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A. The Frankl-R̈odl regularity lemma for 3-uniform hypergraphs asserts that every
large hypergraph can be decomposed into a bounded number of quasi-random structures
consisting of a subhypergraph and a sparse underlying graph. In this paper we show that
in such a quasi-random structure most pairs of the edges of the graph can be connected by
hyperpaths of length at most twelve. Two applications are also given.

1. I

The Regularity Lemma from [9] is a powerful tool in contemporary graph theory and
combinatorics. It allows one to partition every large graphinto a bounded number of bipar-
tite subgraphs, most of which are quasi-random, that is, they possess essentially all typical
properties of corresponding random graphs. One of these properties, quite easy to prove,
is that every two vertices with non-negligible neighborhoods can be connected by a path of
length at most four (see, e.g., [6] and Corollary 8.5(a) in theAppendix below).

In this paper we study the much harder problem of the existence of short paths in 3-
uniform, 3-partite hypergraphs with a certain regular structure related to the Frankl-R̈odl
regularity lemma in [1]. When this lemma is being applied, theinitial hypergraph is broken
into several quasi-random pieces and a desired structure isbuilt from segments scattered
among these highly regular substructures. It is then important to ‘sew” them together by
relatively short hyperpaths.

Two examples of this approach can be found in the forthcomingpapers [8] and [2],
where, respectively, the existence of Hamilton cycles in 3-uniform hypergraphs and the
Ramsey numbers for hypercycles are treated. In both these applications, besides the Frankl-
Rödl Lemma itself, a crucial role is played by the “Connection Lemma”, analogous to, but
much more complicated than the above mentioned result for graphs. The goal of this paper
is to prove this “ Connection Lemma” for quasi-random, 3-uniform hypergraphs.

In the next section, after some preliminary definitions, we state our main result, Theorem
2.9. Then, in section 3 we reformulate it in a more constructive way, specifying, in terms of
their fourth neighborhoods, the edges that can be connectedby short hyperpaths. Section 4
contains proofs of our main results, both relying on two lemmas, Lemma 4.1 and Lemma
4.2, which themselves will be proved in Sections 5 and 6. Section 7 presents briefly two
applications of Theorem 2.9. One of them, a blow-up type result, guarantees a subhamil-
tonian path in a quasi-random 3-uniform hypergraph. The other approximates every large
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3-uniform hypergraph by finitely many pieces of small “diamater”. Finally, the Appendix
collects elementary facts aboutε-regular graphs which are used throughout the paper.

Acknowledgements.The authors would like to extend their deepest gratitude to Bren-
dan Nagle for his invaluable contribution to the initial version of this paper. Without his
persistence in comprehending our elusive ideas this work would have never be born.

2. P   

Definition 2.1. A 3-uniform hypergraph is a pairH = (V, E), whereV is a finite set of
vertices andE ⊆

(

V
3

)

is a family of 3-element subsets ofV calledhyperedges or triplets.
Throughout the paper we will often identifyH with E.

We callH 3-partite if there exists a partitionV = V1 ∪ V2 ∪ V3 such that for eache ∈ E
and for eachi = 1,2,3 we havee ∩ Vi , ∅. We refer to any 3-partite 3-uniform hypergraph
H with a fixed 3-partition (V1,V2,V3) asa 3-graph.

For an arbitrary hypergraphH and a graphG on the same vertex set, we denote byH−G
the subhypergraph ofH obtained by removing all hyperedges containing at least oneedge
of G.

The density andε-regularity of bipartite graphs is measured by the ratio of edges to all
potential edges (see the Appendix). For 3-graphs it is the ratio of hyperedges coinciding
with the triangles of an underlying graph to all triangles inthat graph.

Definition 2.2. For a 3-partite graphP with a fixed 3-partitionV1∪V2∪V3, we shall write
P = P12 ∪ P23 ∪ P13, wherePi j

= {xy ∈ P : x ∈ Vi, y ∈ V j}. Furthermore, letTr(P) be
the set of all (vertex sets of) triangles formed by the edges ofP. If P = P12 ∪ P23 ∪ P13 is
a 3-partite graph with the same vertex partition asH , and moreover,H ⊆ Tr(P), then we
say thatP underliesH .

The natural notion of density ofH with respect toP counts the proportion of triangles
of P which are triplets ofH , and then theδ-regularity ofH means that for allQ ⊆ P
that contain aδ-fraction ofTr(P), the densities ofH with respect to suchQ’s are withinδ
from each other. However, it turns out that in some applications this is not strong enough.
Therefore, the concept of so called (δ, r)-regularity was introduced in [1].

Definition 2.3. Let r ≥ 1 be an integer and letH be a 3-graph with an underlying 3-partite
graphP = P12 ∪ P23 ∪ P13. Let Q = (Q(1), ...,Q(r)) be anr-tuple of 3-partite subgraphs
Q(s) = Q12(s) ∪ Q23(s) ∪ Q13(s) satisfying that for alls ∈ {1,2, ..., r} and 1≤ i < j ≤ 3,
Qi j(s) ⊆ Pi j. We define thedensity dH (Q) ofH with respect toQ as

(1) dH (Q) =
|H ∩⋃r

s=1 Tr(Q(s))|
|⋃r

s=1 Tr(Q(s))| ,

if |⋃r
s=1 Tr(Q(s))| > 0, and 0 otherwise.

Definition 2.4. Let an integerr ≥ 1 and real numbers 0< α, δ < 1 be given. We say that
a 3-graphH is (α, δ, r)-regular with respect to an underlying graphP = P12∪ P23∪ P13 if
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for anyr-tuple of subgraphsQ = (Q(1), ...,Q(r)) as above, if

|
r

⋃

s=1

Tr(Q(s))| > δ|Tr(P)|,

then

(2) |dH (Q) − α| < δ.
We say thatH is (δ, r)-regular with respect toP if it is (α, δ, r)-regular for someα. Note
that if H is (δ, r)-regular with respect toP, δ′ ≥ δ, andr′ ≤ r is an integer, thenH is
also (δ′, r′)-regular with respect toP (with the sameα). If r = 1, we just use the names
δ-regular and (α, δ)-regular.

Setup 2.5.In what follows we always assume thatH is a 3-graph andP = P12∪ P23∪ P13

is a 3-partite graph, both with the same 3-partitionV = V(H) = V(P) = V1 ∪ V2 ∪ V3 with
|V1| = |V2| = |V3| = n, and moreover, thatP underliesH , i.e.,H ⊆ Tr(P).

Definition 2.6. GivenH andP as in Setup 2.5, integersl andr and real numbersα, δ and
ε, we call the pair (H , P) an (α, δ, l, r, ε)-triad if

(i) eachPi j, 1 ≤ i < j ≤ 3, is (1/l, ε)-regular;
(ii) H is (α, δ, r)-regular with respect toP.

In particular, it follows that if (H , P) is an (α, δ, l, r, ε)-triad then for all 1≤ i < j ≤ 3 we
have

(3) (1/l − ε)n2 < |Pi j| < (1/l + ε)n2

The hypergraph regularity lemma in [1] states that with the right choice of parameters,
for every large 3-uniform hypergraphH = (V, E) the complete graph onV can be parti-
tioned into finitely many graphs so that most triplets ofH belong to (α, δ, l, r, ε)-triad built
upon these graphs. This paper studies the structure of (H , P) in such a typical situation.

There are several ways to define a path in a 3-uniform hypergraph, and we choose one
in which the edges are glued along the path in the most tight way (see [5] and [3] for some
study of paths and cycles defined in a “loose” way).

Definition 2.7. LetH be a 3-uniform hypergraph.A hyperpath of lengthk ≥ 0 inH is a
subhypergraphP of H consisting ofk + 2 vertices andk hyperedges and whose vertices
can be labelledx1, . . . , xk+2 so that for eachi = 1, . . . , k, xixi+1xi+2 ∈ H . We then say thatP
goes from the pair x1x2 to the pair xk+2xk+1 and these two pairs are called theendpairs of
P. The verticesx3, . . . , xk are calledinternal. Two paths are said to beinternally disjoint if
they do not share any internal vertex.

