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Asstract. The Frankl-RdI regularity lemma for 3-uniform hypergraphs asserts ¢lwary
large hypergraph can be decomposed into a bounded numbeasiFigndom structures
consisting of a subhypergraph and a sparse underlying gilaphis paper we show that
in such a quasi-random structure most pairs of the edge®afrdph can be connected by
hyperpaths of length at most twelve. Two applications ese glven.

1. INTRODUCTION

The Regularity Lemma from [9] is a powerful tool in contempgrgraph theory and
combinatorics. It allows one to partition every large gragb a bounded number of bipar-
tite subgraphs, most of which are quasi-random, that iy, plossess essentially all typical
properties of corresponding random graphs. One of thesesgirep, quite easy to prove,
is that every two vertices with non-negligible neighbortieean be connected by a path of
length at most four (see, e.g., [6] and Corollary 8.5(a) inAppendix below).

In this paper we study the much harder problem of the existeficshort paths in 3-
uniform, 3-partite hypergraphs with a certain regular strreerelated to the Frankldrll
regularity lemmain [1]. When this lemma is being applied,ithial hypergraph is broken
into several quasi-random pieces and a desired structlng@liSrom segments scattered
among these highly regular substructures. It is then inapbitio ‘sew” them together by
relatively short hyperpaths.

Two examples of this approach can be found in the forthcorpaygers [8] and [2],
where, respectively, the existence of Hamilton cycles inBerm hypergraphs and the
Ramsey numbers for hypercycles are treated. In both theseatpphs, besides the Frankl-
Rodl Lemma itself, a crucial role is played by the “Connecti@nima”, analogous to, but
much more complicated than the above mentioned result &ptgr. The goal of this paper
is to prove this * Connection Lemma” for quasi-random, 3-amii hypergraphs.

In the next section, after some preliminary definitions, ve¢esour main result, Theorem
2.9. Then, in section 3 we reformulate it in a more constveatiay, specifying, in terms of
their fourth neighborhoods, the edges that can be connbgtskort hyperpaths. Section 4
contains proofs of our main results, both relying on two leasiiemma 4.1 and Lemma
4.2, which themselves will be proved in Sections 5 and 6. i@eat presents briefly two
applications of Theorem 2.9. One of them, a blow-up type tegularantees a subhamil-
tonian path in a quasi-random 3-uniform hypergraph. Therapproximates every large
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3-uniform hypergraph by finitely many pieces of small “digera Finally, the Appendix
collects elementary facts abattegular graphs which are used throughout the paper.

Acknowledgements.The authors would like to extend their deepest gratitude emBr
dan Nagle for his invaluable contribution to the initial s®n of this paper. Without his
persistence in comprehending our elusive ideas this workduvaave never be born.

2. PRELIMINARIES AND MAIN RESULT

Definition 2.1. A 3-uniform hypergraph is a pairH = (V,E), whereV is a finite set of
vertices ancE C (\3’) is a family of 3-element subsets ®f called hyperedges or triplets.
Throughout the paper we will often identif( with E.

We callH 3-partiteif there exists a partitioV = V; U V, U V3 such that for eack € E
and for each = 1,2, 3 we haveen V; # 0. We refer to any 3-partite 3-uniform hypergraph
H with a fixed 3-partition ¥, V, V3) asa 3-graph.

For an arbitrary hypergrapi and a grapl@ on the same vertex set, we denotefity- G
the subhypergraph off obtained by removing all hyperedges containing at leaseoige
of G.

The density and-regularity of bipartite graphs is measured by the ratiodges to all
potential edges (see the Appendix). For 3-graphs it is the o hyperedges coinciding
with the triangles of an underlying graph to all triangleshat graph.

Definition 2.2. For a 3-partite grapP with a fixed 3-partitiorivV,; U V, U V3, we shall write
P = P2u P2 U P, whereP' = {xy € P : x € Vi,y € V;}. Furthermore, leTr(P) be
the set of all (vertex sets of) triangles formed by the edge? of P = P12u P2 U P s
a 3-partite graph with the same vertex partitiorfésand moreoverH C Tr(P), then we
say thatP underlies H.

The natural notion of density dff with respect taP counts the proportion of triangles
of P which are triplets ofH, and then the-regularity of H means that for alQ C P
that contain &-fraction of Tr(P), the densities of{ with respect to suckY’s are withing
from each other. However, it turns out that in some appliceithis is not strong enough.
Therefore, the concept of so callefjr)-regularity was introduced in [1].

Definition 2.3. Letr > 1 be an integer and Iétf be a 3-graph with an underlying 3-partite
graphP = P2u P2 U P13, LetQ = (Q(1), ..., Q(r)) be anr-tuple of 3-partite subgraphs
Q(s) = Q¥(s) U Q%(s) U Q'¥(s) satisfying that for alls € {1,2,....,r}and 1< i < j < 3,
Q'i(s) c P'I. We define thalensity d(Q) of H with respect taQ as

[H N Usa TH(Q(9))]

@) Q=00 TrQE)

if | UL, Tr(Q(s))l > 0, and 0 otherwise.

Definition 2.4. Let an integer > 1 and real numbers @ a,6 < 1 be given. We say that
a 3-graphH is (o, 6, r)-regular with respect to an underlying graph= P2 u P> U P13 f
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for anyr-tuple of subgraph& = (Q(1), ..., Q(r)) as above, if

| Tr Q)1 > siTr(Py,
s=1

then
(2 |du(Q) — al < 6.

We say thatH is (6, r)-regular with respect taP if it is (a, 6, r)-regular for somer. Note
that if H is (6,r)-regular with respect t®, &' > 6, andr’ < r is an integer, therH is

also ¢’,r’)-regular with respect t® (with the samer). If r = 1, we just use the names
é-regular and g, 6)-regular.

Setup 2.5.In what follows we always assume th#ttis a 3-graph an® = P2u P2y P13
is a 3-partite graph, both with the same 3-partitioe: V(H) = V(P) = V1 U V, U V3 with
V1| = V2| = |V3] = n, and moreover, tha& underliesH, i.e.,H C Tr(P).

Definition 2.6. GivenH andP as in Setup 2.5, integefrsandr and real numbers, § and
€, we call the pairf{, P) an @, 6, 1,r, e)-triad if

(i) eachP, 1<i < j <3,is (Y1, €)-regular;

(i) His (a,6,r)-regular with respect te.

In particular, it follows that if ¢, P) is an ¢, 6,1, 1, €)-triad then for all 1< i < ] < 3we
have

(3) (Y1 - e)n® < |P| < (1/1 + €)n?

The hypergraph regularity lemma in [1] states that with filgatrchoice of parameters,
for every large 3-uniform hypergrapH = (V, E) the complete graph o¥ can be parti-
tioned into finitely many graphs so that most tripletstételong to &, 6,1, r, €)-triad built
upon these graphs. This paper studies the structur® d®) in such a typical situation.

