
Linear Time Algorithms for Generalized Edge

Dominating Set Problems

André Berger and Ojas Parekh

Department of Mathematics and Computer Science,
Emory University, Atlanta, GA, 30322, USA
aberge2@emory.edu, ojas@mathcs.emory.edu

Abstract. In this paper we consider a generalization of the edge domi-
nating set (EDS) problem, in which each edge e needs to be covered be

times and refer to this as the b-EDS problem. We present an exact linear
time primal dual algorithm for the weighted b-EDS problem on trees with
be ∈ {0, 1}, and our algorithm generates an optimal dual solution as well.
We also present an exact linear time algorithm for the unweighted b-EDS
problem on trees. For general graphs we exhibit a relationship between
this problem and the maximum weight matching problem. We exploit
this relationship to show that a known linear time 1

2
-approximation al-

gorithm for the weighted matching problem is also a 2-approximation
algorithm for the unweighted b-EDS problem on general graphs.

1 Introduction

Domination problems in graphs have been subject of many studies in graph the-
ory, and have many applications in operations research, e.g. in resource allocation
and network routing as well as in coding theory.

In this paper we consider a generalization of the edge dominating set (EDS)
problem. Given a graph G = (V, E), a function b : E → N and a weight function
c : E → Q+, a b-EDS is a subset F ⊆ E together with a multiplicity me ∈ N+

for each e ∈ F , so that each edge in E is adjacent to at least be = b(e) edges
in F , counting multiplicities. The b-EDS problem is then to find a b-EDS which
minimizes

∑
e∈F me in the unweighted and

∑
e∈F c(e) ·me in the weighted case.

The b-EDS problem generalizes the EDS problem in much the same way that
the set multicover generalizes the set cover problem [17].

When be = 1 for all e ∈ E this is the edge dominating set problem (EDS),
which is one of the four natural covering problems in graphs: edge cover (cover V
with elements from E), vertex cover (E with V), dominating set (V with V), and
EDS (E with E). In fact weighted EDS is a common generalization of weighted
edge cover and weighted vertex cover [1] and is equivalent to a restricted total
covering problem in which E ∪ V must be covered by a minimum weight set of
elements from E ∪ V [13].

The unweighted version of EDS is NP-complete even for planar and bipartite
graphs of maximum degree 3 [18] as well as several other families of graphs [8].
However, there are also families of graphs for which the unweighted EDS problem

2

is polynomial-time solvable [8, 16]. In particular, linear time algorithms for the
unweighted version are known for trees [10] and block graphs [9].

Much less is known about the weighted version of the problem. Recently
Fujito and Nagamochi [4] and Parekh [12] independently discovered a 2-approx-
imation for the weighted EDS problem; the latter also showed that weighted EDS
restricted to bipartite graphs is no easier to approximate than weighted vertex
cover, which is MAX-SNP-hard [11] and is suspected to have no polynomial time
approximation algorithm with approximation ratio asymptotically less than 2.
Thus a 2-approximation for b-EDS may be the best we can hope for.

When be ∈ {0, 1} for all e ∈ E we call the resulting problem {0, 1}-EDS. The
weighted version of {0, 1}-EDS is particularly interesting since it is equivalent to
the generalization of weighted vertex cover in which in addition to single vertices,
weights may also be assigned to pairs, {u, v}, of vertices (by adding an edge uv
with buv = 0 if one does not already exist). This generalization may be used to
model a limited economy of scale in existing applications of vertex cover: for a
pair of vertices {u, v} one may stipulate that selecting both u and v costs less
than the sum of the individual costs of u and v.

Our main contributions are linear-time algorithms for three special cases of
the b-EDS problem. To the best of our knowledge an exact linear time algorithm
was not known for even the special case of weighted EDS on trees. Table 1 gives
an overview of known results and new results from this paper.