Remark 2.8. Note that the endpairs are ordered pairs of vertices. IfH is a 3-partite hyper-
graph then the vertices of any hyperpath traverse the partition sets only in the cyclic order
V1 → V2 → V3 → V1, or in its reverse (see Figure 1). Hence, there are pairs of ordered
pairs of vertices which, even in a complete 3-graph, are not connected by any hyperpath.
Another consequence is that the lengths of paths connectingtwo given endpairs are equal
modulo 3.
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Throughout the paper we will be assuming that the cyclic ordering V1→ V2→ V3→ V1

is canonical, and thus, specifying two unordered pairs of vertices,e and f , and saying that
a hyperpath goes frome to f will not be ambiguous. (Note that under this convention a
hyperpath fromf to e is not a mere reverse of a path frome to f .)

Note also that unlike the graph case, the length of the shortest hyperpath between two
given endpairs does not satisfy the triangle inequality, andthus cannot be called “distance”.

Our goal is to prove the following “Connection Lemma” which, in a way, extends a
simple fact about graphs, Corollary 8.5(b) (see Appendix), to 3-uniform quasi-random hy-
pergraphs. In addition, for the sake of future applications, we may force the hyperpaths to
avoid a specified set of verticesS . A hyperpathP is calledS -avoiding if V(P) ∩ S = ∅.
Not to face the burden of computing yet another constant, we restrictS to have size only at
mostn/ logn. (The numerical constants are, clearly, not best possible.)

Theorem 2.9(Connection Lemma). For all real α ∈ (0,1) and for all δ < δ0, where

δ0 =
α49

36508300012
,

there exist two sequences r(l) and ε(l) so that for all H , P and for integer l if (H , P) is
an (α, δ, l, r(l), ε(l))-triad with |V1| = |V2| = |V3| = n sufficiently large, then there is a
subgraph P0 of at most 27

√
δn2/l edges of P such that for every ordered pair of disjoint

edges (e, f ) ∈ (P − P0) × (P − P0), e ∩ f = ∅, and for every set S ⊂ V(H) \ (e ∪ f ) of size
|S | ≤ n/ logn, there is in H − P0 an S -avoiding hyperpath from e to f of length at most
twelve.

Remark 2.10. In principle it might happen that an edgee ∈ P−P0 is “isolated” inH −P0,
that is, all triplets containinge also contain an edge ofP0. The conclusion of the above
theorem ensures that this is not the case. In fact, all edgese ∈ P−P0 are mutually connected
by short hyperpaths withinH − P0.

Vi

V j

Vk

e f

F 1. A hyperpath of length 12 frome to f . Every 3 consecutive ver-
tices on the path form a hyperedge.

3. C 

As mentioned earlier, in the case of (d, ε)-regular graphs, it is easy to see that for every
pair of vertices with at leastεn neighbors each, there is a short path (of length at most four)
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between them (see, e.g., [6] and the Appendix below). In fact, see [7], every two vertices
of degree at least 16(ε2/d)n can be connected by a path of length at most five.

The quantification of Theorem (note that “there exist sequencesr(l) andε(l)” translates
to “for all l there existr and ε”) indicates the possibility of the following hierarchy of
constants:

α � δ � 1/l � 1/r, ε,

whereβ � γ means thatγ is sufficiently smaller thanβ, or thatγ is chosen only afterβ is
being fixed.

Polcyn [6], working under a comfortable assumption thatδ � 1/l, proved that most
edges ofP can be mutually connected by hyperpaths of length at most seven. Typical
edges were defined in [6] in terms of the first and second neighborhood inH . Here, withδ
and 1/l swapped in the hierarchy, to formulate a constructive version of Theorem 2.9, we
need to look into the fourth neighborhood of an edge.

Let us begin by defining the first neighborhood.

Definition 3.1. LetH be a 3-uniform hypergraph and lete = {x, y} be a pair of vertices in
V = V(H). We define thehypergraph neighborhood of e to beΓH (e) = {z ∈ V : {z, x, y} ∈
H}. The vertices inΓH (e) will be calledneighbors of e.

Note that in a 3-graphH with an underlying graphP = P12 ∪ P23 ∪ P13, if e ∈ Pi j then
ΓH (e) ⊆ Vk, where{i, j, k} = {1,2,3}.

Imagine that both,H andP are chosen at random as a result of the following 2-round
experiment. First, createP by tossing a coin over each pair in (V1×V2)∪(V2×V3)∪(V1×V3)
independently with the success probability 1/l, then createH by selecting each triangle of
P with probabilityα. In such a random hypergraph the expected number of tripletsisαn3/l3

and, for a given edge ofP (here we condition thate has been selected), the expected value
of |ΓH (e)| equalsαn/l2. It is proved in [6] that if (H , P) is an (deterministic) (α, δ, l,1, ε(l))-
triad, then for almost all edges ofP, |ΓH (e)| is close to the above expectation.

Fact 3.2([6]). For all real α > 0 and δ > 0, there exists a sequence ε(l) > 0 such that for
all integer l ≥ 1, whenever (H , P) is an (α, δ, l,1, ε(l))-triad then all but at most 7

√
δn2/l

edges of Pi j, 1 ≤ i < j ≤ 3, satisfy the inequalities

n

(

1
l
− ε

)2

(α − δ) < |ΓH (e)| < (α + δ)

(

1
l
+ ε

)2

n.

Remark 3.3. In [6], the above inequalities contain only the term4
√
δ in place ofδ, but the

same proof yields also Fact 3.2 in the present form. (The constant 7 instead of 6 in [6]
comes from considering here all edges ofPi j, and not just the proper ones.)

However, for reasons which will be explained later, to guarantee short connections (via
hyperpaths) of an edgee ∈ P with most of the other edges ofH , we will need to look four
steps ahead.

Definition 3.4. Let e1, e2 be edges ofP. We say thate1 reaches e2 within H in k steps
and in t ways if there exist at leastt internally disjoint hyperpaths inH of lengthk from
e1 to e2. For t = 1 we will skip the phrase “int ways”. For an edgee ∈ P, we denote by
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Four+(e,H) the set of those edges ofP, which are reached frome within H in four steps
and inγ0n ways, and byFour−(e,H) the set of all edges ofP which reache within H in
four steps and inγ0n ways (see Figure 2), where

γ0 =
α4

5000l7
.

g
h

e

Vi

V j

Vk

F 2. The fourth neigborhoods ofe (g ∈ Four−(e,H), h ∈ Four+(e,H)).

Let us now provide some intuition for why it is necessary to consider the fourth hyper-
graph neighborhood of a graph edge. Suppressingα, δ, ε, most edges ofP belong to about
n/l2 triplets ofH (see Fact 3.2), but any such edgee can be completely cut off from the
rest ofH if no stronger assumption is made. Indeed, the total number oftriplets extend-
ing triplets containinge is of the ordern2, and clearly the removal of such a tiny fraction
of triplets cannot affect theδ-regularity which “controls” only sets of hyperedges of size,
roughly,n3/l3.

In two steps, only aboutn2/l4 edges are reached from a typical edge. Most of them
extend to aboutn/l2 triplets, a total ofn3/l6 – still much less thann3/l3 if l is large. To
estimate the number of edges reached from a typical edge in three steps, the quantityn3/l6

has to be divided, due to repetitions, by, roughly,n/l4 (the number of vertices forming
triangles with two given, disjoint edges), yielding onlyn2/l2 edges. Again, they belong to
aboutn3/l4 � δn3/l3 triplets – a quantity not under control. Hence, the shortestdistance at
which a typical edge can reach a substantial number of other edges is four.

Theorem 3.5 below states that, indeed, most edges have largefourth neighborhood, and,
more importantly, edges with large fourth neighborhood aremutually connected by short
hyperpaths.

Let us denote byR0(H) = R0 the set of all edges ofP, for which

min
(|Four+(e,H)|, |Four−(e,H)|) <

(

α4

2000

)

n2

l
.