There are several ways to define a path in a 3-uniform hypeingi@nd we choose one
in which the edges are glued along the path in the most tight(aee [5] and [3] for some
study of paths and cycles defined in a “loose” way).

Definition 2.7. Let H be a 3-uniform hypergraptA hyperpath of lengthk > 0 in H is a
subhypergrapkP of H consisting ofk + 2 vertices andk hyperedges and whose vertices
can be labelledy, ..., X, so that foreach=1,...,k, XX,1X.2 € H. We then say tha®
goes from the pair x;X, to the pair X »Xc;1 and these two pairs are called tbalpairs of

P. The verticess, ..., X are callednternal. Two paths are said to beternally digoint if
they do not share any internal vertex.

Remark 2.8. Note that the endpairs are ordered pairs of vertices{ i$ a 3-partite hyper-
graph then the vertices of any hyperpath traverse the iparsets only in the cyclic order
V:, - Vo, —» V3 — Vy, orin its reverse (see Figure 1). Hence, there are pairsdered
pairs of vertices which, even in a complete 3-graph, are anhected by any hyperpath.
Another consequence is that the lengths of paths connegtmgiven endpairs are equal
modulo 3.
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Throughout the paper we will be assuming that the cycliciange/; — V, —» V3 — V;
is canonical, and thus, specifying two unordered pairs dfcss,e and f, and saying that
a hyperpath goes fromto f will not be ambiguous. (Note that under this convention a
hyperpath fromf to eis not a mere reverse of a path frao f.)

Note also that unlike the graph case, the length of the s$tdnigoerpath between two
given endpairs does not satisfy the triangle inequality,thod cannot be called “distance”.

Our goal is to prove the following “Connection Lemma” which, a way, extends a
simple fact about graphs, Corollary 8.5(b) (see Appendo3-tiniform quasi-random hy-
pergraphs. In addition, for the sake of future applicatioves may force the hyperpaths to
avoid a specified set of vertic& A hyperpath® is calledS-avoiding if V() NS = 0.
Not to face the burden of computing yet another constantgstictS to have size only at
mostn/ logn. (The numerical constants are, clearly, not best posgible.

Theorem 2.9(Connection Lemma)For all real @ € (0, 1) and for all 6 < 6o, where

a49

- 350830002’

there exist two sequences r(l) and e(l) so that for all H, P and for integer | if (H,P) is
an (a,6,1,r(l), e(l))-triad with |V1] = |V, = |Va| = n sufficiently large, then there is a
subgraph P, of at most 27+/6n?/I edges of P such that for every ordered pair of digjoint
edges(e, f) € (P— Pp) x (P—Pg),en f =0, and for everyset S c V(H) \ (eu f) of size
IS| < n/logn, thereisin H — Py an S-avoiding hyperpath from e to f of length at most
twelve.

oo

Remark 2.10. In principle it might happen that an edge P — Py is “isolated” inH — Py,
that is, all triplets containing also contain an edge &f. The conclusion of the above
theorem ensures that this is not the case. In fact, all eelgd3- P, are mutually connected
by short hyperpaths withift{ — Pg.

Vi

Vi

Vi

Ficure 1. A hyperpath of length 12 frorato f. Every 3 consecutive ver-
tices on the path form a hyperedge.

3. CONSTRUCTIVE REFORMULATION

As mentioned earlier, in the case of €)-regular graphs, it is easy to see that for every
pair of vertices with at leagin neighbors each, there is a short path (of length at most four)
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between them (see, e.g., [6] and the Appendix below). In & [7], every two vertices
of degree at least 16{/d)n can be connected by a path of length at most five.

The quantification of Theorem (note that “there exist seqasr(l) ande(l)” translates
to “for all | there existr and ¢”) indicates the possibility of the following hierarchy of
constants:

a>o0> 1/l > 1/r €,

whereg > y means thay is suficiently smaller tha, or thaty is chosen only aftes is
being fixed.

Polcyn [6], working under a comfortable assumption thak 1/1, proved that most
edges ofP can be mutually connected by hyperpaths of length at mostnseVypical
edges were defined in [6] in terms of the first and second neigjldlod inH. Here, withs
and Y1 swapped in the hierarchy, to formulate a constructive wvarsi Theorem 2.9, we
need to look into the fourth neighborhood of an edge.

Let us begin by defining the first neighborhood.

Definition 3.1. Let ‘H be a 3-uniform hypergraph and ket {x, y} be a pair of vertices in
V = V(H). We define thénypergraph neighborhood of eto bel'y(€) = {ze V : {z X, Yy} €
H}. The vertices il'y(€e) will be calledneighbors of e.

Note that in a 3-grapbH with an underlying grapt® = P* U P22 U P33, if e € Pl then
I'w(e) € Vi, wherefi, j,k} = {1, 2, 3}.

Imagine that both?H andP are chosen at random as a result of the following 2-round
experiment. First, createby tossing a coin over each pair M;(x V,) U (V2 x V3)U (V1 X V3)
independently with the success probability,2hen creatéH by selecting each triangle of
P with probabilitya. In such a random hypergraph the expected number of triglets /I3
and, for a given edge d? (here we condition thag has been selected), the expected value
of [T« (€)| equalsan/I2. Itis proved in [6] that if ¢, P) is an (deterministic)d, 6, 1, 1, e(1))-
triad, then for almost all edges &% |[I['/(€)| is close to the above expectation.

Fact 3.2([6]). For all real @ > 0and § > 0, there exists a sequence «(l) > 0 such that for
all integer | > 1, whenever (H, P) isan (a, 6,1, 1, €(1))-triad then all but at most 7 vVsn?/I
edgesof P, 1 <i < j < 3, satisfy the inequalities
1 2 1 2

n(l— - 6) (@ =90) <I'n(e) < (a+9) (T + 6) n.
Remark 3.3. In [6], the above inequalities contain only the te in place ofs, but the
same proof yields also Fact 3.2 in the present form. (Thetaohs instead of 6 in [6]
comes from considering here all edgesPdf and not just the proper ones.)

However, for reasons which will be explained later, to gngga short connections (via
hyperpaths) of an edgee P with most of the other edges @{f, we will need to look four
steps ahead.

Definition 3.4. Let e, & be edges oP. We say thatk, reaches e, within H in k steps
and in t ways if there exist at least internally disjoint hyperpaths it of lengthk from
e to e,. Fort = 1 we will skip the phrase “it ways”. For an edge € P, we denote by
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Four*(e, H) the set of those edges Bf which are reached fromwithin H in four steps
and inygn ways, and byFour~(e, H) the set of all edges d® which reache within H in
four steps and iron ways (see Figure 2), where

4

04
Yo = 50007
Vi
AN “
v, —9
e
Vi

Ficure 2. The fourth neigborhoods ef(g € Four (e, H), h € Four* (e, H)).