In Section 2 we expose a relationship between the maximum weighted match-
ing problem and the unweighted b-EDS problem; we use this relationship to
analyze an algorithm of Preis [14] and show that it is also a linear time 2-
approximation for the unweighted b-EDS problem. This generalizes a known re-
lationship between maximal matchings and (unweighted) edge dominating sets.

In Section 3 we show that the weighted b-EDS is solvable in polynomial
time on trees. We also present exact linear-time algorithms which solve the
unweighted b-EDS problem, and the weighted {0, 1}-EDS problem on trees. The
latter is a primal dual algorithm which also generates an optimal dual solution.
If the costs ce are integral for all e ∈ E, then the dual solution is integral as
well and is a maximum size set of edges such that each edge e has at most ce

edges adjacent to it. This problem is a common generalization of the maximum
independent set problem and the maximum strong matching problem. An exact
linear time algorithm for the latter on trees is known [2].

Table 1: Approximation ratios for variants of the EDS problem (∗ denotes a linear time
algorithm)

unweighted EDS weighted EDS unweighted b-EDS weighted b-EDS

general graphs 2∗ 2 [4, 12] 2∗ (Cor. 2) 8/3 [13]

bipartite graphs ,, ,, ,, 2 [13]

trees 1∗ [10] 1∗ (Thm. 3) 1∗ (Thm. 2) 1 (Thm. 1)

3

Notation We will use the following notation for a simple undirected graph G =
(V, E). The neighbors of a vertex v ∈ V are denoted by δ(v) = {u ∈ V : ∃uv ∈
E}. The edges incident upon the vertex v ∈ V are denoted by N(v) and the set
of edges adjacent with an edge e ∈ E plus the edge e itself is denoted by N(e),
i.e. N(uv) = N(u) ∪ N(v) for any uv ∈ E.

2 The unweighted b-EDS problem for general graphs

For general graphs, the weighted EDS problem admits a 2 1
10 -approximation

based on a natural linear program relaxation of the problem, whose integral-
ity gap is also 2 1

10 [1]. A corresponding linear relaxation for the weighted b-EDS
problem yields an 8

3 -approximation for general graphs and a 2-approximation
for bipartite graphs [13]. This relaxation can be strengthened to yield a 2-
approximation for weighted EDS; however, the corresponding strengthening fails
to deliver a 2-approximation for weighted b-EDS [4, 12].

The unweighted EDS and b-EDS problems, however, can be approximated
more easily due to their relation to matching problems. Harary’s book [6] demon-
strates that there always exists a minimum cardinality EDS which is also a max-
imal matching. Since any maximal matching is also an EDS, the minimum car-
dinality maximal matching and the unweighted EDS problems are equivalent;
in contrast Fujito [3] showed that the minimum weighted maximal matching
problem is much more difficult than weighted EDS. Any maximal matching in a
graph has size at least one half times the size of a maximum matching. Therefore,
finding any maximal matching, which can be easily done in linear time, yields a
2-approximation for the unweighted EDS problem.

An issue with extending the relationship described above to the minimum
unweighted b-EDS problem is that a maximal matching is not necessarily a
feasible b-EDS. Using the resemblance of the maximum weight matching problem
to the dual of a natural linear formulation for b-EDS, we exhibit a connection
between weighted matchings and b-edge dominating sets that generalizes the
relationship between maximal matchings and edge dominating sets. Given a
matching M and a weight vector b ∈ N|E|, let b|M ∈ N|E| denote the vector
which for each component e ∈ M has value be, and has value 0 for all other
components.

Lemma 1. For any matching M and any weight vector b ∈ N|E|,
∑

e∈M be is
at most twice the cost of a minimum size (counting multiplicities) b-EDS.

Proof. Consider the following pair of dual LP’s, LP 1 being the linear program-
ming relaxation for the unweighted b-EDS problem and LP 2 being the relaxation
for the weighted strong matching problem.

