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Abstract— One of the remaining challenges in image registra- the gray value patterns are typically not completely aalbjtr
tion arises for multi-modal images taken from different imaging  or random. This observation motivated the usage of mutual
devices and/or modalities. Starting in _1995, mutual mformatlon_ information (MI) as a distance measure between two images
has shown to be a very successful distance measure for multi- S . .
modal image registration, therefore, it is considered to be cf. [4], [20]. Starting ”_1 1995, mutual |nf0rmat|0n has Sh_DW
the state-of-the-art approach to multi-modal image registration. 10 be a successful distance measure for multi-modal image
However, mutual information has also a number of well-known registration. Therefore, it is considered to be the stétifre
drawbacks. Its main disadvantage is that it is known to be highly art approach to multi-modal image registration.

non-convex and has typically many local minima. . However, mutual information has a number of well-known
This observation motivate us to seek a different image simi-

larity measure which is better suited for optimization but as well _draWbaCkS; cf. e.g._, [17], [16], [19]. Firstly, mutual '_mmat'on
capable to handle multi-modal images. In this work we investigate IS known to be highly non-convex and has typically many
an alternative distance measure which is based on normalized local minima; see for example the discussion in [%6,6]
gradients. As we show, the alternative approach is deterministic, and Section Ill. Therefore, the non-convexity and hence-non
much simpler, easier to interpret, fast and straightforward 10 jinearity of the registration problem is enhanced by thegasa
implement, faster to compute, and also much more suitable to . . . . - .
optimizati of mutual information. Secondly, as it has its foundation in
ptlmlzatlon. . . . . .
information theory, mutual information has a naturallyctéte
nature. However, fast and efficient registration schembs re

I. INTRODUCTION on powerful optimization techniques and thus on smooth

Image registration is one of today's challenging medicgimction_s. Thirdly, sincg mgtgal inforr_nation is defined via
image processing problems. The objective is to find a gil® typically unaccessible joint density of the gray value
ometrical transformation that aligns points in one view dfiStribution, approximations of the density are requirEidese
an object with corresponding points in another view of th@PProximations typically involve some very sensitive stheo
same object or a similar one. Particularly in medical imagld Parameters (e.g. a binning size or a Parzen window
ing, there are many instances that demand for registrati(Width)' Fourthly, mutual |nf0rm§1t|on completely decowptee'
Typical examples include the treatment verification of prélf@y value from the location information. Therefore judgin
and post-intervention images, study of temporal series B Output of the registration process is difficult. Finally
images, and the monitoring of time evolution of an agerlaecause of the_ previous dl_fflcultles, there_ is not a unique or
injection subject to a patient-motion. Another importargs €VEN common implementation for mutual information and its
is the need for combining information from multiple imagegerlvatlves: o .
acquired using different modalities, sometimes calledofus Thesg d|ff|cult.|es had, stem a \{ast amgunt of research Into
Typical examples include the fusion of computer tomograpﬁp“t“al information registration, introducing many nuisan:
(CT) and magnetic resonance (MRI) images or of CT arfprameters to help and bypass a_t Ieast some of the diffigultie
positron emission tomography. Image registration is imdle S€€: €9, [17]. As aresult, a practical implementation ofuaiu
whenever images acquired from different subjects, atmiffe Information is highly non-trivial.
times, or from different scanners, need to be combined or ) ) . )
compared for analysis or visualization. In the past two desa _ 1heS€ observations motivate us to seek a different image
computerized image registration has played an increasingiMilarity measure which is capable to handle multi-modal
important role in medical imaging (see, e.g., [2], [14]”[7]!mag§s but better sufned fpr optimization. In thls paper we
[23], [15] and references therein). mvesngate an aIFernatNe distance measure wh|c_h is based

