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Abstract. In this paper we consider a generalization of the edge domi-
nating set (EDS) problem, in which each edge e needs to be covered be

times and refer to this as the b-EDS problem. We present an exact linear
time primal dual algorithm for the weighted b-EDS problem on trees with
be ∈ {0, 1}, and our algorithm generates an optimal dual solution as well.
We also present an exact linear time algorithm for the unweighted b-EDS
problem on trees. For general graphs we exhibit a relationship between
this problem and the maximum weight matching problem. We exploit
this relationship to show that a known linear time 1

2
-approximation al-

gorithm for the weighted matching problem is also a 2-approximation
algorithm for the unweighted b-EDS problem on general graphs.

1 Introduction

Domination problems in graphs have been subject of many studies in graph the-
ory, and have many applications in operations research, e.g. in resource allocation
and network routing as well as in coding theory.

In this paper we consider a generalization of the edge dominating set (EDS)
problem. Given a graph G = (V, E), a function b : E → N and a weight function
c : E → Q+, a b-EDS is a subset F ⊆ E together with a multiplicity me ∈ N+

for each e ∈ F , so that each edge in E is adjacent to at least be = b(e) edges
in F , counting multiplicities. The b-EDS problem is then to find a b-EDS which
minimizes

∑
e∈F me in the unweighted and

∑
e∈F c(e) ·me in the weighted case.

The b-EDS problem generalizes the EDS problem in much the same way that
the set multicover generalizes the set cover problem [17].

When be = 1 for all e ∈ E this is the edge dominating set problem (EDS),
which is one of the four natural covering problems in graphs: edge cover (cover V
with elements from E), vertex cover (E with V ), dominating set (V with V ), and
EDS (E with E). In fact weighted EDS is a common generalization of weighted
edge cover and weighted vertex cover [1] and is equivalent to a restricted total
covering problem in which E ∪ V must be covered by a minimum weight set of
elements from E ∪ V [13].

The unweighted version of EDS is NP-complete even for planar and bipartite
graphs of maximum degree 3 [18] as well as several other families of graphs [8].
However, there are also families of graphs for which the unweighted EDS problem
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is polynomial-time solvable [8, 16]. In particular, linear time algorithms for the
unweighted version are known for trees [10] and block graphs [9].

Much less is known about the weighted version of the problem. Recently
Fujito and Nagamochi [4] and Parekh [12] independently discovered a 2-approx-
imation for the weighted EDS problem; the latter also showed that weighted EDS
restricted to bipartite graphs is no easier to approximate than weighted vertex
cover, which is MAX-SNP-hard [11] and is suspected to have no polynomial time
approximation algorithm with approximation ratio asymptotically less than 2.
Thus a 2-approximation for b-EDS may be the best we can hope for.

When be ∈ {0, 1} for all e ∈ E we call the resulting problem {0, 1}-EDS. The
weighted version of {0, 1}-EDS is particularly interesting since it is equivalent to
the generalization of weighted vertex cover in which in addition to single vertices,
weights may also be assigned to pairs, {u, v}, of vertices (by adding an edge uv
with buv = 0 if one does not already exist). This generalization may be used to
model a limited economy of scale in existing applications of vertex cover: for a
pair of vertices {u, v} one may stipulate that selecting both u and v costs less
than the sum of the individual costs of u and v.

Our main contributions are linear-time algorithms for three special cases of
the b-EDS problem. To the best of our knowledge an exact linear time algorithm
was not known for even the special case of weighted EDS on trees. Table 1 gives
an overview of known results and new results from this paper.

In Section 2 we expose a relationship between the maximum weighted match-
ing problem and the unweighted b-EDS problem; we use this relationship to
analyze an algorithm of Preis [14] and show that it is also a linear time 2-
approximation for the unweighted b-EDS problem. This generalizes a known re-
lationship between maximal matchings and (unweighted) edge dominating sets.

In Section 3 we show that the weighted b-EDS is solvable in polynomial
time on trees. We also present exact linear-time algorithms which solve the
unweighted b-EDS problem, and the weighted {0, 1}-EDS problem on trees. The
latter is a primal dual algorithm which also generates an optimal dual solution.
If the costs ce are integral for all e ∈ E, then the dual solution is integral as
well and is a maximum size set of edges such that each edge e has at most ce

edges adjacent to it. This problem is a common generalization of the maximum
independent set problem and the maximum strong matching problem. An exact
linear time algorithm for the latter on trees is known [2].

