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Intensity gradient based registration and fusion of
multi-modal images

Eldad Haber Jan Modersitzki

Abstract— One of the remaining challenges in image registra-
tion arises for multi-modal images taken from different imaging
devices and/or modalities. Starting in 1995, mutual information
has shown to be a very successful distance measure for multi-
modal image registration, therefore, it is considered to be
the state-of-the-art approach to multi-modal image registration.
However, mutual information has also a number of well-known
drawbacks. Its main disadvantage is that it is known to be highly
non-convex and has typically many local minima.

This observation motivate us to seek a different image simi-
larity measure which is better suited for optimization but as well
capable to handle multi-modal images. In this work we investigate
an alternative distance measure which is based on normalized
gradients. As we show, the alternative approach is deterministic,
much simpler, easier to interpret, fast and straightforward to
implement, faster to compute, and also much more suitable to
optimization.

I. I NTRODUCTION

Image registration is one of today’s challenging medical
image processing problems. The objective is to find a ge-
ometrical transformation that aligns points in one view of
an object with corresponding points in another view of the
same object or a similar one. Particularly in medical imag-
ing, there are many instances that demand for registration.
Typical examples include the treatment verification of pre-
and post-intervention images, study of temporal series of
images, and the monitoring of time evolution of an agent
injection subject to a patient-motion. Another important area
is the need for combining information from multiple images
acquired using different modalities, sometimes called fusion.
Typical examples include the fusion of computer tomography
(CT) and magnetic resonance (MRI) images or of CT and
positron emission tomography. Image registration is inevitable
whenever images acquired from different subjects, at different
times, or from different scanners, need to be combined or
compared for analysis or visualization. In the past two decades
computerized image registration has played an increasingly
important role in medical imaging (see, e.g., [2], [14], [7],
[23], [15] and references therein).

One of the remaining challenges in image registration arises
for multi-modal images taken from different imaging devices
and/or modalities; see Figure 1 for an example. In many
applications, the relation between the gray values of multi-
modal images is complex and a functional dependency is gen-
erally missing. However, for the images under consideration,
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the gray value patterns are typically not completely arbitrary
or random. This observation motivated the usage of mutual
information (MI) as a distance measure between two images
cf. [4], [20]. Starting in 1995, mutual information has shown
to be a successful distance measure for multi-modal image
registration. Therefore, it is considered to be the state-of-the-
art approach to multi-modal image registration.

However, mutual information has a number of well-known
drawbacks; cf. e.g., [17], [16], [19]. Firstly, mutual information
is known to be highly non-convex and has typically many
local minima; see for example the discussion in [15,§6.6]
and Section III. Therefore, the non-convexity and hence non-
linearity of the registration problem is enhanced by the usage
of mutual information. Secondly, as it has its foundation in
information theory, mutual information has a naturally discrete
nature. However, fast and efficient registration schemes rely
on powerful optimization techniques and thus on smooth
functions. Thirdly, since mutual information is defined via
the typically unaccessible joint density of the gray value
distribution, approximations of the density are required.These
approximations typically involve some very sensitive smooth-
ing parameters (e.g. a binning size or a Parzen window
width). Fourthly, mutual information completely decouples the
gray value from the location information. Therefore judging
the output of the registration process is difficult. Finally,
because of the previous difficulties, there is not a unique or
even common implementation for mutual information and its
derivatives.

These difficulties had stem a vast amount of research into
mutual information registration, introducing many nuisance
parameters to help and bypass at least some of the difficulties;
see, e.g, [17]. As a result, a practical implementation of mutual
information is highly non-trivial.

These observations motivate us to seek a different image
similarity measure which is capable to handle multi-modal
images but better suited for optimization. In this paper we
investigate an alternative distance measure which is basedon
normalized gradients. As we show, the alternative approach
is deterministic, much simpler, easier to interpret, fast and
straightforward to implement, faster to compute, and also
much more suitable to optimization.

The idea of using derivatives to characterize similarity be-
tween images is based on the observation that image structure
can be defined by intensity changes. The idea is not new. In
inverse problems arising in geophysics, previous work on joint
inversion [11], [22], [8], [9] discussed the use of gradients in
order to solve/fuse inverse problems of different modalities. In
image registration, a more general framework similar to the
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one previously suggested for joint inversion was given in [6].