One of the remaining challenges in image registration srisg®'malized gradients. As we show, the alternative approach
for multi-modal images taken from different imaging desice!S deterministic, much simpler, easier to interpret, fast a
and/or modalities; see Figure 1 for an example. In marjjfightforward to implement, faster to compute, and also
applications, the relation between the gray values of mulfuch more swtable to o_ptlr_mzanon. ) o
modal images is complex and a functional dependency is genjl'he idea of using derivatives to characterize similarity be

erally missing. However, for the images under considematiotween images is based on the observation that image steuctur
can be defined by intensity changes. The idea is not new. In
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one previously suggested for joint inversion was given in [6 Given a distance measuf2, the registration problem is to
find a minimizer~ of
The goal of this work is to provide a new approach to
multi-modal image registration using properties of diffietial f(v) = D(R( ), T, - ))). (3
geometry to characterize similarity between two image® Th
paper is organized as follows: In Section Il we shortly lay
the mathematical foundation of image registration. Sectib II. AN ILLUSTRATIVE EXAMPLE

presents an illustrative example showing some of the draw-1, emphasize the difficulty explained above, we present an
backs of mutual information. In Section IV we discuss thgstrative example. Figure 1 shows a T1 and a T2 weighted
proposed alternative image distance measure. In Sectionpgnetic resonance image (MRI) of a brain. Since the image
we discuss its numerical implementation and lie out a simpl§ygalities are different, a direct comparison of gray valise

algorit.hm to §olve the multi-modal regiStraﬂon‘ problent: F ot advisable and we hence study a mutual information based
nally, in Section VI we demonstrate the effectiveness of OWhproach.

method. In particular, we show that our approach is much moreFigure 2a) displays our approximation to the joint density

effective than mutual information. We also demonstrate tha, -1 is based on a kernel estimator, where the kernel is a
the alternative approach leads to a simple and stable measiymnactly supported smooth function; see [13] for details.
for image similarity. Note that the joint density is completely unrelated to thatisp
image content. We now slide the template along the horitonta
axis. In the language of equation (2), we 4ix.._ s and obtain
Given a reference image and a template imagg, the goal the transformed image by changing. Figure 2b) shows the
of image registration is to find aréasonable” transformation myutual information versus the shift ranging from -2 to 2 jxe
such that the distance” between the reference image and ghjs figure clearly demonstrates that mutual informatiom is
deformed template image is small. Withe N we denote the highly non-convex function with respect to the shift partene
spatial dimension of the given imagés 7" : IR" — IR which In particular, the curve suggests that there are many pro-
are assumed to be sufficiently smooth. Thilgz) gives a poyunced local minima which are closed in value to the global
gray value at a spatial position. Moreover, we assume thatminima. Therefore, any gradient based method can run into
the contents of the images are contained in a bounded dom@ifcyities when used to solve this problem. Even statistic
Q, where without loss of generality we choSe:= (0,1)?.  techniques such as simulated annealing or genetic alggsith
For pointsz ¢ €2, we thus assumé and T to be constant, can run into problems when the size of a local minima is
i.e., with two constants,, c;, R(z) = ¢, andT(x) = c; for  yougnly equivalent to the size of the global minima.
x ¢ Q. ) . . Figure 2c) displays a typical visualization of our alteivet
~ Note that our overall goal is a fast and efficient optimizagigiance hetweer andT (discussed in the next section). Note
tion of a distance function. We are therefore heading @it for the alternative distance measure, image differdsc
a continuously differentiable objective function and thas related to spatial positions. Figure 2d) shows the altermat

continuous image model; for a detailed discussion, see [1g]siance measure versus the shift parameter. For thisplarti
Since the images are typically noisy but derivatives areleée o, 5 mnje it is obvious that the alternative measure is dapab

we use a smoothing B-spline to approximate the image Whegg iti-modal registration and it is much better suited fo
the smoothing parameter is chosen using the General'%ﬁﬂimization.
Crpss Valid_ation method (GC.V). [_10]' For _data interpolation (For the computation of mutual information we used the
using B-splines see [21]. T(.) minimize notational overhea, cos* kernel function witho = 32, a midpoint quadrature rule
;ontlnuous_ srlnooth approximations are also denoted aynd for the integral approximations with a equidistant diseet
' respectn{e Y . . . tion of the grayvalue rangg-30,285] and 64 discretization
As described in [15], there are baS|caII_y two registratio inie and a stabilizing toleranael = 10~2; see [13] for
approaches. One is the so-called parametric and the oteer Btails. For the normalized gradient field we used a edge
the so-called non-parametric registration techniquece&Sipur paramete — 100; see bolow.)
interest is the discussion of distance measures, we focus on ' '
parametric image registration which is easier to explain.
In parametric registration, the deformatian : RY — IV. A SIMPLE AND ROBUST ALTERNATIVE