Theorem 3.5. For all real α ∈ (0,1) and δ < δ0, where δ0 is as in Theorem 2.9 there
exist two sequences r(l) and ε(l) such that for allH , P and for all integer l, if (H , P) is an
(α, δ, l, r(l), ε(l))-triad with |V1| = |V2| = |V3| = n sufficiently large, then

(i) |R0| ≤ 27
√
δn2/l, and
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(ii) for every ordered pair of disjoint edges (e, f ) ∈ (P − R0) × (P − R0) and for every
set S ⊂ V(H) \ (e∪ f ) of size |S | ≤ n/ logn, there is inH an S -avoiding hyperpath
from e to f of length at most twelve.

4. T    

Theorems 2.9 and 3.5 are straightforward consequences of two technical lemmas. A
subgraphA of P = P12 ∪ P23 ∪ P13 is calledframed if for some 1≤ i < j ≤ 3, A ⊆ Pi j.
Our first lemma needs only the assumption that (H , P) is an (α, δ, l, r(l), ε(l))-triad, where
r ≡ 1.

Lemma 4.1. For all c ∈ (0,1) and α ∈ (0,1) and for all δ < δ1, where

δ1 =
αc12

36508
,

there exists a sequence ε(l) so that for allH , P and integer l if (H , P) is an (α, δ, l,1, ε(l))-
triad with |V1| = |V2| = |V3| = n sufficiently large, then the following is true: For every
subgraph P1 ⊂ P, where |P1| ≤ 29

√
δn2/l, and for every pair of framed subgraphs A and B

of P − P1, each of size at least cn2/l, there exist edges a ∈ A and b ∈ B and a hyperpath in
H − P1 from a to b of length at most four.

Our second lemma asserts that for a typical (H , P), apart from a small set of edgesP0,
all other edges ofP have their fourth neighborhood substantial, even if the edges of P0 are
to be avoided. This lemma needs the whole strength of the (δ, r)-regularity.

Lemma 4.2. For all real α ∈ (0,1) and for all δ < δ2, where

δ2 =
α2

1802
,

there exist two sequences r(l) and ε(l) such that for all H , P and integers l if (H , P) is an
(α, δ, l, r(l), ε(l))-triad with |V1| = |V2| = |V3| = n sufficiently large, then there exists P0 ⊂ P,
|P0| ≤ 27

√
δn2/l, such that

(4) min
(
∣

∣

∣

∣

Four+(e,H − P0)
∣

∣

∣

∣

,

∣

∣

∣

∣

Four−(e,H − P0)
∣

∣

∣

∣

)

≥
(

α4

2000

)

n2

l

for all e ∈ P − P0.

¿From Lemmas 4.1 and 4.2 we immediately derive our main result.

Proof of Theorem 2.9. Note that forc = α4/3000,δ0 = δ1 < δ2. Givenα andδ < δ0, let ε1(l)
satisfy Lemma 4.1 withc = α4

3000, and let sequencesr(l), andε2(l) satisfy Lemma 4.2. We
claim that Theorem 2.9 is true with the above choice ofr(l) and withε(l) = min(ε1(l), ε2(l)).

Indeed, consider anyH , P andl such that (H , P) is an (α, δ, l, r(l), ε(l))-triad and apply
Lemma 4.2. It follows that there existsP0 ⊂ P, |P0| ≤ 27

√
δn2/l, such that (4) holds for all

e ∈ P − P0. Fix disjointe, f ∈ P − P0, and a setS ⊂ V(H) \ (e ∪ f ) of size|S | ≤ n/ logn.
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Define PS = {e ∈ P : S ∩ e , ∅} and observe that|PS | = o(n2), and thus, for largen,
|P0 ∪ PS | ≤ 29

√
δn2/l, and

min
(|Four+(e,H − P0)|, |Four−(e,H − P0)|

) − |PS | ≥
(

α4

3000

)

n2

l
.

P1

P2

P3a

b

A B

e

f

Four+(e,H − P0) Four−( f ,H − P0)

4 + 4 + 4 = 12
F 3. A hyperpath frome to f . (An illustraction of the proof of Theo-
rem 2.9)

Since (H , P) is also an (α, δ, l,1, ε1(l))-triad, we may apply Lemma 4.1 withc = α4

3000 to

A = Four+(e,H − P0) \ PS , B = Four−( f ,H − P0) \ PS and P1 = P0 ∪ PS ,

obtaining edgesa ∈ A andb ∈ B, and a hyperpathP1 inH− (P0∪PS ) from a to b of length
at most four.

Let I = V(P1) ∪ f \ a. Among at leastγ0n > |I ∪ S | (for largen) internally disjoint
hyperpaths frome to a in H − P0 choose one which is disjoint fromI ∪ S , obtaining
an S -avoiding hyperpathP2 in H − P0 from e to b of length at most eight. Finally, set
J = V(P2) \ b and choose a hyperpathP3 inH − P0 from b to f which avoids the vertices
of J ∪ S . This way we obtain anS -avoiding hyperpath inH − P0 from e to f of length at
most twelve (see Figure 3).

�

Proof of Theorem 3.5. SinceR0 ⊆ P0, whereP0 is as in Lemma 4.2, part (i) follows from
the estimate on|P0|. The proof of part (ii), is very similar to that of Theorem 2.9.We define
PS as before and apply Lemma 4.1 withc = α4

3000 to

A = Four+(e,H) \ PS , B = Four−( f ,H) \ PS and P1 = PS ,

obtaining edgesa ∈ A andb ∈ B, and a hyperpathP1 in H − PS from a to b of length at
most four. Finally, we extendP1 to anS -avoiding hyperpath inH . �
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Remark 4.3. It will follow from the proof of Lemma 4.1 that, in fact, depending on the
position of the setsA and B, the promised hyperpath is precisely of length two, three or
four. Consequently, depending on the position ofe and f , the length of a hyperpath frome
to f , guaranteed by Theorems 2.9 and 3.5, is precisely ten, eleven or twelve.

5. S      

In this section we prove Lemma 4.1. We begin with formulatinga claim from which the
lemma will follows quite easily. LetE be any framed subgraph ofP. ThenFirst+(E,H)
andS econd+(E,H) denote the sets of all edgesh ∈ P reached inH by an edgeg ∈ E
in one and, respectively, in two steps. SetsFirst−(E,H) andS econd−(E,H) are defined
similarly, by replacing the phrase “reached inH by an edgeg ∈ E” by “reaching inH an
edgeg ∈ E”. Throughout,i jk always stands for any one of the sequences: 123 or 231 or
312, that is, sequences which follow the cyclic ordering 1231.

Claim 5.1. For all c ∈ (0,1) and α ∈ (0,1), all 0 < δ < min(α, c6/508) and sequences
0 < ε(l) ≤

√
δ

10l3 , and all integers l ≥ 1, if (H , P) is an (α, δ, l,1, ε(l))-triad with |V1| = |V2| =
|V3| = n sufficiently large, then for all P1 ⊂ P of size |P1| ≤ 29

√
δn2/l and for all sets

E ⊆ Pi j − P1 of size |E| ≥ cn2/l,

(5) min
(|First+(E,H − P1)|, |First−(E,H − P1)|

) ≥ c
6

n2

l
,

(6) min
(|S econd+(E,H − P1)|, |S econd−(E,H − P1)|

) ≥
(

1− 4δ1/8
√

c

)

n2

l
,

In order to derive Lemma 4.1 from Claim 5.1 we need one more simple fact about vertex-
disjoint subgraphs of bipartite graphs.

Fact 5.2. Let A and B be two bipartite graphs with the same bipartition V1 ∪ V2, |V1| =
|V2| = n. Then there exist A′ ⊆ A and B′ ⊆ B such that |A′| ≥ 1

2 |A| −
1
2∆2(A), |B′| ≥ 1

2 |B| and
V(A′)∩V(B′)∩V2 = ∅, where ∆2(A) is the maximum degree in A among the vertices of V2.