Let us now provide some intuition for why it is necessary tosider the fourth hyper-
graph neighborhood of a graph edge. Suppressjage, most edges dP belong to about
n/1? triplets of H (see Fact 3.2), but any such edgean be completely cutfbfrom the
rest of H if no stronger assumption is made. Indeed, the total numbgipbéts extend-
ing triplets containinge is of the ordem?, and clearly the removal of such a tiny fraction
of triplets cannot fiect thes-regularity which “controls” only sets of hyperedges ofesiz
roughly,n®/I13.

In two steps, only about?/I* edges are reached from a typical edge. Most of them
extend to aboun/I? triplets, a total ofn®/I® — still much less tham®/I® if | is large. To
estimate the number of edges reached from a typical edgeda #teps, the quantity/1°
has to be divided, due to repetitions, by, roughiy* (the number of vertices forming
triangles with two given, disjoint edges), yielding omi%/1?> edges. Again, they belong to
aboutn®/I* < ¢n?/I2 triplets — a quantity not under control. Hence, the shodisance at
which a typical edge can reach a substantial number of ottgerseis four.

Theorem 3.5 below states that, indeed, most edges havedangle neighborhood, and,
more importantly, edges with large fourth neighborhoodratgually connected by short
hyperpaths.

Let us denote b¥Ry(H) = R, the set of all edges d?, for which

a* \n?
2000) |-
Theorem 3.5. For all real @ € (0,1) and 6§ < &y, Where &g is as in Theorem 2.9 there
exist two sequencesr(l) and e(l) such that for all H, P and for all integer I, if (H, P) isan
(a,6,1,r(), e())-triad with |V4| = |V,| = [V3| = n sufficiently large, then

() |Rol < 27Vor?/1, and

min (|[Four*(e, H)|, |[Four (e, H)|) < (
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(i) for every ordered pair of digoint edges (e, f) € (P — Ry) x (P — Ry) and for every
setS c V(H)\ (eu f) of Size|S| < n/logn, thereisin H an S-avoiding hyperpath
frometo f of length at most twelve.

4. TwWO LEMMAS AND MAIN PROOFS

Theorems 2.9 and 3.5 are straightforward consequencesoofemtnical lemmas. A
subgraphA of P = P2u P2 U PB s calledframed if for some 1<i < j < 3,Ac P,
Our first lemma needs only the assumption tidt P) is an @, 6,1, r (1), €(l))-triad, where
r=1.

Lemma4.l.For all ce (0,1)and @ € (0, 1) and for all § < §;, where

aclz
" 35508°
there exists a sequence ¢(1) so that for all H, P and integer | if (H, P) isan («, 4,1, 1, (1))-
triad with |V4] = |V2| = [V3] = n sufficiently large, then the following is true: For every
subgraph Py c P, where|P,| < 29v6n?/I, and for every pair of framed subgraphs A and B
of P — Py, each of size at least cn?/I, there exist edgesa € Aand b € B and a hyperpath in
H — P, fromato b of length at most four.

01

Our second lemma asserts that for a typigdl P), apart from a small set of edgés,
all other edges oP have their fourth neighborhood substantial, even if the sdd@, are
to be avoided. This lemma needs the whole strength ofstmg-Kegularity.

Lemma 4.2. For all real « € (0, 1) and for all § < 65, where

a,Z

18’

there exist two sequences r(l) and e(1) such that for all #H, P and integers| if (H,P) isan
(a,6,1,r(1), e(l))-triad with [V1| = |V2| = |V5] = n sufficiently large, then there exists Py c P,
|Pol < 27+/6n?/1, such that

02 =

2

(4) min(‘Four*(e,?—( - Po)

Four (e, H — Po)‘) > ( o! ) "

2000/ |

for all ee P - Py.

¢From Lemmas 4.1 and 4.2 we immediately derive our maintresul

Proof of Theorem 2.9. Note that forc = o*/3000,5 = 61 < 6». Givena ands < dy, lete(l)
satisfy Lemma 4.1 witlt = %O and let sequencegl), ande,(l) satisfy Lemma 4.2. We
claim that Theorem 2.9 is true with the above choice(Bfand withe(l) = min(ey(1), ex(1)).
Indeed, consider amy, P andl such thatf{, P) is an @, 6,1, r(l), (l))-triad and apply
Lemma 4.2. It follows that there exisi c P, |Po| < 27V6n?/1, such that (4) holds for all
e e P - Py. Fix disjointe, f € P - Py, and a se§ c V(H) \ (eu f) of size|S| < n/logn.
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DefinePs = {e € P : Sne # 0} and observe thdPs| = o(n?), and thus, for large,
IPo U Ps| < 29v6n?/1, and

4 2
min (IFour(e, H ~ Po)l, IFour (e, 7  Po))) ~ |Ps| > ( @ )“I_

3000

Four*(e, H — Py) Four=(f, H — Po)
4+4+4=12
Ficure 3. A hyperpath frometo f. (An illustraction of the proof of Theo-

rem 2.9)

4
a
3000 to

A=Fourf(e,H—-Py)\Ps, B=Four (f,H—-Py)\Ps and P;=PyUPs,

obtaining edgea € Aandb € B, and a hyperpat#®; in H — (Po U Ps) from ato b of length
at most four.

Letl = V() U f \ a Among at leaston > |l U S| (for largen) internally disjoint
hyperpaths frome to a in H — Py choose one which is disjoint frorhu S, obtaining
an S-avoiding hyperpatt, in H — Py from e to b of length at most eight. Finally, set
J =V(P,) \ band choose a hyperpath in H — Py from b to f which avoids the vertices
of JU S. This way we obtain a®-avoiding hyperpath irH — Py from eto f of length at
most twelve (see Figure 3).

Since (H, P) is also an ¢, 6,1, 1, &(1))-triad, we may apply Lemma 4.1 with=

O

Proof of Theorem 3.5. SinceR, C Py, wherePy is as in Lemma 4.2, part (i) follows from
the estimate ofPy|. The proof of part (ii), is very similar to that of Theorem 2We define
Ps as before and apply Lemma 4.1 with- %O to

A=Four (e H)\Ps, B=Four (f,H)\Ps and P;=Ps,
obtaining edges € A andb € B, and a hyperpat®, in H — Ps from a to b of length at
most four. Finally, we exteng; to anS-avoiding hyperpath irH. m|
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Remark 4.3. It will follow from the proof of Lemma 4.1 that, in fact, depeind on the
position of the set#\ and B, the promised hyperpath is precisely of length two, three or
four. Consequently, depending on the positior ahd f, the length of a hyperpath from

to f, guaranteed by Theorems 2.9 and 3.5, is precisely ten,retevevelve.