4

LP 1: Min
�
· x, subject to LP 2: Max b · y, subject to

x(N(e)) ≥ be for all e ∈ E y(N(e)) ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ E

We call P and R the sets of feasible fractional solutions of LP 1 and LP 2,
respectively. By setting the dual variables to ye = 1/2 for each e ∈ M , and to
ye = 0 for each e ∈ E \ M , we obtain such a feasible solution y ∈ R to LP 2,
since each edge e ∈ E can be adjacent with at most two edges from M . Using
duality we have

b(M)/2 = b · y ≤ Maxy∈Rb · y ≤ Minx∈P

�
· x ≤ OPT.

Hence the weight b(M) of the solution we return is at most 2 · OPT . ut

Corollary 1. For any matching M and any weight vector b ∈ N|E|, if b|M is a
feasible b-EDS then it is a 2-approximate unweighted b-EDS.

Corollary 1 motivates the following definition: we say a matching M is b-
feasible if b|M is a feasible b-EDS. Thus any matching algorithm that returns a
b-feasible matching M is a 2-approximation for the unweighted b-EDS problem.
Before presenting a linear time algorithm, we present a very simple O(|E|log|V |)
2-approximation for unweighted b-EDS.

Proposition 1. The greedy matching algorithm that repeatedly selects the edge
of greatest cost that maintains a matching is b-feasible.

Proof. The greedy algorithm also satisfies Lemma 2 and thus the proof is the
same as the proof of Lemma 3 below. ut

It is not difficult to see that any matching of maximum weight with respect to
b is b-feasible. Lemma 1 also implies that any feasible b-EDS has size at least 1

2
the cost of a maximum weight matching with respect to b, thus if a b-EDS
algorithm always returns a b-EDS that is a matching when copies of an edge
are removed, then the algorithm is a 1

2 -approximation for the maximum weight
matching problem.

Preis [14] gave a linear time algorithm, which, given a weighted graph, com-
putes a maximal matching with weight at least one half times the weight of any
matching. The algorithm incrementally adds edges to a matching M . A vertex u
is called free (w.r.t. to M), if u is not incident with any edge in M . We will use
the following lemma, which gives a necessary condition for an edge to be added
to the matching, to show that Preis’s algorithm always generates a b-feasible
matching.

Lemma 2 ([14, Lemma 3]). If an edge uv is added to M during the algorithm,
then u and v are free and neither u nor v are adjacent to a free vertex with an
edge of higher weight than the weight of the edge uv.

5

Lemma 3. Preis’s algorithm always generates a b-feasible matching.

Proof. First, note that each edge e ∈ M is covered be times by itself. Since M is
a maximal matching, any edge e = uv in E \ M must be adjacent to some edge
f = vw in M . If bf ≥ be, then e is covered. Otherwise, Lemma 2 says that u was
not a free vertex at the time when f was added to M . But then there must be an
edge tu ∈ M , which was added to M before f , i.e. t, u and v were free vertices
at the time tu was considered. Using Lemma 2 again, we must have btu ≥ be. ut

Corollary 2. The unweighted b-EDS problem on general graphs can be 2-ap-
proximated in linear time.

3 The b-EDS problem for trees

3.1 The general case

Many problems which are hard to solve optimally or even approximate for general
graphs become a lot easier when restricted to a small family of graphs. The same
is true for the weighted b-EDS problem when we restrict the possible inputs to
trees.

In this section we will show that the weighted b-EDS problem on trees can
be solved optimally as a linear program. A square matrix A is called totally
unimodular if every square sub-matrix of A has determinant +1, -1 or 0. Totally
unimodular matrices play an important role in linear programming due to the
following lemma.

Lemma 4 ([7, 15]). If A ∈ Zmxn is a totally unimodular matrix and b ∈ Zm,
then every extreme point of the polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0} 6= ∅ has
integer coordinates.

Ghouila-Houri [5] gave the following sufficient condition for a matrix to be
totally unimodular.

Lemma 5. A matrix A ∈ {1, 0,−1}nxm is totally unimodular if for every J ⊆
{1, . . . , n} there exist a partition J = J1 ∪ J2 such that for any 1 ≤ j ≤ m it
holds that |

∑
i∈J1

aij −
∑

i∈J2
aij | ≤ 1.