Table 1: Approximation ratios for variants of the EDS problem (∗ denotes a linear time
algorithm)

unweighted EDS weighted EDS unweighted b-EDS weighted b-EDS

general graphs 2∗ 2 [4, 12] 2∗ (Cor. 2) 8/3 [13]

bipartite graphs ,, ,, ,, 2 [13]

trees 1∗ [10] 1∗ (Thm. 3) 1∗ (Thm. 2) 1 (Thm. 1)
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Notation We will use the following notation for a simple undirected graph G =
(V, E). The neighbors of a vertex v ∈ V are denoted by δ(v) = {u ∈ V : ∃uv ∈
E}. The edges incident upon the vertex v ∈ V are denoted by N(v) and the set
of edges adjacent with an edge e ∈ E plus the edge e itself is denoted by N(e),
i.e. N(uv) = N(u) ∪ N(v) for any uv ∈ E.

2 The unweighted b-EDS problem for general graphs

For general graphs, the weighted EDS problem admits a 2 1
10 -approximation

based on a natural linear program relaxation of the problem, whose integral-
ity gap is also 2 1

10 [1]. A corresponding linear relaxation for the weighted b-EDS
problem yields an 8

3 -approximation for general graphs and a 2-approximation
for bipartite graphs [13]. This relaxation can be strengthened to yield a 2-
approximation for weighted EDS; however, the corresponding strengthening fails
to deliver a 2-approximation for weighted b-EDS [4, 12].

The unweighted EDS and b-EDS problems, however, can be approximated
more easily due to their relation to matching problems. Harary’s book [6] demon-
strates that there always exists a minimum cardinality EDS which is also a max-
imal matching. Since any maximal matching is also an EDS, the minimum car-
dinality maximal matching and the unweighted EDS problems are equivalent;
in contrast Fujito [3] showed that the minimum weighted maximal matching
problem is much more difficult than weighted EDS. Any maximal matching in a
graph has size at least one half times the size of a maximum matching. Therefore,
finding any maximal matching, which can be easily done in linear time, yields a
2-approximation for the unweighted EDS problem.

An issue with extending the relationship described above to the minimum
unweighted b-EDS problem is that a maximal matching is not necessarily a
feasible b-EDS. Using the resemblance of the maximum weight matching problem
to the dual of a natural linear formulation for b-EDS, we exhibit a connection
between weighted matchings and b-edge dominating sets that generalizes the
relationship between maximal matchings and edge dominating sets. Given a
matching M and a weight vector b ∈ N|E|, let b|M ∈ N|E| denote the vector
which for each component e ∈ M has value be, and has value 0 for all other
components.

Lemma 1. For any matching M and any weight vector b ∈ N|E|,
∑

e∈M be is
at most twice the cost of a minimum size (counting multiplicities) b-EDS.

Proof. Consider the following pair of dual LP’s, LP 1 being the linear program-
ming relaxation for the unweighted b-EDS problem and LP 2 being the relaxation
for the weighted strong matching problem.
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LP 1: Min
�
· x, subject to LP 2: Max b · y, subject to

x(N(e)) ≥ be for all e ∈ E y(N(e)) ≤ 1 for all e ∈ E

xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ E

We call P and R the sets of feasible fractional solutions of LP 1 and LP 2,
respectively. By setting the dual variables to ye = 1/2 for each e ∈ M , and to
ye = 0 for each e ∈ E \ M , we obtain such a feasible solution y ∈ R to LP 2,
since each edge e ∈ E can be adjacent with at most two edges from M . Using
duality we have

b(M)/2 = b · y ≤ Maxy∈Rb · y ≤ Minx∈P

�
· x ≤ OPT.

Hence the weight b(M) of the solution we return is at most 2 · OPT . ut

Corollary 1. For any matching M and any weight vector b ∈ N|E|, if b|M is a
feasible b-EDS then it is a 2-approximate unweighted b-EDS.

Corollary 1 motivates the following definition: we say a matching M is b-
feasible if b|M is a feasible b-EDS. Thus any matching algorithm that returns a
b-feasible matching M is a 2-approximation for the unweighted b-EDS problem.
Before presenting a linear time algorithm, we present a very simple O(|E|log|V |)
2-approximation for unweighted b-EDS.