5. SHORT PATHS BETWEEN LARGE SETS OF EDGES

In this section we prove Lemma 4.1. We begin with formulaangaim from which the
lemma will follows quite easily. LeE be any framed subgraph & ThenFirst*(E, H)
and Second*(E, H) denote the sets of all edglse P reached inH by an edgey € E
in one and, respectively, in two steps. SEtsst™(E, H) and Second™(E, H) are defined
similarly, by replacing the phrase “reached/fby an edgey € E” by “reaching inH an
edgeg € E”. Throughout,ijk always stands for any one of the sequences: 123 or 231 or
312, that is, sequences which follow the cyclic ordering 1231

Claim 5.1. For all c € (0,1) and « € (0,1), all 0 < ¢ < min(a, c®/50%) and sequences

O<e(l) < ﬁ\/i, and all integers| > 1, if (H,P) isan (a, 6,1, 1, €(l))-triad with [V,] = |V,| =

IVal = n sufficiently large, then for all P, c P of size [Py < 29+6n?/1 and for all sets
E C P — P, of size|E| > cn?/I,

2

(5) min(|First*(E, H — Py), [First (E, H — Py))) > g”l_
1/8 2
(6) min(|Second™ (E, H — P,)|, |Second™(E, H — Py)|) > (1 - 46\/6 )nT

In order to derive Lemma 4.1 from Claim 5.1 we need one more gifiagt about vertex-
disjoint subgraphs of bipartite graphs.

Fact 5.2. Let A and B be two bipartite graphs with the same bipartition V; U V5, [V4| =
V2| = n. Then there exist A’ € Aand B’ C B such that |A'| > 3|A| — 3A5(A), |B'| > 3|B| and
V(A)NV(B')NV, = 0, where A,(A) isthe maximum degree in A among the vertices of V.

Proof. Let us put vertices of the s¥b in two lines: one ordered by their degreesNim the
descending manner (lin®), the second — the same with respedBtfine B). Now include
the first vertex on lind3 to B’ and remove it from both lines. We repeat this step for Ane
and then again foB and so on until all vertices are placed in one of the 8éts B'. (Note
that|V(A')| = [n/2] and|V(B')| = [n/2].)

Along the way, let us match each vertexiincluded toB’ with the one included té' in
the very next step (if is odd, the vertex included #® last remains unmatched). Because
we have started with the vertex of the largest degre®, iits match has a smaller or equal
degree irB, and this is true for each matched pair. Therefore, we (Bive %|B|. To prove
that|A'| > %|A| - %AZ(A) we apply the same reasoning to the Aeninus all edges incident
to the first vertex included tB'. m]
Proof of Lemma 4.1. Givenc ande, let

act? - a(c/3)°
35 508

(7) 0<0p=
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and

\/_

)= 108

Note thats < «, and

I

49 + 1—2 > 1+ €e()l,
the latter by inequalitieéé < c\/E/(SO\/_) ande(l)l < ¢/50°.
LetH, P, I, A, B, andP; be as in Lemma 4.1. Without loss of generality we assume that
A c P2 and will consider all three cases fBr
If B c P, apply Claim 5.1 withE = A to obtain a sefA!® = Second* (A, H — P,) C

P13 — P, of at least
453\ n?
(1 — _8] —

\c
edges. By (3) and (8), we conclude tigat A # 0, implying the existence of a hyperpath
within H — P, from an edge € Ato an edgé € B of length two.
If B ¢ P, we use Fact 5.2 to obtain two subgrapkisc A andB’ < B such that
IA'| > (c/3)r?/I (for n sufficiently large)|B’| > (c/2)n?/l andV(A)NV(B)NV, = 0. Then
by Claim 5.1 applied witt := ¢/3, the setA® = Second*(A',H — P;) € P¥¥ - P, has

cardinality at least
- )7
c/3) |’

and takingB!® = First~ (B, H — P1) ¢ P'3 - Py, by Claim 5.1 applied witlt := ¢/2, we
have

(8)

13, CIP?
Bz 5T
Again, by (3) and (8), we conclude that3 n A3 = 0. Letzu € B3 n A2 and letxyzu and
zuv be hyperpaths, respectively, fraam= xy to uz and fromzu to b = vu. Note that by the
disjoint choice ofA’ andB’ we havey # v, and soxyzuv is a hyperpath withinH — P, from
ac Atob e B of length three.

The last case is wheB c P?. Here also we apply Fact 5.2 to obtain two subgraphs
A c AandB < B such thatA’| > (c/3)n?/l, |B| > (c/2)n?/I and V(A) N V(B) N
V, = 0. (Technically, we identify for a moment se¥§ andV; to treatA and B as two
bipartite graphs on the same vertex set.) By Claim 5.1 applighl ev:= c/3, the set
A3 = Second* (A", H — P,) € P*3 - P; consists of at least

-
Ve/3) |

edges, and takin@*® = Second (B, H - P;) ¢ P - P, by Claim 5.1 applied with
c:=c/2, we get

BY > (1_ 453 )nz

verz)
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Again, by (3), (8) and (7), we conclude thBt® N A3 # 0. Let zu € B n A and letxyzu
andzuvw be hyperpaths, respectively, fraan= xy to uzand fromzu to b = wv . Note that
by the disjoint choice o' and B’ we havey # v, and soxyzuww is a hyperpath within
H — P, fromae Atob e B of length four (see Figure 4).

B b

Vi g

A13 / 813
V3 2

a A

Ficure 4. An illustraction of the last case of the proof of Lemma 4.1.

O

It remains to prove Claim 5.1. We first show a simple but crufaat which will be
applied twice in the proof of Claim 5.1.
Fact 5.3. For any real ,6 € (0,1), integer | and e < +&/(103), let (H,P) be an
(a,6,1,1, €)-triad. Let, further, AC V;, B C Vi and Q C P besuchthat |P¥—Q| < 29Ven?/I,
|Al > an, |B| > bn, and every vertex of A hasin Q at least 8|B|/l neighborsin B and at
least yn/I neighbors in V. If min(y,bB) > el and abBy > 436 then |H N Tr(Q)| >
2(a — 6)on3/I3.

Proof. By the (1/1, €)-regularity of P, we have
3

TrQUPH > Y degaly. Bidenoty W 7 - ] > Jpabbr e

yeA
On the other hand, setti@y = P u PkuU (P"i - Q), by Corollary 8.4, we have

ITr(Q)l < 29Vs(L. 21)— + den® < 36\/_

and so, by our assumptions and Fact 8.6, we may estlmate
ITr(Q)l = [Tr(QU PY) - Tr(Q)| > ( 435 - 36\/_)— > 25 > §[Tr(P)|.

Therefore, by thed, ¢, 1)-regularity ofH,

4,0 = HOTHQ

C
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Proof of Claim 5.1. By symmetry, it is enough to prove only thiirst*(E, H — Py)| >
(c/6)n?/1 and similarly, thatSecond*(E, H — Py)| > (1 — 458/ \/E) n?/l. Let us fixa and
Cc,0<a,c<1,andlet
. ct
(9) o< mln(a, %) .
Further, withs given above, let for all
Vo o si c

) < .
V)= 755 <1 ~ 120
Let H, P, andl be as in Claim 5.1. Set= ¢(l) for convenience and fix X i < j < 3. Let
E be a set of at leasn?/| edges o' — P,. Define

(10)

E,={yze P*: xyzeH and xyec E and xz¢ P, for some x € V;}

and assign to each edgeof E; one (arbitrary) vertex = X, € V; which together wittyz
satisfies the conditions in the definition®f. Finally, let

E, = U {zwe PY:  w# x, andyzw e H and yw ¢ P;}.
yzeE1-Py
Note thatE,; — P, = First"(E,H — Py1), and that by avoidingv = X, E; — P; C
Second*(E, H — Py).