For completeness we include a proof for the fact that the constraint matrix
for the EDS problem for any tree is totally unimodular.

Lemma 6. Let T = (V, E) be a tree on n vertices. Let A = (aij) be the edge-
edge adjacency matrix of T with 1’s on the diagonal, i.e. aij = 1 for all ij ∈ E,
aij = 0 for all ij /∈ E and aii = 1 for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and i 6= j.
Then A is totally unimodular.

Proof. According to Lemma 5 it is enough to show that we can partition any
E′ ⊆ E into two sets of edges E1 and E2, so that for any e ∈ E we have
|N(e) ∩ E1| − |N(e) ∩ E2| ∈ {−1, 0, 1}. This is equivalent to say that for any

6

E′ ⊆ E there is a labeling π : E → {1, 0,−1} such that π(e) = 0 if and only if
e ∈ E \ E′ and such that Π(e) := |

∑
f∈N(e) π(f)| ≤ 1 for any e ∈ E.

We will prove by induction on |V | that such a labeling exists for any E′ ⊆ E
and that it also satisfies |Π(v)| ≤ 1 where Π(v) :=

∑
f∈N(v) π(f) for any v ∈ V .

Note that if such a labeling π exists, than −π clearly also satisfies the condition.
The base case |V | = 1 is trivial. Let now |V | > 2 and let v0 ∈ V be an

arbitrary vertex of T . Let Ti = (Vi, Ei) (1 ≤ i ≤ k) be the connected components
of T − {v}, which are trees as well. Let vi be the neighbor of v in Ti and
ei = v0vi. For every 1 ≤ i ≤ k let πi be a labeling of Ei with πi(e) = 0 if
and only if e ∈ Ei \ E′, which exist by the inductive hypothesis. They also
satisfy |Πi(vi)| ≤ 1 for every 1 ≤ i ≤ k. If we set π(ei) = 0 for 1 ≤ i ≤ k and
π(e) = πi(e) whenever e ∈ Ei, we obtain a labeling π : E → {1, 0,−1} such
that Π(ei) = |Πi(vi)| ≤ 1 and Π(v0) = 0, i.e. π satisfies the claim. However, the
edges incident with v0 which are in E′ are falsely labeled 0. We will show how
to label these edges with 1 or −1 and maintain the desired properties.

We can assume w.l.o.g. that for some 0 ≤ s ≤ k we have that {e1, . . . , es} ⊆
E′ and that {es+1, . . . , ek} ⊆ E \ E′. Further assume that |Π(vi)| = 1 for
1 ≤ i ≤ s0 and that |Π(vi)| = 0 for s0 < i ≤ s for some 0 ≤ s0 ≤ s.

We will switch the labelings πi for 1 ≤ i ≤ s0 if necessary to obtain Π(vi) = 1
for 1 ≤ i ≤ bs0/2c and Π(vi) = −1 for bs0/2c < i ≤ s0. Then we define
π(ei) = −1 for 1 ≤ i ≤ bs0/2c and π(ei) = 1 for bs0/2c < i ≤ s0. The edges
es0+1, . . . , es will be labeled with 1 and −1 so that we have Π(v0) ∈ {0, 1}. The
numbers of edges labeled 1 and −1, respectively, will depend on the parity of s
and s0 and differ by at most 1. If Π(v0) = 1, then we also switch the labelings πi

of those trees Ti with i > s for which Π(vi) = 1 to −πi to ensure that Π(ei) ≤ 1
for those indices i.

It is easy to check that the conditions on π remain true for all edges and
vertices of T . ��

Using Lemma 4 and Lemma 6 we immediately have

Theorem 1. The b-EDS problem on weighted trees can be solved optimally in
strongly polynomial time.