Proof. Let us put vertices of the setV2 in two lines: one ordered by their degrees inA in the
descending manner (lineA), the second – the same with respect toB (line B). Now include
the first vertex on lineB to B′ and remove it from both lines. We repeat this step for lineA
and then again forB and so on until all vertices are placed in one of the setsA′ or B′. (Note
that |V(A′)| = bn/2c and|V(B′)| = dn/2e.)

Along the way, let us match each vertex ofB included toB′ with the one included toA′ in
the very next step (ifn is odd, the vertex included toB′ last remains unmatched). Because
we have started with the vertex of the largest degree inB, its match has a smaller or equal
degree inB, and this is true for each matched pair. Therefore, we have|B′| ≥ 1

2 |B|. To prove
that |A′| ≥ 1

2 |A| −
1
2∆2(A) we apply the same reasoning to the setA minus all edges incident

to the first vertex included toB′. �

Proof of Lemma 4.1. Givenc andα, let

(7) δ < δ1 =
αc12

36508
<
α(c/3)6

508
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and

ε(l) =

√
δ

10l3

Note thatδ < α, and

(8) 1− 4δ
1
8

√
c/3
+

c
12
> 1+ ε(l)l,

the latter by inequalitiesδ
1
8 < c

√
c/(50

√
3) andε(l)l < c/502.

LetH , P, l, A, B, andP1 be as in Lemma 4.1. Without loss of generality we assume that
A ⊆ P12 and will consider all three cases forB.

If B ⊆ P13, apply Claim 5.1 withE = A to obtain a setA13
= S econd+(A,H − P1) ⊆

P13− P1 of at least












1− 4δ
1
8

√
c













n2

l

edges. By (3) and (8), we conclude thatB∩ A13
, ∅, implying the existence of a hyperpath

withinH − P1 from an edgea ∈ A to an edgeb ∈ B of length two.
If B ⊆ P12, we use Fact 5.2 to obtain two subgraphsA′ ⊆ A and B′ ⊆ B such that
|A′| ≥ (c/3)n2/l (for n sufficiently large),|B′| ≥ (c/2)n2/l andV(A′)∩V(B′)∩V2 = ∅. Then
by Claim 5.1 applied withc B c/3, the setA13

= S econd+(A′,H − P1) ⊆ P13 − P1 has
cardinality at least













1− 4δ
1
8

√
c/3













n2

l
,

and takingB13
= First−(B′,H − P1) ⊆ P13 − P1, by Claim 5.1 applied withc B c/2, we

have

|B13| ≥ c
12

n2

l
.

Again, by (3) and (8), we conclude thatB13∩ A13
, ∅. Let zu ∈ B13∩ A13 and letxyzu and

zuv be hyperpaths, respectively, froma = xy to uz and fromzu to b = vu. Note that by the
disjoint choice ofA′ andB′ we havey , v, and soxyzuv is a hyperpath withinH −P1 from
a ∈ A to b ∈ B of length three.

The last case is whenB ⊆ P23. Here also we apply Fact 5.2 to obtain two subgraphs
A′ ⊆ A and B′ ⊆ B such that|A′| ≥ (c/3)n2/l, |B′| ≥ (c/2)n2/l and V(A′) ∩ V(B′) ∩
V2 = ∅. (Technically, we identify for a moment setsV1 andV3 to treatA and B as two
bipartite graphs on the same vertex set.) By Claim 5.1 applied with c B c/3, the set
A13
= S econd+(A′,H − P1) ⊆ P13− P1 consists of at least













1− 4δ
1
8

√
c/3













n2

l

edges, and takingB13
= S econd−(B′,H − P1) ⊆ P13 − P1, by Claim 5.1 applied with

c B c/2, we get

|B13| ≥












1− 4δ
1
8

√
c/2













n2

l
.
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Again, by (3), (8) and (7), we conclude thatB13∩ A13
, ∅. Let zu ∈ B13∩ A13 and letxyzu

andzuvw be hyperpaths, respectively, froma = xy to uz and fromzu to b = wv . Note that
by the disjoint choice ofA′ and B′ we havey , v, and soxyzuvw is a hyperpath within
H − P1 from a ∈ A to b ∈ B of length four (see Figure 4).

V1

V1

V2

V2

V3

V3

A′

A13

B′

B13

x

y

z

u

v

w

a

b

F 4. An illustraction of the last case of the proof of Lemma 4.1.

�

It remains to prove Claim 5.1. We first show a simple but crucialfact which will be
applied twice in the proof of Claim 5.1.

Fact 5.3. For any real α, δ ∈ (0,1), integer l and ε ≤
√
δ/(10l3), let (H , P) be an

(α, δ, l,1, ε)-triad. Let, further, A ⊆ V j, B ⊆ Vi and Q ⊆ P be such that |Pki−Q| ≤ 29
√
δn2/l,

|A| ≥ an, |B| ≥ bn, and every vertex of A has in Q at least β|B|/l neighbors in B and at
least γn/l neighbors in Vk. If min(γ, bβ) > εl and abβγ ≥ 43

√
δ then |H ∩ Tr(Q)| >

2(α − δ)δn3/l3.

Proof. By the (1/l, ε)-regularity ofPki, we have

|Tr(Q ∪ Pik)| ≥
∑

y∈A
degQ(y, B)degQ(y,Vk)

(

1
l
− ε

)

≥ 9
10

abβγ
n3

l3
.

On the other hand, settingQ′ = Pi j ∪ P jk ∪ (Pki − Q), by Corollary 8.4, we have

|Tr(Q′)| < 29
√
δ(1.21)

n3

l3
+ 4εn3 < 36

√
δ

n3

l3
,

and so, by our assumptions and Fact 8.6, we may estimate

|Tr(Q)| ≥ |Tr(Q ∪ Pki)| − |Tr(Q′)| ≥
(

9
10

43
√
δ − 36

√
δ

)

n3

l3
> 2δ

n3

l3
> δ|Tr(P)|.

Therefore, by the (α, δ,1)-regularity ofH ,

dH (Q) =
|H ∩ Tr(Q)|
|Tr(Q)| > α − δ. �
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Proof of Claim 5.1. By symmetry, it is enough to prove only that|First+(E,H − P1)| ≥
(c/6)n2/l and similarly, that|S econd+(E,H − P1)| ≥

(

1− 4δ1/8/
√

c
)

n2/l. Let us fixα and
c, 0 < α, c < 1, and let

(9) δ < min

(

α,
c6

508

)

.

Further, withδ given above, let for alll

(10) ε(l) ≤
√
δ

10l3
<
δ

1
4

l
√

c
<

c
120l
.

LetH , P, andl be as in Claim 5.1. Setε = ε(l) for convenience and fix 1≤ i < j ≤ 3. Let
E be a set of at leastcn2/l edges ofPi j − P1. Define

E1 = {yz ∈ P jk : xyz ∈ H and xy ∈ E and xz < P1 for some x ∈ Vi}
and assign to each edgeyz of E1 one (arbitrary) vertexx = xyz ∈ Vi which together withyz
satisfies the conditions in the definition ofE1. Finally, let

E2 =

⋃

yz∈E1−P1

{zw ∈ Pki : w , xyz and yzw ∈ H and yw < P1}.

Note thatE1 − P1 = First+(E,H − P1), and that by avoidingw = xzy, E2 − P1 ⊆
S econd+(E,H − P1).

Observation 5.4. Trivially, if xy ∈ E, yz ∈ P jk − E1 andxz < P1 thenxyz < H . Similarly,
but more subtly, ifyz ∈ E1 − P1, zw ∈ Pki − E2, andyw < P1, thenyzw < H unlessw = xyz,
which implies that the edges ofE1 − P1, Pki − E2 and Pi j − P1 span at most|E1 − P1|
hyperedges inH .

Using these observations and Fact 5.3 we will first show that asignificant fraction of
verticesy ∈ V j have large (close ton/l) neighborhood inE1, and so subgraphE1 − P1 is
large. Then we will argue that most vertices ofVk have large degree inE2, meaning that
the setE2 must be very large (close ton2/l), and so must beE2 − P1.