Observation 5.4. Trivially, if xy € E, yz e PX - E; andxz ¢ P, thenxyz ¢ . Similarly,
but more subtly, ifyz € E; — Py, 2w € PX — Ep, andyw ¢ Py, thenyzw ¢ H unlessw = X,
which implies that the edges &; — P,, PX — E, andP') — P, span at mosiE; — P
hyperedges ifH.

Using these observations and Fact 5.3 we will first show theigaificant fraction of
verticesy € V;j have large (close to/l) neighborhood irE;, and so subgrapk; — P is
large. Then we will argue that most vertices\@fhave large degree iB,, meaning that
the setE, must be very large (close t@/1), and so must b&, — P.

Let

1
Lo = {y S Vj . degpjk(y) < (l— — 6) n} .
By (19) with A = Vy, we haveLg| < en. Next, let us consider the set

cn
L= {yEVj —Lo: dege(y) > E}
Observe thaflL| > cn/3. Indeed, otherwise, using (18) and (10), we obtain a corttiadi
cn?

1 1 n
IE| < ||_|n(T + e) + ||_o|n(|— + e) b e + n;—l <%

We proceed with the following fact. SB4 = P — E; and
61

’ . 4 n
L :{ye L.degEl(y)>7%|—}.
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’ 04
Fact5.5.|L'| < 13%n
Proof. AssumelL’| > 1357/ v/©)n and apply Fact 5.3 with = L', B = V; (and sob = 1),

B =c/2,a= 1351/, andy = 757/ +/C to the 3-partite subgrap® = Qi U QK U QX,
where

Q! = E[V,L1],
Qk = EiL, W]
Qi = Pi_p,

As min(y,bB) > el andabBy > 436, it follows thatH N Tr(Q) # 0. However, by the
construction ofQ (see Observation 5.4) we has€n Tr(Q) = 0. This contradiction ends
the proof of Fact 5.5. m]

We setl” = L - L". By (9),

1

(11) L7 =L - = Sen-13%%n s tons en
=|L| - -cn—13—n> - en.
=3 N

Note that every vertey € L” has

53 n

dege, ) > | = en =77

and thus, by (9), (10) and (11),
IEd > L] [— —en-72 M

To complete the proof of the inequality (5) we count the nundfedges inE; — Py
2

|E1—P1|>—— 29«/’— —l

the latter by (9).

We continue with the proof of the inequality (6). LEt = PY — E,. Note that by the
(1/1, €)-regularity of P’k andP, Fact 8.3 and (11), the set

1 1
o= {z € Vi : degpi(z L) < (T - e) IL”| or degp«i(2) < (T - e) n}
has sizét | < 2en. Next, let us consider the set

by {zevk degg, (z,L”)>76 L”I}

Since each vertex df” has inE; degree at most Bé/ 4/c)?, a simple, double counting
argument shows thétt;| < (68/ vc)n. Further, let

by, =1{ze Vi :degp,(z L") > 1166—4|L”| .
\dl
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Clearly, |k, < (5%/\/E)n, since otherwiseP;| > 29v6n?/l — a contradiction. Set =
Vi \ (Lo ULy UL,) and define

L' = {ze’r_ deg—(z)>9\/_|}

Observe, by (9) and (10), that for ale £ (and thus for alkz € £”) we have

1 58 04 4
d%El—Pl(Z L”) > (I— —€— 7T - 11%] |LU| ||_”|

1
’ 04
Fact5.6. |L'| < 247:n.

Proof. The proof of this fact is very similar to the proof of Fact 5¥/e will argue that
the inequalityit’| > 2_4(6711/ \/©)n contradicts a conclusion of Fact 5.3. Define a 3-partite
subgraphQ = Q' u Q* U QX as follows:

Ql = PI-P,
Q% = Eft’,L"]-Py,
QY = Ejt’,Vi].

By the construction o and Observation 5.4 we hay® N Tr(Q)| < |E1| = O(n?). Apply
Fact 5.3 withA = £/, B = L” (and sob = c/4), 8 = 4/5, a = 2453/ \/c, andy = 957/ /C
to yield |H N Tr(Q)| = Q(n°). For large enough, this is a contradiction which ends the
proof of Fact 5.6. |

To complete the proof of the inequality (6), set
:L\L/ :Vk\(LoULlUI'_zUL’)

and note that for every vertexe L”, by (10), we have

1

degEz(z)z —en— 9\/‘I >(1- 10\/6)T

Note also that all the exceptional setsky, £1 and £, contain together less thamé( \vo)n
vertices and thereforie”| > (1 - 254/ \/o)n. Thus, by (9),

s 58\ n?
Eol > |L”||1-10— |- 1-3—|—
iz w1105 (1-a )

hence

'EZ—P1|>(1 3%)——29( (1 4%)”;
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6. THE FOURTH NEIGHBORHOOD

In this section we prove Lemma 4.2. Let us begin with someikgcir We call an edge
HH-good, or justgood if, say, [['w(€)| > gan/lz. As proved in [6] (see Fact 3.2 above),
for most edges oP we havel'y(€)| ~ an/I?, so most edges are good, but unfortunately,
some of these good edges may have small fourth, and even seeigmiorhood. Indeed,
it might happen that for a good edge= xy, whenevewxyz € H thenyz has a very small
neighborhood.

To find a large subset of good edgewith large fourth neighborhoodsour*(e, H) and
Four~(e, H), one could argue as follows. Suppose that the set of badt(good) edges
has sizepn?. Then, for each = 1,2, 3, at most+/pn vertices ofV; are incident to at least
ypn bad edges (let us call these vertices bad), and, provigeek 1/12, one could start at
a good edge with good endpoints and move four steps, avoimitiy bad edges and bad
vertices. The problem is that Fact 3.2 yields anlgf order /I — too large for our needs.

To get around this problem we will find a subhypergrgth < H with much less bad
edges. This sounds paradoxical, since removing hyperedgesnly decreasg«(€)|.
Note, however, that edgeswvith I'x(e) = 0 are not so bad — there is no way to get to them!
Let us call themH-dead. To distinguish betweeft{-dead and other bad edges, we will
alter our previous definition and call an edge P H-bad if

0< IT'y(e) < &%al—z'
So, for anyH’ C ‘H, every edge oP is eitherH’-good orH’-bad orH’-dead. Let us
denote these three subgraphs@y:, By andD4.. For technical reasons we distinguish
also a clas§, of atypical edges oP. Forall 1< i < j < 3, an edge € P'l belongs to the
subgraphF,, if either it is not typical or at least one of its ends is notitgbin P'l. Note,
that by Fact 8.3 and Corollary 8.fq| < 24en.