IRY can be parameterized in terms of some basis functions_l_ . . . .
and parameters = (11, - ., o) he alternative multi-modal distance measure is based on
PLoeePm Py ma the following simple though general interpretation of dami

(v, @) = ey (); @
k=1

II. THE MATHEMATICAL SETTING

two image are considered to be similar, if intensity

see [15] for details. A typical example is the so-called dine changes occur at the same locations.

registration, where for some appropriate chosen basigiisc An image intensity change can be detected via the image

andd = 2, gradient. However, since the magnitudes of changes might
Y2\ (T s be related to the imaging devices, and are not related to

P(y, ) = (73 74) (@) + (76)- ) image differences, it is not advisatory to directly base a



distance measure on gradients. We therefore considerHest loes not allow a true distinction between what may be zero
normalized gradient field and what is not.
With this in mind and similarly to [1], we propose the

Vi(x) ;
if VI(z)#0, following automatic choice:

VI()[
n(l,x):=

n(l,z):=0, otherwise. £ = %/ \VI(z)| dz, 9)
Q

d
As usual, forz € IR™ we set wheren is the estimated noise level in the image ands the

| = 2?21 x? and VI :— (811,...,6dI)T. (5) volume of the domairf2.

For two related pointge in R and ¢(x) in T or, equiv- The measures (6) and (7) are based on local quantities and
alently, z in T o ¢, we look at the vectorm(R,x) and are easy to compute. Another advantage of these measures is
n(T o, x). These two vectors form an angléx). Since the that they are directly related to the resolution of the insage
gradient fields are normalized, the inner product (dot-petd This property enables a straightforward multi-resolutagm
of the vectors is related to the cosine of this angle, whik tiproach. In addition, we can also provide plots of the distanc
norm of the outer product (cross-product) is related to the.s fields d° and d¢, which enables a further analysis of image
In order to align the two images, we can either minimize thsimilarity; see, e.g., Figure 2c). Note that in particular= 0
square of the sine or, equivalently, maximize the squaréef teverywhere if the images match perfectly. Therefore, if in
cosine. some areas the functiaff takes large values, we know that

This observation motivate the following distance measurdlese areas did not register well.

d°(T,R) = |n(R,z) xn(T,z)|?
1 V. NUMERICAL IMPLEMENTATION
DYT,R) = —/ d°(T,R) dz, (6) _ .
2 Jo A. Evaluating image distance
dT,R) = (n(R,z),n(T,xz))*, While the mathematical framework is clear there are a few
1 obstacles when trying to numerically implement it. Firstly
d _ 1 d
PAT.R) = / (T, R) dw, () d° andd? are based on image gradients, and therefore, their

gerivatives involve second order image derivatives. Thisloe
a problem since many medical images are noisy. The problems
of working with noisy images and calculating their gradgent
- . . ) . are overcome by using smoothing B-splines approximations
'The d.efm't'.on of the normahzgd gracﬁent field (4) is r,]OBf the images. To smooth the image we use Tikhonov regular-
dlffer_e_nnable in areas where the Image Is constant andWigh, otion where the regularization parameter is computedgusi
sensitive to small vaIL_1e§ of the gradient field. Supposettt@t o Generalized Cross Validation (GCV) criteria; cf. e2fL][
Images have some distinct edges that need to be matched anIdne GCV criteria also help to assess the noise level in the

some ther edges, sme}II in theiri magnitude which may reS.HBta and therefore for the choice of the edge parant:ier
from noise. The normalized gradient map does not dlStIﬂI’gUI@). For clean images (for images with very low noise), we

between the first and the second class. As a resu_lt, ther i8¢ the edge parameter to, where is the discretization
no preference to match wanted structures and to ignore

noisy part of the image. To avoid this problem we define the
following regularized normalized gradient fields

Note that from an optimization point of view, the distance
D¢ or D? are equivalent.