Let

L0 =

{

y ∈ V j : degP jk(y) <

(

1
l
− ε

)

n

}

.

By (19) with A = Vk, we have|L0| ≤ εn. Next, let us consider the set

L =
{

y ∈ V j − L0 : degE(y) ≥ cn
2l

}

.

Observe that|L| ≥ cn/3. Indeed, otherwise, using (18) and (10), we obtain a contradiction

|E| < |L|n
(

1
l
+ ε

)

+ |L0|n
(

1
l
+ ε

)

+ εn2
+ n

cn
2l
<

cn2

l
.

We proceed with the following fact. SetE1 = P jk − E1 and

L′ =















y ∈ L : degE1
(y) > 7

δ
1
4

√
c

n
l















.
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Fact 5.5. |L′| ≤ 13δ
1
4√
c
n

Proof. Assume|L′| > 13(δ
1
4/
√

c)n and apply Fact 5.3 withA = L′, B = Vi (and sob = 1),
β = c/2, a = 13δ

1
4/
√

c , andγ = 7δ
1
4/
√

c to the 3-partite subgraphQ = Qi j ∪ Q jk ∪ Qki,
where

Qi j
= E[Vi, L

′],

Q jk
= E1[L

′,Vk]

Qki
= Pki − P1.

As min(γ, bβ) > εl andabβγ > 43
√
δ, it follows thatH ∩ Tr(Q) , ∅. However, by the

construction ofQ (see Observation 5.4) we haveH ∩ Tr(Q) = ∅. This contradiction ends
the proof of Fact 5.5. �

We setL′′ = L − L′. By (9),

(11) |L′′| = |L| − |L′| ≥ 1
3

cn − 13
δ

1
4

√
c

n >
1
4

cn > εn.

Note that every vertexy ∈ L′′ has

degE1(y) >
n
l
− εn − 7

δ
1
4

√
c

n
l
,

and thus, by (9), (10) and (11),

|E1| ≥ |L′′|












n
l
− εn − 7

δ
1
4

√
c

n
l













>
c
5

n2

l
.

To complete the proof of the inequality (5) we count the number of edges inE1 − P1

|E1 − P1| >
c
5

n2

l
− 29

√
δ

n2

l
>

c
6

n2

l
,

the latter by (9).

We continue with the proof of the inequality (6). LetE2 = Pki − E2. Note that by the
(1/l, ε)-regularity ofP jk andPki, Fact 8.3 and (11), the set

Ł0 =

{

z ∈ Vk : degP jk(z, L′′) <

(

1
l
− ε

)

|L′′| or degPki(z) <

(

1
l
− ε

)

n

}

has size|Ł0| ≤ 2εn. Next, let us consider the set

Ł1 =















z ∈ Vk : degE1
(z, L′′) > 7

δ
1
8

l
|L′′|















.

Since each vertex ofL′′ has inE1 degree at most 7(δ
1
4/
√

c)n
l , a simple, double counting

argument shows that|Ł1| ≤ (δ
1
8/
√

c)n. Further, let

Ł2 =















z ∈ Vk : degP1(z, L
′′) > 116

δ
1
4

√
cl
|L′′|















.
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Clearly, |Ł2| < (δ
1
4/
√

c)n, since otherwise|P1| > 29
√
δn2/l – a contradiction. Set Ł=

Vk \ (Ł0 ∪ Ł1 ∪ Ł2) and define

Ł′ =















z ∈ Ł : degE2
(z) > 9

δ
1
4

√
c

n
l















.

Observe, by (9) and (10), that for allz ∈ Ł (and thus for allz ∈ Ł′) we have

degE1−P1(z, L
′′) >













1
l
− ε − 7

δ
1
8

l
− 116

δ
1
4

√
cl













|L′′| > 4
5l
|L′′|.

Fact 5.6. |Ł′| ≤ 24δ
1
4√
c
n.

Proof. The proof of this fact is very similar to the proof of Fact 5.5.We will argue that
the inequality|Ł′| > 24(δ

1
4/
√

c)n contradicts a conclusion of Fact 5.3. Define a 3-partite
subgraphQ = Qi j ∪ Q jk ∪ Qki as follows:

Qi j
= Pi j − P1,

Q jk
= E1[Ł

′, L′′] − P1,

Qki
= E2[Ł

′,Vi].

By the construction ofQ and Observation 5.4 we have|H ∩ Tr(Q)| ≤ |E1| = O(n2). Apply
Fact 5.3 withA = Ł′, B = L′′ (and sob = c/4), β = 4/5, a = 24δ

1
4/
√

c, andγ = 9δ
1
4/
√

c
to yield |H ∩ Tr(Q)| = Ω(n3). For large enoughn, this is a contradiction which ends the
proof of Fact 5.6. �

To complete the proof of the inequality (6), set

Ł′′ = Ł \ Ł′ = Vk \ (Ł0 ∪ Ł1 ∪ Ł2 ∪ Ł′)

and note that for every vertexz ∈ Ł′′, by (10), we have

degE2(z) ≥
n
l
− εn − 9

δ
1
4

√
c

n
l
> (1− 10

δ
1
4

√
c
)
n
l
.

Note also that all the exceptional sets Ł′, Ł0, Ł1 and Ł2 contain together less than 2(δ
1
8/
√

c)n
vertices and therefore|Ł′′| > (1− 2δ

1
8/
√

c)n. Thus, by (9),

|E2| ≥ |Ł′′|












1− 10
δ

1
4

√
c













n
l
>













1− 3
δ

1
8

√
c













n2

l
,

hence

|E2 − P1| >












1− 3
δ

1
8

√
c













n2

l
− 29

√
δ

n2

l
>













1− 4
δ

1
8

√
c













n2

l
.

�
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6. T  

In this section we prove Lemma 4.2. Let us begin with some heuristic. We call an edge
H-good, or just good if, say, |ΓH (e)| ≥ 2

9αn/l2. As proved in [6] (see Fact 3.2 above),
for most edges ofP we have|ΓH (e)| ∼ αn/l2, so most edges are good, but unfortunately,
some of these good edges may have small fourth, and even secondneighborhood. Indeed,
it might happen that for a good edgee = xy, wheneverxyz ∈ H thenyz has a very small
neighborhood.

To find a large subset of good edgese with large fourth neighborhoodsFour+(e,H) and
Four−(e,H), one could argue as follows. Suppose that the set of bad (=not good) edges
has sizeρn2. Then, for eachi = 1,2,3, at most

√
ρn vertices ofVi are incident to at least√

ρn bad edges (let us call these vertices bad), and, provided
√
ρ � 1/l2, one could start at

a good edge with good endpoints and move four steps, avoidingboth, bad edges and bad
vertices. The problem is that Fact 3.2 yields onlyρ of order 1/l – too large for our needs.

To get around this problem we will find a subhypergraphH ′ ⊆ H with much less bad
edges. This sounds paradoxical, since removing hyperedgescan only decrease|ΓH (e)|.
Note, however, that edgese with ΓH (e) = ∅ are not so bad – there is no way to get to them!
Let us call themH-dead. To distinguish betweenH-dead and other bad edges, we will
alter our previous definition and call an edgee ∈ PH-bad if

0 < |ΓH (e)| < 2
9
α

n
l2
.

So, for anyH ′ ⊆ H , every edge ofP is eitherH ′-good orH ′-bad orH ′-dead. Let us
denote these three subgraphs byGH ′, BH ′ andDH ′. For technical reasons we distinguish
also a classF0 of atypical edges ofP. For all 1≤ i < j ≤ 3, an edgee ∈ Pi j belongs to the
subgraphF0, if either it is not typical or at least one of its ends is not typical in Pi j. Note,
that by Fact 8.3 and Corollary 8.4,|F0| < 24εn2.