The algorithm to solve the b-EDS problem on trees relies on solving a linear
program. However, we would prefer a combinatorial algorithm, ideally running in
linear time. This is indeed possible if we restrict the trees to have either uniform
weights (Section 3.2) or if we restrict ourselves to the {0, 1}-EDS problem on
weighted trees.

3.2 The unweighted b-EDS problem for trees

A linear time algorithm for the unweighted EDS problem on trees was first
given by Mitchell and Hedetniemi [10] and later simplified by Yannakakis and
Gavril [18]. The unweighted b-EDS problem on trees can also be solved by an
easy greedy algorithm in linear time. Call an edge e of a tree a leaf edge if it is
incident with a leaf.

7

For any tree T there will always be an optimal solution to the b-EDS problem
which does not use any leaf edges (unless T is a star), since any edge adjacent
with a leaf edge covers at least those edges covered by the leaf edge.

Therefore we can recursively solve the problem by first finding a vertex v
which is incident with exactly one non-leaf edge e, then setting the multiplicity
of e to the maximum b-value of the leaf edges incident with v and finally removing
those leaf edges and updating the b-values of e and those edges adjacent with e
in the remaining tree.

Any optimal solution to the b-EDS problem on that updated tree plus the
multiplicity of the edge e as determined before will give an optimal solution to
the original instance. A formal proof of this fact is straightforward and we omit
it in this abstract.

Theorem 2. The unweighted b-EDS problem on trees can be solved optimally
in linear time.

3.3 The weighted {0, 1}-EDS problem for trees

To the best of our knowledge no linear time algorithm for the weighted EDS
problem on trees has appeared in the literature. Algorithm 1 is a linear time
primal-dual algorithm which solves the weighted {0, 1}-EDS problem on trees
optimally in linear time. This problem generalizes the weighted b-vertex cover
problem on trees as follows:

Lemma 7. The weighted vertex cover problem for trees can be solved optimally
in linear time by solving a weighted {0, 1}-EDS instance on a tree in linear time.

Proof. Let T = (V, E), cv ∈ R+ for all v ∈ V be an instance of the weighted
vertex cover problem for trees. We build a tree T ′ = (V ∪ V ′, E ∪ E′) with
V ′ = {v′ : v ∈ V } and E′ = {vv′ : v ∈ V }, i.e. we add an extra edge incident
with each vertex of T . We set be = 1 for every e ∈ E and be = 0 for every e ∈ E′.
Furthermore, we set c′vv′ = cv for all v ∈ V and c′e = ∞ for all e ∈ E. Then any
b-EDS of T ′ of finite weight corresponds to a vertex cover of T having the same
weight, and vice versa (an edge vv′ ∈ E′ is in the b-EDS if and only if v is in the
vertex cover). ��

We now present our primal-dual algorithm for the weighted {0, 1}-EDS prob-
lem for trees. In a nutshell the algorithm works as follows. We first pick some
arbitrary vertex of the tree as the root. Then we determine an optimal dual solu-
tion by raising dual variables from the leaves up to the root, making at least one
constraint of the dual problem tight whenever we raise a dual variable. Finally,
we recover a primal solution from the root down to the leaves, which satisfies
the complementary slackness conditions with the dual solution.

We denote by dT (v, u) the (combinatorial) distance between v and u in T ,
i.e. the number of edges on the path between v and u in T . If T is rooted at v0,
then by denoting an edge by e = vu we implicitly mean that v is closer to the
root, i.e. dT (v, v0) = dT (u, v0) − 1. For a vertex v �= v0 p(v) denotes the parent

8

of v, i.e. the unique vertex on the path from v to v0 which is adjacent to v. The
set of children of v is denoted δ(v) = δ(v) \ {p(v)}.

Algorithm 1: {0, 1}-EDS on weighted trees

Input: A tree T = (V, E), c : E → R+ ∪ {0},
b : E → {0, 1} and a root v0 ∈ V .