Proposition 1. The greedy matching algorithm that repeatedly selects the edge
of greatest cost that maintains a matching is b-feasible.

Proof. The greedy algorithm also satisfies Lemma 2 and thus the proof is the
same as the proof of Lemma 3 below. ut

It is not difficult to see that any matching of maximum weight with respect to
b is b-feasible. Lemma 1 also implies that any feasible b-EDS has size at least 1

2
the cost of a maximum weight matching with respect to b, thus if a b-EDS
algorithm always returns a b-EDS that is a matching when copies of an edge
are removed, then the algorithm is a 1

2 -approximation for the maximum weight
matching problem.

Preis [14] gave a linear time algorithm, which, given a weighted graph, com-
putes a maximal matching with weight at least one half times the weight of any
matching. The algorithm incrementally adds edges to a matching M . A vertex u
is called free (w.r.t. to M), if u is not incident with any edge in M . We will use
the following lemma, which gives a necessary condition for an edge to be added
to the matching, to show that Preis’s algorithm always generates a b-feasible
matching.

Lemma 2 ([14, Lemma 3]). If an edge uv is added to M during the algorithm,
then u and v are free and neither u nor v are adjacent to a free vertex with an
edge of higher weight than the weight of the edge uv.
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Lemma 3. Preis’s algorithm always generates a b-feasible matching.

Proof. First, note that each edge e ∈ M is covered be times by itself. Since M is
a maximal matching, any edge e = uv in E \ M must be adjacent to some edge
f = vw in M . If bf ≥ be, then e is covered. Otherwise, Lemma 2 says that u was
not a free vertex at the time when f was added to M . But then there must be an
edge tu ∈ M , which was added to M before f , i.e. t, u and v were free vertices
at the time tu was considered. Using Lemma 2 again, we must have btu ≥ be. ut

Corollary 2. The unweighted b-EDS problem on general graphs can be 2-ap-
proximated in linear time.

3 The b-EDS problem for trees

3.1 The general case

Many problems which are hard to solve optimally or even approximate for general
graphs become a lot easier when restricted to a small family of graphs. The same
is true for the weighted b-EDS problem when we restrict the possible inputs to
trees.

In this section we will show that the weighted b-EDS problem on trees can
be solved optimally as a linear program. A square matrix A is called totally
unimodular if every square sub-matrix of A has determinant +1, -1 or 0. Totally
unimodular matrices play an important role in linear programming due to the
following lemma.

Lemma 4 ([7, 15]). If A ∈ Zmxn is a totally unimodular matrix and b ∈ Zm,
then every extreme point of the polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0} 6= ∅ has
integer coordinates.

Ghouila-Houri [5] gave the following sufficient condition for a matrix to be
totally unimodular.

Lemma 5. A matrix A ∈ {1, 0,−1}nxm is totally unimodular if for every J ⊆
{1, . . . , n} there exist a partition J = J1 ∪ J2 such that for any 1 ≤ j ≤ m it
holds that |

∑
i∈J1

aij −
∑

i∈J2
aij | ≤ 1.

For completeness we include a proof for the fact that the constraint matrix
for the EDS problem for any tree is totally unimodular.

Lemma 6. Let T = (V, E) be a tree on n vertices. Let A = (aij) be the edge-
edge adjacency matrix of T with 1’s on the diagonal, i.e. aij = 1 for all ij ∈ E,
aij = 0 for all ij /∈ E and aii = 1 for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and i 6= j.
Then A is totally unimodular.

Proof. According to Lemma 5 it is enough to show that we can partition any
E′ ⊆ E into two sets of edges E1 and E2, so that for any e ∈ E we have
|N(e) ∩ E1| − |N(e) ∩ E2| ∈ {−1, 0, 1}. This is equivalent to say that for any
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E′ ⊆ E there is a labeling π : E → {1, 0,−1} such that π(e) = 0 if and only if
e ∈ E \ E′ and such that Π(e) := |

∑
f∈N(e) π(f)| ≤ 1 for any e ∈ E.