The goal of this work is to provide a new approach to
multi-modal image registration using properties of differential
geometry to characterize similarity between two images. The
paper is organized as follows: In Section II we shortly lay
the mathematical foundation of image registration. Section III
presents an illustrative example showing some of the draw-
backs of mutual information. In Section IV we discuss the
proposed alternative image distance measure. In Section V
we discuss its numerical implementation and lie out a simple
algorithm to solve the multi-modal registration problem. Fi-
nally, in Section VI we demonstrate the effectiveness of our
method. In particular, we show that our approach is much more
effective than mutual information. We also demonstrate that
the alternative approach leads to a simple and stable measure
for image similarity.

II. T HE MATHEMATICAL SETTING

Given a reference imageR and a template imageT , the goal
of image registration is to find a “reasonable ” transformation
such that the “distance ” between the reference image and a
deformed template image is small. Withd ∈ N we denote the
spatial dimension of the given imagesR, T : IRd → IR which
are assumed to be sufficiently smooth. Thus,T (x) gives a
gray value at a spatial positionx. Moreover, we assume that
the contents of the images are contained in a bounded domain
Ω, where without loss of generality we choseΩ := (0, 1)d.
For pointsx /∈ Ω, we thus assumeR and T to be constant,
i.e., with two constantsc1, c2, R(x) = c1 andT (x) = c2 for
x /∈ Ω.

Note that our overall goal is a fast and efficient optimiza-
tion of a distance function. We are therefore heading for
a continuously differentiable objective function and thusa
continuous image model; for a detailed discussion, see [12].
Since the images are typically noisy but derivatives are needed
we use a smoothing B-spline to approximate the image where
the smoothing parameter is chosen using the Generalized
Cross Validation method (GCV) [10]. For data interpolation
using B-splines see [21]. To minimize notational overhead,the
continuous smooth approximations are also denoted byR and
T , respectively.

As described in [15], there are basically two registration
approaches. One is the so-called parametric and the other one
the so-called non-parametric registration technique. Since our
interest is the discussion of distance measures, we focus on
parametric image registration which is easier to explain.

In parametric registration, the deformationϕ : IRd →
IRd can be parameterized in terms of some basis functions
ϕ1, . . . ,ϕm and parametersγ = (γ1, . . . , γm),

ϕ(γ,x) =
m

∑

k=1

γkϕk(x); (1)

see [15] for details. A typical example is the so-called linear
registration, where for some appropriate chosen basis functions
andd = 2,

ϕ(γ,x) =
(

γ1 γ2
γ3 γ4

)(

x1
x2

)

+
(

γ5
γ6

)

. (2)

Given a distance measureD, the registration problem is to
find a minimizerγ of

f(γ) := D
(

R( · ), T (ϕ(γ, · ))
)

. (3)

III. A N ILLUSTRATIVE EXAMPLE

To emphasize the difficulty explained above, we present an
illustrative example. Figure 1 shows a T1 and a T2 weighted
magnetic resonance image (MRI) of a brain. Since the image
modalities are different, a direct comparison of gray values is
not advisable and we hence study a mutual information based
approach.

Figure 2a) displays our approximation to the joint density
which is based on a kernel estimator, where the kernel is a
compactly supported smooth function; see [13] for details.
Note that the joint density is completely unrelated to the spatial
image content. We now slide the template along the horizontal
axis. In the language of equation (2), we fixγ1,...,5 and obtain
the transformed image by changingγ6. Figure 2b) shows the
mutual information versus the shift ranging from -2 to 2 pixels.
This figure clearly demonstrates that mutual information isa
highly non-convex function with respect to the shift parameter.

In particular, the curve suggests that there are many pro-
nounced local minima which are closed in value to the global
minima. Therefore, any gradient based method can run into
difficulties when used to solve this problem. Even statistical
techniques such as simulated annealing or genetic algorithms
can run into problems when the size of a local minima is
roughly equivalent to the size of the global minima.

Figure 2c) displays a typical visualization of our alternative
distance betweenR andT (discussed in the next section). Note
that for the alternative distance measure, image difference is
related to spatial positions. Figure 2d) shows the alternative
distance measure versus the shift parameter. For this particular
example, it is obvious that the alternative measure is capable
for multi-modal registration and it is much better suited for
optimization.