Claim 6.1. For all α ∈ (0,1) and for all δ < α/92 there exist two sequences r(l) and ε(l)
so that for all H , P and integer l if (H , P) is an (α, δ, l, r(l), ε(l))-triad then there exists a
subhypergraphH ′ ⊆ H such that |BH ′ | ≤ δn2/l4, |DH ′ | < 22

√
δn2/l and F0 ⊆ DH ′ .

Proof of Lemma 4.2. With givenα and

δ < δ2 =
α2

1802
<
α

92
,

let r(l) andε1(l) be such that Claim 6.1 holds. Set

ε(l) = min

(

ε1(l),
α4

20,000l8

)

.

We will prove Lemma 4.2 with this choice of sequencesr(l) andε(l). Given integerl, let
a pair (H , P) be an (α, δ, l, r, ε)-triad, wherer = r(l) andε = ε(l). Further, letH ′ be as in
Claim 6.1, let

V∗ =
{

v ∈ V : degBH′ (v) ≥
√
δ

n
l2

}

,

G∗H ′ = {e ∈ GH ′ : e ∩ V∗ , ∅} ,
and letP0 = BH ′ ∪ DH ′ ∪G∗H ′.
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Note thatF0 ⊆ P0. It remains to prove two facts aboutP0.

Fact 6.2. |P0| ≤ 27
√
δn2/l

Proof. To prove this fact, note that|V∗| ≤ 2
√
δn/l2, and so|G∗H ′ | ≤ 2n|V∗| ≤ 4

√
δn2/l2.

Therefore

|P0| ≤ |BH ′ | + |DH ′ | + |G∗H ′ | ≤ δ
n2

l4
+ 22

√
δ

n2

l
+ 4
√
δ

n2

l2
≤ 27

√
δ

n2

l
.

�

Fact 6.3. For every edge e ∈ P − P0 the inequality (4) holds.

Proof. By symmetry, we will only prove that
∣

∣

∣

∣

Four+(e,H−P0)
∣

∣

∣

∣

≥
(

α4/2000
)

n2/l. Without

loss of generality we may assume thate = xy ∈ P12−P0, wherex ∈ V1. Then, by our choice
of δ, the set of verticesz, such thatxyz ∈ H andyz, xz < P0, has size at least

(12)
2
9
α

n
l2
− 4
√
δ

n
l2
>
α

5
n
l2
,

where the deletion takes care of allz ∈ V∗, as well as allz with yz or xz in BH ′ (clearly,yz
andxz cannot beH-dead). Thus,xyz ∈ H−P0. For each suchz, the edgeyz belongs in turn
to at leastαn/(5l2) tripletsyzw ∈ H ′ with w ∈ V1 \ {x}, yw ∈ P12 − P0 andzw ∈ P13 − P0.
So, altogether there are at leastα2n2/(25l4) edges ofP13 − P0 reached (withinH − P0) in
two steps bye. Repeating this argument again we obtain at leastα4n4/(625l8) hyperpaths
xyzwuv ∈ H − P0 of length four originating ate = xy.

Let us estimate, by counting repetitions, how many different edgesuv ∈ P23, u ∈ V2,
v ∈ V3, are indeed reached bye in four steps (and in many ways). Consider an auxiliary
bipartite graphC = (X,Y, EC), whereX = E(P13), Y = E(P23), and{zw ∈ X, uv ∈ Y} ∈ Ec if
xyzwuv is a hyperpath inH − P0. Hence,|EC | ≥ α4n4/(625l8).

Every hyperpathxyzwuv must satisfy that

z ∈ NP23(u,NP(xy)) and w ∈ NP(uv,NP12(y))

(see Figure 5).

V1

V2

V3

x

y

z

u

v

w
eP12

P23

P13

NP23(u,NP(xy))

NP(uv,NP12(y))

F 5. A hyperpath of length four originating ate = xy.

SinceF0 ⊆ P0, thereforexy < F0, so we haveεn < |NP12(y)| < (1/l + ε)n and εn <
|NP(xy)| < (1/l + ε)2n. By Fact 8.3, all but at mostεn2 edgesuv satisfy|NP23(u,NP(xy))| <



J P, V R̈, A R́  E S́ 17

(1/l + ε)3n and all but at most 3εn2 edgesuv satisfy |NP(uv,NP12(y))| < (1/l + ε)3n. If
both these sets are greater thanεn then, by the (1/l, ε)-regularity ofP13, there are at most
(1/l + ε)7n2 edgeszw ∈ P13 between them. Otherwise, the number of such edgeszw is at
mostεn2 < n2/l7, the last inequality by our assumption onε. Thus, (1/l + ε)7n2 < 20

19n2/l7

is an upper bound on the degree inC of all but at most 4εn2 edgesuv whose degree can be
even equal ton2. Denote the set of such edges byY1 and set

∆
∗
= max

e∈Y\Y1

degC(e).

Then

∆
∗ ≤ ∆0 =

20
19

n2

l7
.

Let

Y2 =

{

uv ∈ Y : degC(uv) ≥ 1
2
|EC |
|P23|

}

,

andY3 = Y \ (Y1 ∪ Y2). We have

|EC | ≤ |Y1|n2
+ |Y2|∆0 + |Y3|

|EC |
2|P23| ≤ 4εn4

+ |Y2|∆0 +
|EC |
2
.

Therefore, by our choice ofε,

|Y2| ≥
(

α4n4

1250l8
− 4εn4

)

1
∆0
>
α4n2

2000l

Another words, at leastα4n2/2000l edgesuv ∈ P23 can be reached frome by no less than

1
2
|EC |
|P23| >

α4n2

2500l7

hyperpaths of length four, or equivalently, via that many edgeszw ∈ P13. It is easy to see
that among these edges there is matching of size at least

α4n
5000l7

.

�

Proof of Claim 6.1.

Givenα, let
δ <
α

92
,

and letε1(l) be such that Fact 3.2 holds with aboveα andδ. Further, let for alll,

r(l) = 32l3

and

(13) ε(l) = min
(

ε1(l),
δ

24l3

)

.

We will prove Claim 6.1 with this choice ofδ, r(l) andε(l). Given integerl, let a pair (H , P)
be an (α, δ, l, r, ε)-triad, wherer = r(l) andε = ε(l).
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We will define a process of deleting hyperedges which after finitely many rounds will
arrive at a subhypergraphH ′ ofH satisfying the conclusions of Claim 6.1. Recall that for
an arbitrary hypergraphH and a graphG, we denote byH − G the subhypergraph ofH
obtained by removing all hyperedges containing at least oneedge ofG.

The initial step of the procedure isolates all edges ofF0. SetH1 = H − F0. Clearly, for
eache ∈ F0, we haveΓH1(e) = ∅ and soe isH1-dead.

In each next round we similarly “kill” edges ofP which are bad in the current subhyper-
graph. For technical reasons these rounds take cyclically care of the edges ofP12, P23, and
P13. For eachs = 1,4,7, . . . , let

Fs = {e ∈ P12 : e isHs-bad}, Hs+1 = Hs − Fs,

Fs+1 = {e ∈ P23 : e isHs+1-bad}, Hs+2 = Hs+1 − Fs+1,

Fs+2 = {e ∈ P13 : e isHs+2-bad}, Hs+3 = Hs+2 − Fs+2.

In each operation of the typeHs+1 = Hs − Fs we remove all hyperedges which contain
Hs-bad edgese of P12, P23 or P13. Thus, those edges becomeHs+1-dead and therefore will
never become bad again. It follows that all setsFs are disjoint, and, in paticular, fors ≥ 1,
Fs ∩ F0 = ∅.

Our immediate goal is to estimate
∑r

s=1 |Fs|. Let us define 3-partite subgraphsQs of P,
s = 1,2, ..., r, as follows: IfFs ⊂ Pi j then

Qs = Fs ∪














Pik −
s

⋃

t=1

Ft















∪














P jk −
s

⋃

t=1

Ft















,

SetQ = (Q1, ...,Qr).
Observe that for slightly enlarged subgraphsQs = Fs ∪ Pik ∪ P jk (whereFs ⊂ Pi j), we

have, by (13) and the fact thatFs ∩ F0 = ∅,

|Tr(Qs)| ≥ |Fs|n
(

1
l
− ε

)2

≥ 3
4

n
l2
|Fs|.