We will prove by induction on |V | that such a labeling exists for any E′ ⊆ E
and that it also satisfies |Π(v)| ≤ 1 where Π(v) :=

∑
f∈N(v) π(f) for any v ∈ V .

Note that if such a labeling π exists, than −π clearly also satisfies the condition.
The base case |V | = 1 is trivial. Let now |V | > 2 and let v0 ∈ V be an

arbitrary vertex of T . Let Ti = (Vi, Ei) (1 ≤ i ≤ k) be the connected components
of T − {v}, which are trees as well. Let vi be the neighbor of v in Ti and
ei = v0vi. For every 1 ≤ i ≤ k let πi be a labeling of Ei with πi(e) = 0 if
and only if e ∈ Ei \ E′, which exist by the inductive hypothesis. They also
satisfy |Πi(vi)| ≤ 1 for every 1 ≤ i ≤ k. If we set π(ei) = 0 for 1 ≤ i ≤ k and
π(e) = πi(e) whenever e ∈ Ei, we obtain a labeling π : E → {1, 0,−1} such
that Π(ei) = |Πi(vi)| ≤ 1 and Π(v0) = 0, i.e. π satisfies the claim. However, the
edges incident with v0 which are in E′ are falsely labeled 0. We will show how
to label these edges with 1 or −1 and maintain the desired properties.

We can assume w.l.o.g. that for some 0 ≤ s ≤ k we have that {e1, . . . , es} ⊆
E′ and that {es+1, . . . , ek} ⊆ E \ E′. Further assume that |Π(vi)| = 1 for
1 ≤ i ≤ s0 and that |Π(vi)| = 0 for s0 < i ≤ s for some 0 ≤ s0 ≤ s.

We will switch the labelings πi for 1 ≤ i ≤ s0 if necessary to obtain Π(vi) = 1
for 1 ≤ i ≤ bs0/2c and Π(vi) = −1 for bs0/2c < i ≤ s0. Then we define
π(ei) = −1 for 1 ≤ i ≤ bs0/2c and π(ei) = 1 for bs0/2c < i ≤ s0. The edges
es0+1, . . . , es will be labeled with 1 and −1 so that we have Π(v0) ∈ {0, 1}. The
numbers of edges labeled 1 and −1, respectively, will depend on the parity of s
and s0 and differ by at most 1. If Π(v0) = 1, then we also switch the labelings πi

of those trees Ti with i > s for which Π(vi) = 1 to −πi to ensure that Π(ei) ≤ 1
for those indices i.

It is easy to check that the conditions on π remain true for all edges and
vertices of T . ��

Using Lemma 4 and Lemma 6 we immediately have

Theorem 1. The b-EDS problem on weighted trees can be solved optimally in
strongly polynomial time.

The algorithm to solve the b-EDS problem on trees relies on solving a linear
program. However, we would prefer a combinatorial algorithm, ideally running in
linear time. This is indeed possible if we restrict the trees to have either uniform
weights (Section 3.2) or if we restrict ourselves to the {0, 1}-EDS problem on
weighted trees.

3.2 The unweighted b-EDS problem for trees

A linear time algorithm for the unweighted EDS problem on trees was first
given by Mitchell and Hedetniemi [10] and later simplified by Yannakakis and
Gavril [18]. The unweighted b-EDS problem on trees can also be solved by an
easy greedy algorithm in linear time. Call an edge e of a tree a leaf edge if it is
incident with a leaf.
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For any tree T there will always be an optimal solution to the b-EDS problem
which does not use any leaf edges (unless T is a star), since any edge adjacent
with a leaf edge covers at least those edges covered by the leaf edge.

Therefore we can recursively solve the problem by first finding a vertex v
which is incident with exactly one non-leaf edge e, then setting the multiplicity
of e to the maximum b-value of the leaf edges incident with v and finally removing
those leaf edges and updating the b-values of e and those edges adjacent with e
in the remaining tree.

Any optimal solution to the b-EDS problem on that updated tree plus the
multiplicity of the edge e as determined before will give an optimal solution to
the original instance. A formal proof of this fact is straightforward and we omit
it in this abstract.

Theorem 2. The unweighted b-EDS problem on trees can be solved optimally
in linear time.