Claim 6.1. For all & € (0,1) and for all 6 < a/9? there exist two sequences r(l) and (1)
so that for all #, P and integer | if (H, P) isan («,4,1,r(l), e(1))-triad then there exists a
subhypergraph H’ € H such that |By| < 6n?/1%, |Dg| < 22Vén?/l and Fo € Dy

Proof of Lemma 4.2. With givena and

2
(0% a
0<dr=—=<

18 92
letr(l) andey(l) be such that Claim 6.1 holds. Set
. 0’4
el) = mln(el(l), m)
We will prove Lemma 4.2 with this choice of sequencé$ ande(l). Given integet, let
a pair (H, P) be an &, 6,1,r, €)-triad, wherer = r(lI) ande = ¢(l). Further, letH’ be as in
Claim 6.1, let
V* = {ve V: degg,, (V) > \/Slﬂz}
G, ={eeGy : enV" £ 0},
and letPg = By U Dy UG,
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Note thatF, C Py. It remains to prove two facts aboBg.
Fact 6.2. |Po| < 27Von?/I
Proof. To prove this fact, note tha¥*| < 2vén/I2, and soG;,| < 2n[V*| < 4V6n?/I2.
Therefore

n? n? n? n?
IPol < 1Byl + Dsel + Gy | < 67 + 22\/5|— + 4\/5|—2 < 27\/5T.

Fact 6.3. For every edge e € P — P, the inequality (4) holds.

Proof. By symmetry, we will only prove th#t: our*(e, H - PO)’ > (a“/ 2000) n?/l. Without

loss of generality we may assume tkeat xy € P12— Py, wherex € V,. Then, by our choice
of 8, the set of verticeg, such thakkyz € H andyz xz ¢ Py, has size at least
2 n n an

(12) 50 4\/5|2 > £
where the deletion takes care of ak V*, as well as alk with yz or xzin By (clearly,yz
andxz cannot be#-dead). Thusxyz € H —P,. For each such, the edge/zbelongs in turn
to at leastyn/(51?) tripletsyzw € H’ with w € V; \ {x}, yw € P*? — Py andzw € P2 — P,
So, altogether there are at leadh?/(259%) edges ofP*® — Py reached (withirtH — Py) in
two steps bye. Repeating this argument again we obtain at ledst/(62598) hyperpaths
xyzwuv € H — Py of length four originating aé = xy.

Let us estimate, by counting repetitions, how mar§edent edgesiv € P23 u € V,,
v € V3, are indeed reached layin four steps (and in many ways). Consider an auxiliary
bipartite graptC = (X, Y, E¢), whereX = E(P*3), Y = E(P?3), and{zw € X, uv € Y} € E. if
XyzZwuv is a hyperpath i — Py. Hence|Ec| > a*n*/(6298).

Every hyperpathxyzwuv must satisfy that

Z € Npza(u, Np(xy)) and w € Np(uv, Npz2(Y))
(see Figure 5).

Va - Npzs(u, NP\(;XY)) . V
P23 g S T L // g
v, — ——— P
V /// : \\\\\\\\\ // ]
1 X Np(uv, Np:2(y))

Ficure 5. A hyperpath of length four originating at= xy.

SinceFy C Py, thereforexy ¢ Fo, so we haveen < |Npu2(y)| < (1/1 + €)n anden <

INp(Xy)| < (1/1 + €)?n. By Fact 8.3, all but at mosin? edgesuv satisfy|Npzs(u, Np(Xy))| <
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(1/1 + €)°n and all but at most 87 edgesuv satisfy [Np(uv, Np2(Y))| < (1/1 + €)n. If
both these sets are greater tlarthen, by the (1l, €)-regularity of P*3, there are at most
(1/1 + €)’'n? edgeszw € P2 between them. Otherwise, the number of such edges at
mosten® < n?/I”, the last inequality by our assumption enThus, (¥I + €)'n? < 2n?/I”

is an upper bound on the degreedrof all but at most 4n? edgesuv whose degree can be
even equal t@?. Denote the set of such edgesYyand set

A" = erg(z\;lé degc(e).
Then

20n?
<Ag= ——.
=207 1917

*

Let

1|Ed|
Y, = {uve Y : degc(uwv) > Eﬁ}

andYz = Y\ (Y1 UY;). We have
|Ec|
2|P%3|

E
< den* + |YolAg + Q.

|Ecl| < IY4In® + [YalAg + | Y >

Therefore, by our choice ef
4.4

a’n a
Ya| > — 4en*| —
| 2|—(12508 6n)Ao> 2000

Another words, at least*n?/2000 edgesuv € P> can be reached fromby no less than
1 |E¢| a®r?
2iP% ~ 25007
hyperpaths of length four, or equivalently, via that manyesdgv € P2, It is easy to see
that among these edges there is matching of size at least

4n2

a’n
50007
i
Proof of Claim 6.1.
Givena, let
a
0 < @,
and lete; (1) be such that Fact 3.2 holds with abavands. Further, let for all,
r() =321
and
(13) (1) = min( 0 i)
€ = €el), 2413 .

We will prove Claim 6.1 with this choice @ r(I) ande(l). Given integet, let a pair (H, P)
be an &, 4,1, r, €)-triad, wherer = r(l) ande = €(1).
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We will define a process of deleting hyperedges which afteefinmany rounds will
arrive at a subhypergraphl’ of H satisfying the conclusions of Claim 6.1. Recall that for
an arbitrary hypergrap# and a graplt, we denote byH — G the subhypergraph off
obtained by removing all hyperedges containing at leasedige ofG.

The initial step of the procedure isolates all edgeB®fSetH; = H — Fo. Clearly, for
eache € Fo, we havd'y, (€) = 0 and sceis H;-dead.

In each next round we similarly “kill” edges &f which are bad in the current subhyper-
graph. For technical reasons these rounds take cyclicatly af the edges d?#*?, P23, and
P13, Foreachs=1,4,7,..., let

Fo={ee P?:eisHbad, Heq=Hs—Fs,
I:s+1 = {e € P23 - eis 7'{s+1'bada 7—{s+2 = 7{s+l - Fs+l»

Foo={ee PB: eisHs-bad, Hez=Hep— Fero.

In each operation of the typH.,1 = Hs — Fs we remove all hyperedges which contain
Hs-bad edges of P2, P? or P2, Thus, those edges becorkg,1-dead and therefore will
never become bad again. It follows that all detsare disjoint, and, in paticular, far> 1,
FsNnFqg=0.