(For the computation of mutual information we used the
cos4 kernel function withσ = 32, a midpoint quadrature rule
for the integral approximations with a equidistant discretiza-
tion of the grayvalue range[−30, 285] and 64 discretization
points, and a stabilizing tolerancetol = 10−3; see [13] for
details. For the normalized gradient field we used a edge
parameterE = 100; see bolow.)

IV. A SIMPLE AND ROBUST ALTERNATIVE

The alternative multi-modal distance measure is based on
the following simple though general interpretation of similar-
ity:

two image are considered to be similar, if intensity
changes occur at the same locations.

An image intensity change can be detected via the image
gradient. However, since the magnitudes of changes might
be related to the imaging devices, and are not related to
image differences, it is not advisatory to directly base a
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distance measure on gradients. We therefore consider first the
normalized gradient field

n(I,x) :=

∇I(x)
‖∇I(x)‖ , if ∇I(x) 6= 0,

n(I,x) := 0, otherwise.
(4)

As usual, forx ∈ IRd we set

‖x‖ =

√

∑d

`=1 x2
` and ∇I := (∂1I, . . . , ∂dI)>. (5)

For two related pointsx in R and ϕ(x) in T or, equiv-
alently, x in T ◦ ϕ, we look at the vectorsn(R,x) and
n(T ◦ϕ,x). These two vectors form an angleθ(x). Since the
gradient fields are normalized, the inner product (dot-product)
of the vectors is related to the cosine of this angle, while the
norm of the outer product (cross-product) is related to the sine.
In order to align the two images, we can either minimize the
square of the sine or, equivalently, maximize the square of the
cosine.

This observation motivate the following distance measures

dc(T,R) = ‖n(R,x) × n(T,x)‖2,

Dc(T,R) =
1

2

∫

Ω

dc(T,R) dx, (6)

dd(T,R) = 〈n(R,x),n(T,x)〉2 ,

Dd(T,R) = −1

2

∫

Ω

dd(T,R) dx, (7)

Note that from an optimization point of view, the distances
Dc or Dd are equivalent.

The definition of the normalized gradient field (4) is not
differentiable in areas where the image is constant and highly
sensitive to small values of the gradient field. Suppose thatthe
images have some distinct edges that need to be matched and
some other edges, small in their magnitude which may result
from noise. The normalized gradient map does not distinguish
between the first and the second class. As a result, there is
no preference to match wanted structures and to ignore the
noisy part of the image. To avoid this problem we define the
following regularized normalized gradient fields

nE(I,x) :=
∇I(x)

‖∇I(x)‖E
, (8)

‖∇I(x)‖E :=
√

∇I(x)>∇I(x) + E2.

In regions whereE is much larger than the gradients the maps
nE(I,x) are almost zero and therefore do not have a signifi-
cant effect of the measuresDc or Dd, respectively. However,
in regions whereE is much smaller than the gradients, the
regularized maps are close to the non-regularized ones and
these regions make a substantial difference in the calculation
of the measuresdc anddd. Indeed, the choice of the parameter
E in (8) answers the question, “what can be interpreted as a
jump”? Thus, it is the minimal size of a local change inI
which is still interpreted as a jump. Such an interpretationis
desirable, particularly if true edges are to be respected, but
it must be avoided in a band, where the resolution limitation

does not allow a true distinction between what may be zero
and what is not.

With this in mind and similarly to [1], we propose the
following automatic choice:

E =
η

V

∫

Ω

|∇I(x)| dx, (9)

whereη is the estimated noise level in the image andV is the
volume of the domainΩ.

The measures (6) and (7) are based on local quantities and
are easy to compute. Another advantage of these measures is
that they are directly related to the resolution of the images.
This property enables a straightforward multi-resolutionap-
proach. In addition, we can also provide plots of the distance
fields dc and dd, which enables a further analysis of image
similarity; see, e.g., Figure 2c). Note that in particulardc = 0
everywhere if the images match perfectly. Therefore, if in
some areas the functiondc takes large values, we know that
these areas did not register well.

V. NUMERICAL IMPLEMENTATION

A. Evaluating image distance

While the mathematical framework is clear there are a few
obstacles when trying to numerically implement it. Firstly,
dc and dd are based on image gradients, and therefore, their
derivatives involve second order image derivatives. This can be
a problem since many medical images are noisy. The problems
of working with noisy images and calculating their gradients
are overcome by using smoothing B-splines approximations
of the images. To smooth the image we use Tikhonov regular-
ization where the regularization parameter is computed using
the Generalized Cross Validation (GCV) criteria; cf. e.g. [21].