Given the spline smoothed image and the edge parameter
& we are able to approximate the gradient of the image as

Vi(z)
I,xz):= = 8 ~ (" h
ng(l, x) I)e 8 VI~ (00,...,00),
IVI(x)|e := \/VI(:B)TVI(w) + &2, whered}! is a difference operator in thie-th direction. Here,

similar to other numerical calculations of the absoluteugal
In regions where is much larger than the gradients the mapsf the gradient [18] we use the forward differences for the
ng (I, ) are almost zero and therefore do not have a signifipproximation. The regularized absolute value of the gratdi
cant effect of the measurg®® or D?, respectively. However, is defined in a straightforward manor:
in regions wheref is much smaller than the gradients, the
regularized maps are close to the non-regularized ones and VI~ (/> (O0T)2 + £2.
these regions make a substantial difference in the calonolat
of the measureg® andd?. Indeed, the choice of the parameter
£ in (8) answers the question, “what can be interpreted ada
jump”? Thus, it is the minimal size of a local changefin  To find the image deformation we need to minimigey)
which is still interpreted as a jump. Such an interpretat®on (cf. (3)) for D¢ or D?. Since this function is twice differ-
desirable, particularly if true edges are to be respectatl, entiable with respect tey, we are able to use a Newton type
it must be avoided in a band, where the resolution limitatiomethod. The algorithm to compute the NGF and its derivatives

Numerical Optimization



is summarized in the pseudo-code of Algorithm 1. Note thAfgorithm 2 Multilevel image registrationu — M.I R
the distance measure has a least-squares from, for level = coarse to finelo

if level=coarsehen
_ 1 ~_ L V2. _1gT .
D=—5{dd), ~—5; ) ;dx;)" = —5.d d. choosey(®) on the coarsest grid;

Therefore a natural optimization algorithm is the Gauss- €lse
Newton method [5]. To use the Gauss-Newton approach, we  Prolongate ~* to the finer grid: v
need to find the Jacobian af with respect toT. Explicit prolongate(y*);
formulae are given in Algorithm 1. end if
solve the registration problem and obtajti on this grid.
Algorithm 1 Calculation of Normalized gradient fields and end for
their derivatives:
[D,d,dr] — NGF(R,T,€);
let R, T be of sizem; X -+ X mg, n — mq - -mq we are able to test our algorithm under a perfectly controlle

Compute (using the pointwise Operatio\jjs_/, ()2 and \/—) enVironment. _Running our code we obtain the fOIIOWing ressul
summarized in Table |I. We see that overall we are able to

h ,
IV*Rlle  — /D _(0FR)?+ €2, TABLE |
HV}LTH - Z(ahT)2 + 52 EXPERIMENTS WITH IMAGE 1. CHOSEN VS RECOVEREDy
£ i )
iag(1./||V" . Y ~ Y o/ Y Y
d «— diag( /||VhR||g) X i — s L2 s /s L Yo
diag(1./||V"T ( diag(8"R) (8" T ) Recovered| 1.95 | 0.01 | 0.05 | 1.01 | 0.03 | 0.01
g( /” ||5) Z g( i ) ( ) ) ) True T > o T 5 o
D _QLde, Recovered| 1.01 | 2.03 | 0.02 | 1.05 | 0.01 | 0.04
" True 1 0 2 1 0 0
if derivatives are needed compute Recovered| 1.01 | 0.01 | 2.02 | 1.02 | 0.02 | 0.00
True 1 0 0 2 0 0
h : h : h h Recovered| 1.02 | 0.01 | 0.01 | 1.99 | 0.02 | 0.01
V" Tllelr —  diag(1./V"Tle) (3 diag(@!T)0!) covered 1.02 | 0.01 1 001} 1.99 | 0.02 | O
. h . h R d| 1.01 | 0.04 | 0.04 | 1.02 | 4.89 | 0.02
dr — ding(1./|V"Rlle) - ding(1./|[V"T|e) - Grovered| 101 004 | 0041 102 499 | 0
(Z diag(ahR)ah) _ Recovered| 1.01 | 0.03 | 0.02 | 1.02 | 0.01 | 4.78
' ' True 05 | 05| 06 | 15 3 3
diag(d) . diag(l./HVhTHg) . [thTHs]T Recovered| 0.48 | 0.49 | 0.62 | 1.52 | 3.02 | 3.10

accurately recover the shift parameters to the level oftlems
C. Grid Continuation one pixel. ) i