1. Set K := maxv∈V dT (v, v0).
% Construct the dual solution from the leaves to the root.
2. FROM i = K DOWNTO 0 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
IF v is a leaf THEN yv := cp(v)v

ELSE
c := minu∈δ(v) cvu

FOR EVERY u ∈ δ(v) with bvu = 1 DO
yvu := min{yu, c}
c := c − yvu

y :=
∑

u∈δ(v) yvu

yv := minu∈δ(v)(cvu − y)
IF v �= v0 THEN cp(v)v := cp(v)v − y

% Construct the primal solution from the root to the leaves.
% e ∈ E is ’tight’, if y(N(e)) = ce

3. F := ∅
4. Whenever an edge vu is added to F , set xv = 1 and xu = 1.
5. IF yv0v = 0 for all v ∈ δ(v0) THEN add all tight edges incident with v0

to F ELSE add one tight edge incident with v0 to F .
6. FROM i = 1 to K − 1 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
e := p(v)v

Case 1 IF ye > 0 and xe = 0 and xp(v) = 0 THEN add ONE arbitrary
tight edge incident with v to F

Case 2 IF yvu = 0 for all u ∈ δ(v) and (be = 0 or ye = 0) THEN add
ALL tight edges incident with v to F

Case 3 IF yvu > 0 for some u ∈ δ(v) and
(

(be = 0 and xe = 0) or

ye = 0
)

add ONE arbitrary tight edge incident with v to F

Case 4 In the remaining cases no edges are added to the primal solu-
tion F .

% Remark: If in any of the cases there is no tight edge incident
upon v then F remains unchanged.

7. RETURN F .

9

Theorem 3. Algorithm 1 solves the weighted {0, 1}-EDS problem on trees op-
timally in linear time.

Proof. We will argue that both x and y are feasible solutions to the following LP’s
and that they satisfy complementary slackness and hence are optimal solutions.
Here we let D = {e ∈ E : be = 1}.

LP 1: Min c · x, subject to LP 2: Max � · y, subject to

x(N(e)) ≥ 1 for all e ∈ D y(N(e)) ≤ ce for all e ∈ E

xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ D

First note that y is feasible for LP 2, i.e. y ∈ R. The variable yv always
contains the maximum value that any y-value of an edge incident with v can be
increased by to maintain a feasible solution to LP 2. Using this and the fact that
any positively set y-value for an edge vu is at most cvu′ , where u′ ∈ δ(v), we see
that y is a feasible solution to LP 2.

The primary solution x constructed in steps 5 and 6 is chosen so that it
satisfies the complementary slackness conditions with y. First, only tight edges
are chosen to be in the solution F , i.e. whenever xe > 0 then y(N(e)) = ce.
Second, if ye > 0 for some e = p(v)v with be = 1, and v is considered in step 6,
then we only add edges to F in Case 2 with the additional conditions xe=0 and
xp(v) = 0. But this means no edge incident with p(v) is already in F and we add
at most one edge incident with v to F , i.e. x(N(e)) ≤ 1. As we will show below
x is a feasible solution to LP 1 and therefore x(N(e)) = 1. Thus x and y satisfy
the complementary slackness conditions.

To show that x is a feasible solution for the primal LP let e = vu ∈ D where
v = p(u) and assume to the contrary that for all x(N(e)) = 0. For now assume
e is not incident with a leaf or with the root.

Let f = p(v)v denote the parent edge of e. The sibling edges of e are all edges
vu′ ∈ E with u′ �= u and u′ �= p(v); the children edges of e are all edges uw ∈ E
with w �= v. We claim that neither any of the children edges and sibling edges
of e nor e itself have a tight dual inequality. If one of them did, then it was not
added to F during step 6 because f imposed a constraint on the complementary
slackness condition, i.e. f ∈ D and yf > 0. However, we can only have yf > 0 if
none of the sibling edges of e and e itself were tight when yf was considered to
be increased in step 2. This means at least one of the children edges of e must
be tight and if neither f nor e nor any of the sibling edges of e are in F , then
this child edge of e must be in F , a contradiction to our assumption.