Trivially,
r

⋃

s=1

Tr(Qs) ⊆
r

⋃

s=1

Tr(Qs),

but the reverse inclusion is also true. Indeed, forxyz ∈ Tr(Qs) sett0 = min{t : {xy, xz, yz} ∩
Ft , ∅}. Thent0 ≤ s andxyz ∈ Tr(Qt0). Moreover, because the setsFs are disjoint (and so
areTr(Qs)),

|
r

⋃

s=1

Tr(Qs)| = |
r

⋃

s=1

Tr(Qs)| =
r

∑

s=1

|Tr(Qs)| ≥
1
3

r
∑

s=1

|Tr(Qs)|.

Hence,

(14) |
r

⋃

s=1

Tr(Qs)| ≥
1
4

n
l2

r
∑

s=1

|Fs|.
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On the other hand, however, by the definition of anHs-bad edge, for alls ≤ r,

|H ∩ Tr(Qs)| < |Fs|
2
9
α

n
l2
,

forcing

dH (Q) <
8
9
α,

wheredH (Q) is defined in (1). Therefore, by the (α, δ, r)-regularity ofH ,

(15) |
r

⋃

s=1

Tr(Qs)| ≤ δ|Tr(P)|,

since otherwisedH (Q) > α − δ ≥ 8
9α. This inequality together with (13), (14) and Fact 8.6

implies that

(16)
r

∑

s=1

|Fs| ≤ 4|
r

⋃

s=1

Tr(Qs)|
l2

n
< 8δ

n2

l
.

Thus, more than a half of the setsFs, s ≤ r, have size|Fs| ≤ 16δn2/lr, and so two consecu-
tive sets must be such, that is, there exists an indexs ≤ r − 2, such that

max(|Fs+1|, |Fs+2|) ≤ 16δ
n2

lr
=

1
2
δ

n2

l4
.

Let s0 be the smallest indexs with this property.
Without loss of generality we may assume thatFs0 ⊂ P12. SetH ′ = Hs0+1. Observe that

there is noH ′-bad edge in the graphP12, while in eachP23 andP13 we have at most12δn
2/l4

H ′-bad edges. In fact, the set ofH ′-bad edges is the union ofFs0+1 (H ′-bad edges inP23)
and of a subgraph ofFs0+2 (Fs0+2 may containHs0+2-bad edges which were notHs0+1-bad).

As for theH ′-dead edges, these are exactly the edges in
⋃s0

i=0 Fi plus all the edgese ∈ P
which were originally dead, that is, which hadΓH (e) = ∅. We have already estimated
|⋃s0

i=1 Fi| in (16), while, by (13),|F0| < 24εn2 < δn2/l. Finally, by Fact 3.2, there are no
more than 21

√
δn2/l originally dead edges. Therefore we have

|DH ′ | < |
s0
⋃

i=1

Fi| + |F0| + |DH | < 8δ
n2

l
+ δ

n2

l
+ 21

√
δ

n2

l
< 22

√
δ

n2

l

Hence, Claim 6.1 is proved. �

7. A

In this section we give two immediate applications of Theorem 2.9.

7.1. Long hyperpaths. The “Blow-up Lemma” of Komĺos, Śarközy and Szemerédi [4]
states that with a suitable choice of parameters everys-partite graphG with s-partition
V1∪· · ·∪Vs in which all bipartite subgraphsG[Vi,V j] are (d, ε)-regular contains all bounded
degrees-partite graphsG′ with s-partitionV ′1∪ · · · ∪ V ′s, where for alli = 1, . . . , s, V ′i ⊆ Vi,
|V ′i | < (1− f (ε))|Vi|.
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So far no analogous results exist for 3-uniform hypergraphs. As a first step toward a
hypergraph “Blow-up Lemma”, we derive from Corollary 3.5 a simple consequence which
establishes the existence of an almost hamiltonian hyperpath in a quasi-random 3-graph.

Proposition 7.1. For all real α ∈ (0,1) and for all δ < (δ0/4)4, where δ0 is as in Theorem
3.5, there exist two sequences r(l) and ε(l) such that for all H , P and integers l if a pair
(H , P) is an (α, δ, l, r(l), ε(l))-triad with |V | = n sufficiently large, then there is in H a
hyperpath of length at least (1− δ 1

4 )n.

Proof. Given α, let δ < (δ0/4)4 and r = r(l) i ε1(l) be ensured by Theorem 3.5. Set
ε = ε(l) = δ

1
4ε1(l). Observe, that

(17) 27
√

4δ
1
4 < 27

√
δ0 <

α4

2000
.

Let a pair (H , P) be an (α, δ, l, r, ε)-triad. Suppose, that no hyperpath inH is longer than
(1−δ 1

4 )n. For a hyperpathQ, letH ′Q be the subhypergraph ofH , obtained by deleting from
H all, but the last four vertices of the pathQ (if |V(Q)| < 4, then we setH ′Q = H).

Let us fix an arbitrary edgee = {x, y} ∈ P − R0 and letQ be the longest hyperpath inH
originating ate (in the cyclic orderV1 → V2 → V3 → V1) and such that its other endpair
f ∈ P − R0(H ′Q). It follows trivially from the definition of the setR0(H) thatQ has at least
four vertices. Let us denote the last four vertices ofQ by x−3, x−2, x−1, x0.

Since|V(Q)| < (1− δ 1
4 )n, the subhypergraphH ′′Q = H − V(Q) has at leastδ

1
4 n vertices.

Moreover, sinceQ traverses the setsV1,V2,V3 in the cyclic order, the sizes of the sets
V(H ′′Q) ∩ Vi, i = 1,2,3, differ from each other by at most one. Hence (see [8], Fact 4.2),

the pair (H ′′Q , P[V(H ′′Q)]) is an (α,4δ
1
4 , l, r, ε/δ

1
4 )-triad. Note that|V(H ′Q)| = |V(H ′′Q)| + 4,

4δ
1
4 < δ0 andε/δ

1
4 = ε1(l). Therefore, by Theorem 3.5,

|R0(H ′′Q)| ≤ 27
√

4δ
1
4

d|V(H ′′Q)|/3e2

l
≤ 27

√

4δ
1
4

b|V(H ′Q)|/3c2

l
.

On the other hand, by the definition ofR0(H ′Q), we know that the edgef = {x−1, x0} reaches
in four steps at least

α4

2000

b|V(H ′Q)|/3c2

l
> 27

√

4δ
1
4

b|V(H ′Q)|/3c2

l
+ 2n ≥ |R0(H ′′Q)| + 2n

other edges ofP[V(H ′Q)] (the term 2n takes care of all edges with at least one endpoint in
x−2 or x−3; the first inequality follows from (17) for largen). Therefore, there is at least
one edgef ′ = {x3x4} ∈ P[V(H ′′Q)] − R0(H ′′Q), reached byf inH ′Q by at least three (in fact,
many more) internally disjoint hyperpaths of length four ofthe formx−1x0x1x2x3x4. Thus,
for at least one of them{x1, x2, x3, x4} ∩ {x−3, x−2} = ∅, and we may extendQ by adding the
verticesx1, x2, x3, x4 – a contradiction with the maximality ofQ (see Figure 6). �
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…

Q

H ′Q H ′′Q

e f f ′

x−3

x−2

x−1

x0

x1

x2

x3

x4

F 6. A hyperpathQ originating ate.

Similarly, one can prove that for most pairs of edges ofP there is a path of length at least
(1− δ

1
4 )n between them.