Our immediate goal is to estimaje,_, |F. Let us define 3-partite subgrap@g of P,
s=1,2,..,r, as follows: IfFs c Pl then

Qs = FSU(Pi"—OFt)U[P“‘—OFt],

t=1 t=1

SetQ = (Qu, ... Qr). _ . .
Observe that for slightly enlarged subgras= FsuU Pk U Pk (whereFs c P'), we
have, by (13) and the fact th&t N Fq = 0,

_ 1 \* 3n
ITr(Qy)l > “:Sln(T - 6) = Z|—2|Fs|-

Trivially,
r r
JTr@) <[ JTr@.
s=1 s=1
but the reverse inclusion is also true. Indeed gre Tr(Q,) setty = min{t : {xy, Xz yz} N

Fi # 0}. Thenty < sandxyz € Tr(Qy,). Moreover, because the sétgare disjoint (and so
areTr(Qs)),

| U Tr(Q)l = U Tr(Qq)l = Z Tr(Qg)l > %Z Tr(Ql.
s=1 s=1 s=1 s=1

Hence,

r 1 n r
(14) UTrQaI= 5 2 Fd
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On the other hand, however, by the definition offdgbad edge, forals <,
2 n
IH N Tr(Qs)l < |Fs|§a’|_2,

forcing
8
dx(Q) < ga.
wheredy(Q) is defined in (1). Therefore, by the,(, r)-regularity of#,

(15) I Tr@ar < armr(py,
s=1

since otherwis@y(Q) > a — 6 > ga. This inequality together with (13), (14) and Fact 8.6
implies that

r r IZ n2
(16) 2 Fd =4l JTr(Qol- < 8o
s=1 s=1

Thus, more than a half of the sdis, s < r, have sizeF{ < 166n?/Ir, and so two consecu-
tive sets must be such, that is, there exists an irsdex — 2, such that
2 2
max(Fe.l, [Feal) < 166?—r - %5?—4.
Let 59 be the smallest indexwith this property.

Without loss of generality we may assume thgtc P2 SetH’ = H,,.1. Observe that
there is noH’-bad edge in the gragh'?, while in eachP?® andP*3 we have at mosysn?/I*
H’-bad edges. In fact, the setdf’-bad edges is the union &% ., (H’-bad edges ifP?3)
and of a subgraph df,,» (F,.2 may contairH,,.,-bad edges which were ngf, ,,-bad).

As for theH’-dead edges, these are exactly the edgegipFi plus all the edges € P
which were originally dead, that is, which h&g,(e) = 0. We have already estimated
| U2, Fil in (16), while, by (13),|Fql < 24en? < ¢n?/I. Finally, by Fact 3.2, there are no
more than 2/6n?/I originally dead edges. Therefore we have

S0 N2 2 2 2
Dyel < | _JFil +IFol + Dl < 86— + 6 + 21Vo- < 22Vo-
i=1

Hence, Claim 6.1 is proved. O

7. APPLICATIONS

In this section we give two immediate applications of Theo:9.

7.1. Long hyperpaths. The “Blow-up Lemma” of Kombs, Srkdzy and Szemeédi [4]
states that with a suitable choice of parameters eggrgrtite graphG with s-partition
V1U---UVsin which all bipartite subgraphs[V;, V;] are (@, €)-regular contains all bounded
degrees-partite graph$s’ with s-partitionV; U--- UV, where foralli = 1,...,s,V/ C V,,
Vil < (1= F(E)M.
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So far no analogous results exist for 3-uniform hypergraphs a first step toward a
hypergraph “Blow-up Lemma”, we derive from Corollary 3.5 a plenxconsequence which
establishes the existence of an almost hamiltonian hygenpa quasi-random 3-graph.

Proposition 7.1. For all real a € (0,1) and for all § < (60/4)*, where 5, isasin Theorem
3.5, there exist two sequences r(l) and e(I) such that for all H, P and integers | if a pair
(H,P) isan (a,6,1,r(), e(l))-triad with |V| = n sufficiently large, then there isin H a
hyperpath of length at least (1 — 6711)n.

Proof. Given a, lets < (50/4)* andr = r(l) i e(l) be ensured by Theorem 3.5. Set
€ = €(l) = 62€(l). Observe, that

(7 2000

Let a pair (H{,P) be an ¢, 6,1, 1, €)-triad. Suppose, that no hyperpathfhis longer than
(1-67)n. For a hyperpati®, let H,, be the subhypergraph @f, obtained by deleting from
H all, but the last four vertices of the pagh(if [V(Q)| < 4, then we seH(, = H).

Let us fix an arbitrary edge = {x,y} € P — Ry and letQ be the longest hyperpath ¥
originating ate (in the cyclic ordeV; — V>, — V3 — V;) and such that its other endpair
f € P—Ry(Hp). It follows trivially from the definition of the seRy(H) thatQ has at least
four vertices. Let us denote the last four verticeQdy X 3, X_», X_1, Xo.

SinceV(Q)| < (1 - &3)n, the subhypergrapf(s = H - V(Q) has at leasfzn vertices.
Moreover, sinceQ traverses the seté,, V,, Vs in the cyclic order, the sizes of the sets
V(HZ) NV, i = 1,2,3, differ from each other by at most one. Hence (see [8], Fact 4.2),
the pair (Hg, P[V(H)]) is an (@, 451, 1,1, 5/64) -triad. Note thatV(Hp)l = [V(Hp)l + 4,
451 < 6o ande/67 = (1). Therefore, by Theorem 3.5,

V(H 32 \% 32
Re(HE) < < 27t VIS ( )I/1 \/—LI (H, )I/J

On the other hand, by the definition Iaf(ﬂ(’?), we know that the edgé = {x_1, X} reaches
in four steps at least

ot INCHQIBP | = IV(HQI/3P )
2000 1 2TVAR T+ 2n 2 [R(Hg)l + 2n

other edges oP[V(H,,)] (the term 21 takes care of all edges with at least one endpoint in
X_ Or X_z; the first inequality follows from (17) for large). Therefore, there is at least
one edgef” = {xsx4} € P[V(H)] — Ro(H), reached byf in H(, by at least three (in fact,
many more) internally disjoint hyperpaths of length foutlod formx_; XoX; XoX3X4. Thus,

for at least one of therfxy, Xo, X3, X4} N {X_3, X_5} = 0, and we may exten@ by adding the
verticesxy, Xz, X3, X4 — a contradiction with the maximality @ (see Figure 6). O
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Q
oo e %
%\//\ \/\/ f
X3 X1 X.1 ).(3
#, H;

Ficure 6. A hyperpathQ originating ate.

Similarly, one can prove that for most pairs of edgeP tiiere is a path of length at least
a- ﬁ)n between them.

7.2. Approximate decomposition into small diameter subhypergaphs. Itis easy to see
that for everyn-vertex graph and for every > 0 one can partitiofe(G) = Eq U - - - U Ey,
wherek < 1/e, so that|Eq| < en? and for each 1< i < k the diameter of the subgraph
Gi = G[Ej] is at most 3¢ (see [7]). Thus, in a sense, every graph can be decomposged int
a bounded number of “small worlds” provided a small set of edggn be ignored. Here
both bounds, on the diameter and on the number of subgGpiispend linearly on [e.
Using the Szemédi Regularity Lemma [9] and Corollary 8.5(b), one may put thp of

four on the diameter, at the cost of lettikgthe number of subgraphs in the patrtition, to be
an enormous constant.