) i ) In the second example we use the images from Viola’s Ph.D
_ Like many other nonlinear problems, substantial computgyegis [20]. In the original work a few thousands of iteragio
tional advantage can be gained by using a multilevel Cog ochastic optimization algorithm where needed to aehie
tlnuatloh strategy.. The. idea of multilevel contlnuatlonnlst registration using MI as a distance measure. We have used a
new to image registration but _most of the Work_ on this tOPIfore efficient implementation of mutual information (se8])1
assumes the sum of Square differences as a d|stanc_e_ Meagy&ptain the same goal. We then compare the results of both
In general, a grid continuation method solves the optimoat qgistered images. The difference between the Ml registrat
problem on a sequence of grids starting from the coar§gy he NGF registration was less thaas of a pixel, thus
grid. The solution on a finer grid is obtained by interpolgtin e ¢onclude that the methods give virtually identical miaim
the coarse grid solution an_d usin_g the interpolated result Bowever, to obtain the minima using MI we needed to use a
a starting guess for the_flne grid solution. (_Zare must b&qom search technique to probe the space. This technique
taken such t.hat the so.lutlon_on the coarse grid repres_ent§e&uireS the estimation of many joint density distributamd
coarser version of the fine grid. We summarize our mU|t'|eVmerefore it is rather slow. When probing the space we have
continuation in Algorithm 2. found many local minima. Furthermore, the local minima and

the global minima tend to have roughly the same magnitude.
VI. NUMERICAL EXPERIMENTS The global minima has the value of abou®.250 x 1072
We have done extensive experiments with our method howhile the guessy = 0 has the value of about9.115 x 102,

ever, to demonstrate the effectiveness of our algorithm see urhus the "landscape” of the MI function for this example is
two different examples. In the first example we use the imagginilar to the one plotted in Figure 2.
in Figure 1. We take the T1 image and generate transformedn comparison, our NGF algorithm used 15 iteration on the
versions of the image by using the affine linear transforomati coarse grid which i€2 x 24 and 5 iterations on each finer grid.
(2). We then use the transformed images to receyeand The registration was achieved in a matter of seconds and no
the original image. The advantage of this experiment is thgpecial space probing was needed to obtain the minima. The
it is controlled and we know the exact answer and therefovalue of the NGF function aty = 0 was —4.63 x 10! while



at the minima its value was-2.16 x 102 thus our minima is  [8] L.A. Gallardo and M.A. Meju,Characterization of heterogeneous near-

much deeper compared with the MI minima. The results of surface materials by joint 2d inversion of dc resistivity and seismic data,
. . . Geophys. Res. LetB0 (2003), no. 13, 1658-1664.

our experiments are also presented in Figure 3. 9

; o ) [9] , Joint two-dimensional dc resistivity and seismic traveltime in-
Another advantage of our method is the ability to quickly ~ version with cross-gradients constraints, J. Geophys. Red.09B (2004),
evaluate the registration result by looking at the absalatee 3311-3315.

f th d Thi duct h th [10] G. Golub, M. Heath, and G. Wahb&eneralized cross-validation as a
of the cross-produciny x ng|. This product has the same™ o 1oy choosing a good ridge parameter, Technometricg1 (1979),

dimension as the images and therefore can be viewed in the 215-223.
same scale. If the match is prefect then the cross prodlidf E. Haber and D. Oldenburgloint inversion a structural approach,

hould ish d th i deviation f . . Inverse Problem43 (1997), 63—-67.
should vanish an erelore any deviation from zero Immjes[12] Eldad Haber and Jan Modersitzi,multilevel method for image regis-

imperfect fit. Such deviations are expected to be presentacdue  tration, Technical Report TR-2004-005-A, Department of Mathematics
two different imaging processes, the noise in the images and and Computer Science, Emory University, Atlanta GA 30322, 2694,