7.2. Approximate decomposition into small diameter subhypergraphs. It is easy to see
that for everyn-vertex graph and for everyε > 0 one can partitionE(G) = E0 ∪ · · · ∪ Ek,
wherek ≤ 1/ε, so that|E0| ≤ εn2 and for each 1≤ i ≤ k the diameter of the subgraph
Gi = G[Ei] is at most 3/ε (see [7]). Thus, in a sense, every graph can be decomposed into
a bounded number of “small worlds” provided a small set of edges can be ignored. Here
both bounds, on the diameter and on the number of subgraphsGi depend linearly on 1/ε.
Using the Szemerédi Regularity Lemma [9] and Corollary 8.5(b), one may put the cap of
four on the diameter, at the cost of lettingk, the number of subgraphs in the partition, to be
an enormous constant.

Proposition 7.2. [7] For all ε > 0 there exist integers K and N such that for all n-vertex
graphs G, where n ≥ N, there is a partition E(G) = E0 ∪ E1 ∪ · · · ∪ Ek, where k ≤ K, and
|E0| ≤ εn2, and for each 1 ≤ i ≤ k, the diameter of the subgraph Gi = G[Ei] is at most four.

An analogous result for 3-uniform hypergraphs follows fromour Theorem 2.9 and the
Hypergraph Regularity Lemma in [1].

Theorem 7.3.For all ξ > 0 there exist integers K and N such that for all n-vertex 3-uniform
hypergraphs H , where n ≥ N, there is a partition H = H0 ∪ · · · ∪ Hk where k ≤ K and
|H0| ≤ ξn3 and for each 1 ≤ i ≤ k, every two pairs of vertices with positive degree in Hi

are connected by a hyperpath inHi of length at most twelve.

Sketch of proof: Givenξ > 0, sett0 = 8/ξ, α = ξ/8 and letδ0 > 0 and sequencesr(l), ε2(l)
be as in Theorem 2.9 with aboveα. Further, letN1 be the smallest natural number, for
which Theorem 2.9 holds. Set

δ = min

(

δ0,

(

ξ

16

)2)

and apply the Hypergraph Regularity Lemma of [1] withδ, ε1 = δ4, ε2(l) and r(l) to get
T0, L0 i N0. Set

K =

(

T0

3

)

L3
0 and N = max

(

N0,
16T0

ξ
,N1T0

)

and letH be an arbitrary 3-uniform hypergraph withn ≥ N vertices and|H| ≥ ξn3 triplets.
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By the Hypergraph Regularity Lemma,H admits an auxilary vertex partitionV(H) =
V0 ∪ V1 ∪ · · · ∪ Vt, wheret0 ≤ t < T0, |V0| < t and|V1| = |V2| = · · · = |Vt|, and for each pair
i, j, 1 ≤ i < j ≤ t, partitions of the complete bipartite graphsK(Vi,V j) =

⋃l
a=0 Pi j

a , where
1 ≤ l < L0, such that most triplets ofH belong to (α, δ, l, r(l), ε2(l))-triads (H ′, P), where
H ′ = H ∩ Tr(P) andP = (Phi

a , P
h j
b , P

i j
c ), 1 ≤ i < j < h ≤ t, 1 ≤ a, b, c ≤ l.

Let (H ′s, Ps), s = 1, . . . , k ≤
(

t
3

)

l3 < K, be all such triads. For eachs = 1, . . . , k, let (Ps)0

be the subgraph ofPs guaranteed by Theorem 2.9, and setHs = H
′
s − (Ps)0. Then, each

pair of edges ofPs − (Ps)0, that is each pair of edges ofPs with positive degree inHs is
connected inHs by a hyperpath of length at most twelve.

Let us setH0 = H \
⋃k

s=1Hs. To complete the proof of Theorem 7.3, it remains to show
that |H0| ≤ ξn3. We omit the details of tedious but straightforward calculations. �

8. A – ε- 

Let G = (V, E) be a graph, whereV and E are the vertex-set and the edge-set ofG.
Throughout the paper we often identifyG with its set of edges and therefore write|G|
instead of|E|. WhenU, W are subsets ofV, we define

eG(U,W) = {{x, y} ∈ E : x ∈ U, y ∈ W}.

For nonempty and disjointU andW,

dG(U,W) =
eG(U,W)
|U ||W |

is thedensity of the graphG betweenU andW, or simply, the density of the pair (U,W).

Definition 8.1. Given ε > 0, a bipartite graphG with bipartition (V1,V2), where|V1| = n
and |V2| = m, is calledε-regular if for every pair of subsetsU ⊆ V1 andW ⊆ V2, |U | >
εn, |W | > εm, the inequalities

d − ε < dG(U,W) < d + ε

hold for some real numberd > 0. We may then also say thatG, or the pair (V1,V2), is
(d, ε)-regular.

Let a graphG = (V, E) be given. We writeNG(v) for the set of neighbors ofv ∈ V in
the graphG. The size ofNG(v) is |NG(v)| = degG(v), the degree of v. We setNG(xy) =
NG(x) ∩ NG(y) as the set of common neighbors ofx, y ∈ V in G. For a setU ⊂ V, we write
NG(v,U) for the set of neighbors ofv in U andNG(xy,U) for the set of common neighbors
of x andy in U. The size ofNG(v,U) is |NG(v,U)| = degG(v,U).

Definition 8.2. Let G = (V1 ∪ V2, E) be a (d, ε)-regular bipartite graph, where|V1| = |V2| =

n. We say, that a vertexx ∈ Vi, i = 1,2, is typical in G, if the following inequalities hold

n(d − ε) < degG(x) < (d + ε)n.

Further, letG = G12 ∪ G23 ∪ G13 be a 3-partite graph with partition (V1,V2,V3), where
|V1| = |V2| = |V3| = n, and each graphGi j is (d, ε)-regular, 1≤ i < j ≤ 3. We call a pair of
vertices (x, y) ∈ Vi × V j typical if it satisfies inequalities

n(d − ε)2 < |NG(xy)| < n(d + ε)2.
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The next fact is well-known and follows immediately from Definition 8.1 (see e.g. [6]).

Fact 8.3. For all real ε > 0 and d > 0, and for all integers n and m, the following holds. Let
G be a (d, ε)-regular bipartite graph with a bipartition (V1,V2), where |V1| = n, |V2| = m.
Further, let A ⊆ V2, |A| > εm. Then all but at most εn vertices x ∈ V1 satisfy

(18) degG(x, A) < (d + ε)|A|,

and all but at most εn vertices x ∈ V1 satisfy

(19) degG(x, A) > (d − ε)|A|.

In particular, if |V1| = |V2| = n, then for each i ∈ {1,2}, all but at most 2εn vertices x ∈ Vi

are typical in G.

Corollary 8.4. For all ε > 0 and d > 2ε and for all integers n, the following holds. Let
G = G12 ∪ G23 ∪ G13 be a 3-partite graph with partition (V1,V2,V3), where |V1| = |V2| =

|V3| = n and each graph Gi j is (d, ε)-regular, 1 ≤ i < j ≤ 3. Then all but at most 4εn2 pairs
of vertices (x, y) ∈ Vi × V j are typical.

Another simple consequence of Fact 8.3 deals with the distances in a quasi-random bi-
partite graph (see [6] and [7]).

Corollary 8.5. Let B be a (d, ε)-regular bipartite graph with bipartition (V1,V2), where
|V1| = |V2| = n.

(a) If d > 2ε then all pairs of vertices of B of degree at least εn can be connected by
paths of length at most four.

(b) If d > 4ε then by removing from B at most 2εn vertices (those of degree less than
3εn < (d − ε)n), we obtain a subgraph with diameter four.

Finally, we state another well-known result which tightly estimates the size ofTr(G),
the set of triangles in a quasi-random 3-partite graphG (see, e.g., [8]).

Fact 8.6. Let G = G12 ∪ G23 ∪ G13 be a 3-partite graph, where all three bipartite graphs
Gi j are (d, ε)-regular, 1 ≤ i < j ≤ 3. If d > 2ε then

(d3 − 10ε) <
|Tr(G)|
|V1||V2||V3|

< (d3
+ 10ε).

In particular, if ε < 0.1d3 then |Tr(G)| < 2d3|V1||V2||V3|.
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