Proposition 7.2. [7] For all e > 0O there exist integers K and N such that for all n-vertex
graphs G, wheren > N, thereisa partition E(G) = EqU E; U - - - U Ey, wherek < K, and
|Eo| < en?, and for each 1 < i < k, the diameter of the subgraph G; = G[E;] is at most four.

An analogous result for 3-uniform hypergraphs follows froor Theorem 2.9 and the
Hypergraph Regularity Lemma in [1].

Theorem 7.3.For all ¢ > Othereexist integersK and N such that for all n-vertex 3-uniform
hypergraphs H, wheren > N, there is a partition H = Hy U --- U H, wherek < K and
|Ho| < én® and for each 1 < i < k, every two pairs of vertices with positive degree in #;
are connected by a hyperpath in H; of length at most twelve.

Sketch of proof: Givené > 0, setty = 8/&, a = £/8 and letsy > 0 and sequenceagl), ex(1)

be as in Theorem 2.9 with abowe Further, letN; be the smallest natural number, for
which Theorem 2.9 holds. Set )
_ i é)
0= mln(éo,(16

and apply the Hypergraph Regularity Lemma of [1] witle; = 6%, &x(1) andr(l) to get
To, Lo | No. Set

K= (T3°)Lg and N = max(No, % NlTo)
and letH be an arbitrary 3-uniform hypergraph with> N vertices and#| > £n? triplets.
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By the Hypergraph Regularity Lemm@{ admits an auxilary vertex partitiod(H) =
VoU Vi U--- UV, Wherety <t < T, [Vo| < tand|Vy| = [V, = --- = |V, and for each pair
I, ], 1 <1< ]<t, partitions of the complete bipartite grapkéVv;, V;) = U'a:() Py, where
1 < | < Lo, such that most triplets off belong to ¢, 6,1, r(l), ex(1))-triads (+’, P), where
H' =HnTr(P)andP = (P¥, P, P)), 1<i<j<h<tl<abc<l

Let (Hz,Pg), s=1,....k < (3)1°* < K, be all such triads. For each= 1,....k, let (Ps)o
be the subgraph d?s guaranteed by Theorem 2.9, and $&t= H_ — (Ps)o. Then, each
pair of edges oPs — (Ps)o, that is each pair of edges Bt with positive degree i is
connected irHs by a hyperpath of length at most twelve.

Letus setHy = H \ U';lﬂs. To complete the proof of Theorem 7.3, it remains to show
that|Ho| < £n®. We omit the details of tedious but straightforward caltioles. O

8. APPENDIX — €-REGULAR PAIRS

Let G = (V,E) be a graph, wher¥ andE are the vertex-set and the edge-seGof
Throughout the paper we often identi@ with its set of edges and therefore wri@|
instead ofE|. WhenU, W are subsets df, we define

es(U,W) = {{x,y} e E: xe U,y e W}.
For nonempty and disjoird] andW,
es(U, W)

ds(U,W) =
oUW = "uiwi
is thedensity of the graphG betweernJ andW, or simply, the density of the paitJ(W).

Definition 8.1. Givene > 0, a bipartite grapl® with bipartition (/1, V), where|V;| = n
and|V,| = m, is callede-regular if for every pair of subsett) C V; andW C V,, U] >
en, |W| > em, the inequalities

d-—e<ds(UW)<d+e

hold for some real numbeat > 0. We may then also say th&, or the pair V1, V), is
(d, €)-regular.

Let a graphG = (V, E) be given. We writeNg(Vv) for the set of neighbors of € V in
the graphG. The size ofNg(V) is [Ng(V)| = degs(v), the degree of v. We setNg(xy) =
Ns(X) N Ns(y) as the set of common neighbors» € V in G. For a setJ c V, we write
Ng(v, U) for the set of neighbors afin U andNg(xy, U) for the set of common neighbors
of xandyin U. The size ofNg(v, U) is [Ng(v, U)| = degs(v, U).

Definition 8.2. Let G = (V1 U V,, E) be a (, €)-regular bipartite graph, whef€,| = |V,| =
n. We say, that a vertexe V;, i = 1,2, istypical in G, if the following inequalities hold
n(d — €) < degs(X) < (d + e)n.

Further, letG = G'> U G* U G'® be a 3-partite graph with partition/{, V2, Vs), where
V1| = V2| = [V3| = n, and each grap8' is (d, )-regular, 1< i < j < 3. We call a pair of
vertices &, y) € Vi x V; typical if it satisfies inequalities

n(d — €)? < INg(xy)| < n(d + €)°.
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The next fact is well-known and follows immediately from Dution 8.1 (see e.g. [6]).

Fact 8.3. For all real e > 0and d > 0, and for all integersn and m, the following holds. Let
G be a (d, e)-regular bipartite graph with a bipartition (Vq, V), where [V3| = n, [V, = m.
Further, let A C V,, |Al > em. Then all but at most en vertices x € V; satisfy

(18) degs(x, A) < (d + €)IAl,
and all but at most en vertices x € V; satisfy
(19) degs(x, A) > (d — €)|Al.

In particular, if V1] = [V,] = n, then for eachi € {1, 2}, all but at most 2en vertices x € V,
aretypical in G.

Corollary 8.4. For all e > 0 and d > 2¢ and for all integers n, the following holds. Let
G = G U G U G* be a 3-partite graph with partition (V1, Vs, V3), where [Vy| = |V,| =
IV3| = nand each graph G' is(d, )-regular, 1 < i < j < 3. Then all but at most 4en? pairs
of vertices (X, y) € Vi x V; aretypical.

Another simple consequence of Fact 8.3 deals with the distaimca quasi-random bi-
partite graph (see [6] and [7]).
Corollary 8.5. Let B be a (d, e)-regular bipartite graph with bipartition (V1, V), where
Vil = [Va| = n.
(a) If d > 2¢ then all pairs of vertices of B of degree at least en can be connected by
paths of length at most four.

(b) If d > 4e then by removing from B at most 2en vertices (those of degree less than
3en < (d — €)n), we obtain a subgraph with diameter four.

Finally, we state another well-known result which tightstienates the size ofr(G),
the set of triangles in a quasi-random 3-partite gragsee, e.g., [8]).

Fact 8.6. Let G = G*? U G*® U G be a 3-partite graph, where all three hipartite graphs
G' are(d,e)-regular,1 <i < j < 3.1fd > 2¢ then
[Tr(G)I
IV1][V2| V3]
In particular, if € < 0.1d° then [Tr(G)| < 2d3|V4||V2||V3|.

(d® - 10¢) < < (d® + 10e).
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