Hence none of the sibling edges and children edges of e and e itself are tight.
Therefore, the only reason ye was not increased any further must be that f was
tight already after e was considered. Consequently, none of the sister edges of f
which are in D nor the parent of f (if it has one) can have a positive y-value.
This finally contradicts our assumption, since then we should have picked f for
the primal solution in step 6 (Case 2).

10

We now consider the cases that e is incident with a leaf or with the root. If
e is incident with a leaf, then certainly one of its sister edges or e itself must be
tight. Hence for the parent edge f of e either f /∈ D or yf = 0, hence at least
one of the tight children edges of f must be in F and hence we again have a
contradiction.

Finally, when e is incident with the root and neither e nor any of the other
edges incident with the root are in F , then it must be that all edges incident
with the root are not tight. But then, if e is not incident with a leaf at the same
time, at least one of e’s children must be tight and should be added to F during
the algorithm.

Noting that each edge of the tree is considered at most three times in step 2
and at most twice in step 6, we conclude that the algorithm runs in O(|E|) =
O(|V |) time. ��

References

1. Robert Carr, Toshihiro Fujito, Goran Konjevod, and Ojas Parekh. A 2 1/10-
approximation algorithm for a generalization of the weighted edge-dominating set
problem. J. Comb. Optim., 5:317–326, 2001.

2. Gerd Fricke and Renu Laskar. Strong matchings on trees. In Proceedings of
the Twenty-third Southeastern International Conference on Combinatorics, Graph
Theory, and Computing (Boca Raton, FL, 1992), volume 89, pages 239–243, 1992.

3. Toshihiro Fujito. On approximability of the independent/connected edge dominat-
ing set problems. Inform. Process. Lett., 79(6):261–266, 2001.

4. Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the
minimum weight edge dominating set problem. Discrete Appl. Math., 118(3):199–
207, 2002.

5. Alain Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. C.
R. Acad. Sci. Paris, 254:1192–1194, 1962.

6. Frank Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
7. Alan Jerome Hoffman and Joseph Bernard Kruskal. Integral boundary points of

convex polyhedra. In Linear inequalities and related systems, Annals of Mathe-
matics Studies, no. 38, pages 223–246. Princeton University Press, Princeton, N.
J., 1956.

8. Joseph D. Horton and Kyriakos Kilakos. Minimum edge dominating sets. SIAM
J. Discrete Math., 6(3):375–387, 1993.

9. Shiow Fen Hwang and Gerard J. Chang. The edge domination problem. Discuss.
Math. Graph Theory, 15(1):51–57, 1995.

10. Sandra L. Mitchell and Stephen T. Hedetniemi. Edge domination in trees. In
Proc. of the 8th Southeastern Conference on Combinatorics, Graph Theory and
Computing (Louisiana State Univ., Baton Rouge, La., 1977), pages 489–509, 1977.

11. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. System Sci., 43(3):425–440, 1991.

12. Ojas Parekh. Edge dominating and hypomatchable sets. In Proceedings of the
13th Annual ACM-SIAM Symposium On Discrete Mathematics (SODA-02), pages
287–291, New York, 2002. ACM Press.

13. Ojas Parekh. Polyhedral techniques for graphic covering problems. PhD thesis,
Carnegie Mellon University, 2002.

11

14. Robert Preis. Linear time 1

2
-approximation algorithm for maximum weighted

matching in general graphs. In STACS 99 (Trier), volume 1563 of Lect. Notes
in Comp. Sci., pages 259–269. Springer, Berlin, 1999.

15. Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency., vol-
ume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

16. Anand Srinivasan, K. Madhukar, P. Nagavamsi, C. Pandu Rangan, and Maw-
Shang Chang. Edge domination on bipartite permutation graphs and cotriangu-
lated graphs. Inform. Process. Lett., 56(3):165–171, 1995.

17. Vijay Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
18. Mihalis Yannakakis and Fanica Gavril. Edge dominating sets in graphs. SIAM J.

Appl. Math., 38(3):364–372, 1980.

