ,

K =

(

K11 K12

−K12 K11

)

∈ K,

N =

(

U N12

0 N22

)

∈ N , where

(

N12

N22

)

= A−1Kt

(

S12

S22

)

.

A few remarks are in order. Since D = H2, the matrix HD−
1

2 appearing in step 4
is just a signature matrix, i.e., a diagonal matrix with entries equal to ±1. The above
algorithm requires no explicit matrix inverses except for that of a diagonal matrix.
The cost of the algorithm is dominated by the computation of the QR factorization
of S1 and by the matrix products in the computation of N12 and N22. We point out
that the overall cost of Algorithm 2.3 is 40

3
n3 +O(n2) floating point operations, which

is less than the explicit computation of StS (the cost of which is 16n3 floating point
operations). Therefore, the cost of Algorithm 2.3 is significantly less than the cost
of the algorithm in [8]. We also note that the use of complex arithmetic in Algo-
rithm 2.2 makes this approach significantly more expensive than Algorithm 2.3 in the
real case. It is quite possible that even more efficient algorithms could be developed,
for instance making use of the symplectic QR decomposition described in [1]. Here
we restrict ourselves to algorithms that can be easily implemented in Matlab using
only built-in functions.

3. Numerical experiments. We constructed a number of symplectic matrices
of different dimensions by first constructing the symplectic Iwasawa factors K, A and
N and then forming the product S = KAN . Specifically, we constructed the blocks
for the factors as follows. First we generated a random positive diagonal matrix A11

to form A ∈ A. For N , we constructed a random n × n upper triangular matrix N11

with unit diagonal and set N12 = N11. Finally, to form K we generated two random
n×n matrices X and Y and let C = X +iY . We then computed the QR factorization
of C and let K11 be the real part of Q and K12 be the imaginary part of Q. We tested
Algorithms 2.2–2.3 on a large set of these matrices and observed a noticeable difference
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Table 3.1

Results for the three approaches

Tam’s Algorithm Algorithm 2.2 Algorithm 2.3

10 × 10 matrix with condition number 3 × 101

‖K̄tK̄ − I‖2 1 × 10−15 6 × 10−16 7 × 10−16

‖K11 − K22‖2 9 × 10−16 0 0
‖K12 + K21‖2 8 × 10−15 0 0
‖K̄ − K‖2 9 × 10−16 4 × 10−16 4 × 10−16

‖UN
t
12 − N12U

t‖2 3 × 10−15 1 × 10−15 2 × 10−15

‖UN
t

22
−I‖2

‖U‖2

0 2 × 10−16 5 × 10−16

‖N̄−N‖2

‖N‖2

8 × 10−16 5 × 10−16 1 × 10−15

‖Ā−A‖2

‖A‖
3 × 10−16 2 × 10−16 2 × 10−16

‖S−K̄ĀN̄‖2

‖S‖2

3 × 10−16 4 × 10−16 5 × 10−16

100 × 100 matrix with condition number 7 × 104

‖K̄tK̄ − I‖2 1 × 10−10 2 × 10−15 8 × 10−14

‖K11 − K22‖2 6 × 10−11 0 0
‖K12 + K21‖2 6 × 10−11 0 0
‖K̄ − K‖2 7 × 10−11 7 × 10−14 8 × 10−14

‖UN
t
12 − N12U

t‖2 3 × 10−09 2 × 10−12 2 × 10−11

‖UN
t

22
−I‖2

‖U‖2

2 × 10−15 7 × 10−15 3 × 10−14

‖N̄−N‖2

‖N‖2

7 × 10−11 6 × 10−12 3 × 10−12

‖Ā−A‖2

‖A‖
2 × 10−11 2 × 10−15 5 × 10−15

‖S−K̄ĀN̄‖2

‖S‖2

6 × 10−15 1 × 10−15 7 × 10−14

4 × 4 matrix S in (3.1) with t = 8; condition number 107

‖K̄tK̄ − I‖2 3 × 10−03 2 × 10−16 2 × 10−16

‖K11 − K22‖2 3 × 10−03 0 0
‖K12 + K21‖2 1 × 10−03 0 0
‖UN

t
12 − N12U

t‖2 6 × 10−08 2 × 10−10 5 × 10−10

‖UN
t

22
−I‖2

‖U‖2

0 4 × 10−10 1 × 10−10

‖S−K̄ĀN̄‖2

‖S‖2

2 × 10−10 3 × 10−16 3 × 10−16

in the accuracy of the computed factors compared to the approach suggested in [8],
even when the corrected code is used for the latter method. Algorithms 2.2–2.3 are
more accurate, especially for matrices with relatively high condition numbers. In
particular, the factor K̄ may be far from being orthogonal when the method in [8]
is used. Also, with that method the computed N̄ may not satisfy the simplecticity
conditions to high relative accuracy.

Table 3.1 shows some sample computational results comparing the three algo-
rithms. The first two examples use “random” matrices constructed as described
above. For those instances we compare the computed factors K̄, Ā and N̄ to the
factors K, A and N used to construct the symplectic matrix S. In addition, we
compute errors to measure the departure of the computed factors from satisfying the
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simplecticity conditions. For the last example we use the following symplectic matrix

S =









cosh t sinh t 0 sinh t

sinh t cosh t sinh t 0
0 0 cosh t − sinh t

0 0 − sinh t cosh t









, t ∈ R. (3.1)

For the first example, which is well conditioned, all three approaches yield good
approximations to the Iwasawa factors (by any measure). When the symplectic ma-
trix S to be factored is larger and/or has a higher condition number, as in the second
example, we begin to notice some loss of (forward) accuracy in some of the factors
computed using Tam’s algorithm. As it may be expected, the effect is also present
with the other two methods, but is less pronounced. Finally, the third example shows
that accuracy can be seriously compromised when Tam’s method is used. Similar
trends were noticed in all our numerical experiments.

4. Implementation. For completeness, we include the Matlab code we used
to test Algorithm 2.3.

function [K,A,N] = iFactor(S);

%

% This function computes the Iwasawa decomposition of

% a real symplectic matrix of order 2n.

%

% Input: a real symplectic matrix [S_11 S_12; S_21 S_22]

%

% Output: K = 2n-by-2n orthogonal symplectic matrix

% A = 2n-by-2n positive diagonal symplectic matrix

% N = 2n-by-2n "triangular" symplectic matrix

%

% s.t.

%

% S = K*A*N

%

n_2 = size(S);

n = n_2/2;

% Compute thin QR factorization of S1 = [S_11; S_21].

S_11 = S(1:n,1:n);

S_21 = S(n+1:n_2,1:n);

S1 = [S_11; S_21];

[Q,R] = qr(S1,0);

Q_11 = Q(1:n,1:n);

Q_21 = Q(n+1:n_2,1:n);

% Compute U and D from given R where U is unit upper triangular
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% and H is a diagonal matrix such that R = H*U and

% R’*R = U’*H^2*U.

H = diag(diag(R));

U = H\R;

% Compute blocks for the factors K, A, N.

h = sign(diag(H));

SQRT_D = diag(h.*diag(H));

SQRT_D_inv = diag(1./diag(SQRT_D));

h = h’;

h = h(ones(1,n),:);

K_11 = Q_11.*h;

K_12 = -Q_21.*h;

% Form the Iwasawa factors K, A, N.

A = [SQRT_D zeros(n) ; zeros(n) SQRT_D_inv];

K = [K_11 K_12; -K_12 K_11];

S1 = S(1:n_2,n+1:n_2);

N1 = A\(K’*S1);

N = [U N1(1:n,1:n); zeros(n) N1(n+1:n_2,1:n)];
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