. .. . . Submitted to SIAM J. of Scientific Computing.
possible additional nonlinear features. Figure 3e) shdves t[13] Eldad Haber, Jan Modersitzki, and Stefan HeldmaGamputational

cross product for the image matched above. It is evident that methods for mutual information based registration, Technical Report
the matching is very good besides a small number of locations TR-2004-015-A, Department of Mathematics and Computer Scjence
. . . Emory University, Atlanta GA 30322, Jun 2004, Submitted toehse
where we believe the image to be noisy. Problems.
In comparison, the final result in Ml registration is a joint14] Hava Lester and Simon R. Arridg, survey of hierarchical non-linear
density map. This map does not have the same dimensions of medical image registration, Pattern Recognitio82 (1999), 129-149.

. . . - - . [15] J. ModersitzkiNumerical methods for image registration, Oxford, 2004.
the image but rather it has the dimensions of the discréaizat 16] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergevénter polation artefacts

of the gray value spaces. It does not provide direct infoionat in mutual information based image registration, Proceedings of the SPIE
on spatial locations. Therefore, it is hard to evaluate the 2004, Medical Imaging, 1999 (K.M. Hanson, ed.), vol. 3661JES5P

success of the registration based on this map. The log of tﬂﬁ 1999, ppl'vlifu_a??i.nformation—based registration of medical images a

joint density map for the same example is shown in Figure 3f).  survey, IEEE Transactions on Medical Imagir&?, 1999, 986—1004.

It is evident that it is not intuitive and hard to interpret. ~ [18] L. Rudin, S. Osherand E. Faterhonlinear total variation based noise
removal algorithms, Proceedings of the eleventh annual international
conference of the Center for Nonlinear Studies on Experiaientth-

VIl. CONCLUSION ematics : computational issues in nonlinear science, 1992;268.

Mutual information is to be considered as state-of thél® M. Unser and P. Tévenaz,Sochastic sampling for computing the

di f It dal i . idme T mutual information of two images, Proceedings of the Fifth International
art distance measure for multi-modal image registrati Workshop on Sampling Theory and Applications (SampTA03)dlSitr

measure has proven to be successful although it has a number Austria), May 26-30, 2003, pp. 102-109.

of well-known disadvantageous: it is highly non-convexthwi [20] Paul A. Viola, Alignment by maximization of mutual information, Ph.D.
thesis, Massachusetts Institute of Technology, 1995.

typically many pronounced local minima, it is naturally diSj21) G wanhba Spline models for observational data, SIAM, Philadelphia,
crete, based on an unaccessible density, requires sorwalcrit ~ 1990. o '
smoothing parameters, and a common implementation dd&4 J. Zhang and F.D. Morgaroint seismic and electrical tomography,

. 9p P Proceedings of the EEGS Symposium on Applications of Geaghys
not exist. . . to Engineering and Environmental Problems, 1996, pp. 391-396
We therefore presented an alternative distance measj2® Barbara Zitow and Jan Flussetmage registration methods: a survey,

which is capable to handle multi-modal images but better Image and Vision Computing1 (2003), no. 11, 977-1000.
suited for optimization. The new measure is based on nor-

malized gradients and therefore naturally links spatial in

formation to image distance. We show that the alternative

approach is deterministic, much simpler, easier to ingrpr

fast and straightforward to implement, faster to compute,

and also much more suitable to numerical optimization. The

performance of the new approach is demonstrated by a few

numerical examples.
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@ (b)
Fig. 1. Original BrainWeb [3] T1EFT) and T2 RIGHT) images
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Fig. 2. Distance measures versus shifts; (a) the joint deagiproximation forkR and T, (b) mutual information versus shift, (c) the normalized gratie
field for R andT', (d) normalized gradient field versus shift.



(e) ®

Fig. 3. Experiments with Viola’s example; (a) templéate (b) referenceR, (c) registeredl” , (d) overlay ofT" and R (202 pixels checkerboard presentation),
(e) cross produchr x ng, (f) joint density at the minimum.