The GCV criteria also help to assess the noise level in the
data and therefore for the choice of the edge parameterE in
(9). For clean images (for images with very low noise), we
pick the edge parameter toh, whereh is the discretization
size.

Given the spline smoothed image and the edge parameter
E we are able to approximate the gradient of the image as

∇I ≈
(

∂h
1 I, . . . , ∂h

d I
)

,

where∂h
k is a difference operator in thek-th direction. Here,

similar to other numerical calculations of the absolute value
of the gradient [18] we use the forward differences for the
approximation. The regularized absolute value of the gradient
is defined in a straightforward manor:

‖∇I‖ ≈
√

∑

k(∂h
k I)2 + E2.

B. Numerical Optimization

To find the image deformation we need to minimizef(γ)
(cf. (3)) for Dc or Dd. Since this function is twice differ-
entiable with respect toγ, we are able to use a Newton type
method. The algorithm to compute the NGF and its derivatives
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is summarized in the pseudo-code of Algorithm 1. Note that
the distance measure has a least-squares from,

D = − 1
2 〈d, d〉L2

≈ − 1
2n

∑

j d(xj)
2 =: − 1

2n
d>d.

Therefore a natural optimization algorithm is the Gauss-
Newton method [5]. To use the Gauss-Newton approach, we
need to find the Jacobian ofd with respect toT . Explicit
formulae are given in Algorithm 1.

Algorithm 1 Calculation of Normalized gradient fields and
their derivatives:
[D,d,dT ] ← NGF(R, T, E);

let R, T be of sizem1 × · · · × md, n ← m1 · · ·md

compute (using the pointwise operations¯, ./, (·)2 and√ )

‖∇hR‖E ←
√

∑

(∂h
i R)2 + E2,

‖∇hT‖E ←
√

∑

(∂h
i T )2 + E2,

d ← diag(1./‖∇hR‖E) ·
diag(1./‖∇hT‖E)

(

∑

diag(∂h
i R) (∂h

i T )
)

,

D ← − 1
2n

d>d,

if derivatives are needed compute

[‖∇hT‖E ]T ← diag(1./‖∇hT‖E)
(

∑

diag(∂h
i T )∂h

i

)

dT ← diag(1./‖∇hR‖E) · diag(1./‖∇hT‖E) ·
(

∑

diag(∂h
i R)∂h

i

)

−
diag(d) · diag(1./‖∇hT‖E) · [‖∇hT‖E ]T .

C. Grid Continuation

Like many other nonlinear problems, substantial computa-
tional advantage can be gained by using a multilevel con-
tinuation strategy. The idea of multilevel continuation isnot
new to image registration but most of the work on this topic
assumes the sum of square differences as a distance measure.
In general, a grid continuation method solves the optimization
problem on a sequence of grids starting from the coarse
grid. The solution on a finer grid is obtained by interpolating
the coarse grid solution and using the interpolated result as
a starting guess for the fine grid solution. Care must be
taken such that the solution on the coarse grid represents a
coarser version of the fine grid. We summarize our multilevel
continuation in Algorithm 2.

VI. N UMERICAL EXPERIMENTS

We have done extensive experiments with our method how-
ever, to demonstrate the effectiveness of our algorithm we use
two different examples. In the first example we use the images
in Figure 1. We take the T1 image and generate transformed
versions of the image by using the affine linear transformation
(2). We then use the transformed images to recoverγ and
the original image. The advantage of this experiment is that
it is controlled and we know the exact answer and therefore

Algorithm 2 Multilevel image registration:u ← MLIR

for level = coarse to finedo
if level=coarsethen

chooseγ(0) on the coarsest grid;
else

prolongate γ∗ to the finer grid: γ(0) ←
prolongate(γ∗);

end if
solve the registration problem and obtainγ∗ on this grid.

end for

we are able to test our algorithm under a perfectly controlled
environment. Running our code we obtain the following results
summarized in Table I. We see that overall we are able to

TABLE I

EXPERIMENTS WITH IMAGE 1. CHOSEN VS RECOVEREDγ

γ1 γ2 γ3 γ4 γ5 γ6

True 2 0 0 1 0 0
Recovered 1.95 0.01 0.05 1.01 0.03 0.01

True 1 2 0 1 0 0
Recovered 1.01 2.03 0.02 1.05 0.01 0.04

True 1 0 2 1 0 0
Recovered 1.01 0.01 2.02 1.02 0.02 0.00

True 1 0 0 2 0 0
Recovered 1.02 0.01 0.01 1.99 0.02 0.01

True 1 0 0 1 5 0
Recovered 1.01 0.04 0.04 1.02 4.89 0.02

True 1 0 0 1 0 5
Recovered 1.01 0.03 0.02 1.02 0.01 4.78

True 0.5 0.5 0.6 1.5 3 3
Recovered 0.48 0.49 0.62 1.52 3.02 3.10

accurately recover the shift parameters to the level of lessthan
one pixel.

In the second example we use the images from Viola’s Ph.D
thesis [20]. In the original work a few thousands of iterations
of stochastic optimization algorithm where needed to achieve
registration using MI as a distance measure. We have used a
more efficient implementation of mutual information (see [13])
to obtain the same goal. We then compare the results of both
registered images. The difference between the MI registration
and the NGF registration was less than0.25 of a pixel, thus
we conclude that the methods give virtually identical minima.
However, to obtain the minima using MI we needed to use a
random search technique to probe the space. This technique
requires the estimation of many joint density distributionand
therefore it is rather slow. When probing the space we have
found many local minima. Furthermore, the local minima and
the global minima tend to have roughly the same magnitude.
The global minima has the value of about−9.250 × 10−2

while the guessγ = 0 has the value of about−9.115× 10−2.
Thus the ”landscape” of the MI function for this example is
similar to the one plotted in Figure 2.

In comparison, our NGF algorithm used 15 iteration on the
coarse grid which is22×24 and 5 iterations on each finer grid.
The registration was achieved in a matter of seconds and no
special space probing was needed to obtain the minima. The
value of the NGF function atγ = 0 was−4.63 × 101 while
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at the minima its value was−2.16 × 102 thus our minima is
much deeper compared with the MI minima. The results of
our experiments are also presented in Figure 3.

Another advantage of our method is the ability to quickly
evaluate the registration result by looking at the absolutevalue
of the cross-product|nT × nR|. This product has the same
dimension as the images and therefore can be viewed in the
same scale. If the match is prefect then the cross product
should vanish and therefore any deviation from zero impliesa
imperfect fit. Such deviations are expected to be present dueto
two different imaging processes, the noise in the images and
possible additional nonlinear features. Figure 3e) shows the
cross product for the image matched above. It is evident that
the matching is very good besides a small number of locations
where we believe the image to be noisy.

In comparison, the final result in MI registration is a joint
density map. This map does not have the same dimensions of
the image but rather it has the dimensions of the discretization
of the gray value spaces. It does not provide direct information
on spatial locations. Therefore, it is hard to evaluate the
success of the registration based on this map. The log of the
joint density map for the same example is shown in Figure 3f).
It is evident that it is not intuitive and hard to interpret.

VII. C ONCLUSION

Mutual information is to be considered as state-of the-
art distance measure for multi-modal image registration. The
measure has proven to be successful although it has a number
of well-known disadvantageous: it is highly non-convex, with
typically many pronounced local minima, it is naturally dis-
crete, based on an unaccessible density, requires some critical
smoothing parameters, and a common implementation does
not exist.

We therefore presented an alternative distance measure
which is capable to handle multi-modal images but better
suited for optimization. The new measure is based on nor-
malized gradients and therefore naturally links spatial in-
formation to image distance. We show that the alternative
approach is deterministic, much simpler, easier to interpret,
fast and straightforward to implement, faster to compute,
and also much more suitable to numerical optimization. The
performance of the new approach is demonstrated by a few
numerical examples.
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(a) (b)

Fig. 1. Original BrainWeb [3] T1 (LEFT) and T2 (RIGHT) images
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Fig. 2. Distance measures versus shifts; (a) the joint density approximation forR andT , (b) mutual information versus shift, (c) the normalized gradient
field for R andT , (d) normalized gradient field versus shift.
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Fig. 3. Experiments with Viola’s example; (a) templateT , (b) referenceR, (c) registeredT , (d) overlay ofT andR (202 pixels checkerboard presentation),
(e) cross productnT × nR, (f) joint density at the minimum.