3.3 The weighted {0, 1}-EDS problem for trees

To the best of our knowledge no linear time algorithm for the weighted EDS
problem on trees has appeared in the literature. Algorithm 1 is a linear time
primal-dual algorithm which solves the weighted {0, 1}-EDS problem on trees
optimally in linear time. This problem generalizes the weighted b-vertex cover
problem on trees as follows:

Lemma 7. The weighted vertex cover problem for trees can be solved optimally
in linear time by solving a weighted {0, 1}-EDS instance on a tree in linear time.

Proof. Let T = (V, E), cv ∈ R+ for all v ∈ V be an instance of the weighted
vertex cover problem for trees. We build a tree T ′ = (V ∪ V ′, E ∪ E′) with
V ′ = {v′ : v ∈ V } and E′ = {vv′ : v ∈ V }, i.e. we add an extra edge incident
with each vertex of T . We set be = 1 for every e ∈ E and be = 0 for every e ∈ E′.
Furthermore, we set c′vv′ = cv for all v ∈ V and c′e = ∞ for all e ∈ E. Then any
b-EDS of T ′ of finite weight corresponds to a vertex cover of T having the same
weight, and vice versa (an edge vv′ ∈ E′ is in the b-EDS if and only if v is in the
vertex cover). ��

We now present our primal-dual algorithm for the weighted {0, 1}-EDS prob-
lem for trees. In a nutshell the algorithm works as follows. We first pick some
arbitrary vertex of the tree as the root. Then we determine an optimal dual solu-
tion by raising dual variables from the leaves up to the root, making at least one
constraint of the dual problem tight whenever we raise a dual variable. Finally,
we recover a primal solution from the root down to the leaves, which satisfies
the complementary slackness conditions with the dual solution.

We denote by dT (v, u) the (combinatorial) distance between v and u in T ,
i.e. the number of edges on the path between v and u in T . If T is rooted at v0,
then by denoting an edge by e = vu we implicitly mean that v is closer to the
root, i.e. dT (v, v0) = dT (u, v0) − 1. For a vertex v �= v0 p(v) denotes the parent
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of v, i.e. the unique vertex on the path from v to v0 which is adjacent to v. The
set of children of v is denoted δ(v) = δ(v) \ {p(v)}.

Algorithm 1: {0, 1}-EDS on weighted trees

Input: A tree T = (V, E), c : E → R+ ∪ {0},
b : E → {0, 1} and a root v0 ∈ V .

1. Set K := maxv∈V dT (v, v0).
% Construct the dual solution from the leaves to the root.
2. FROM i = K DOWNTO 0 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
IF v is a leaf THEN yv := cp(v)v

ELSE
c := minu∈δ(v) cvu

FOR EVERY u ∈ δ(v) with bvu = 1 DO
yvu := min{yu, c}
c := c − yvu

y :=
∑

u∈δ(v) yvu

yv := minu∈δ(v)(cvu − y)
IF v �= v0 THEN cp(v)v := cp(v)v − y

% Construct the primal solution from the root to the leaves.
% e ∈ E is ’tight’, if y(N(e)) = ce

3. F := ∅
4. Whenever an edge vu is added to F , set xv = 1 and xu = 1.
5. IF yv0v = 0 for all v ∈ δ(v0) THEN add all tight edges incident with v0

to F ELSE add one tight edge incident with v0 to F .
6. FROM i = 1 to K − 1 DO

FOR ALL v ∈ V with dT (v, v0) = i DO
e := p(v)v

Case 1 IF ye > 0 and xe = 0 and xp(v) = 0 THEN add ONE arbitrary
tight edge incident with v to F

Case 2 IF yvu = 0 for all u ∈ δ(v) and (be = 0 or ye = 0) THEN add
ALL tight edges incident with v to F

Case 3 IF yvu > 0 for some u ∈ δ(v) and
(

(be = 0 and xe = 0) or

ye = 0
)

add ONE arbitrary tight edge incident with v to F

Case 4 In the remaining cases no edges are added to the primal solu-
tion F .

% Remark: If in any of the cases there is no tight edge incident
upon v then F remains unchanged.

7. RETURN F .
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Theorem 3. Algorithm 1 solves the weighted {0, 1}-EDS problem on trees op-
timally in linear time.

Proof. We will argue that both x and y are feasible solutions to the following LP’s
and that they satisfy complementary slackness and hence are optimal solutions.
Here we let D = {e ∈ E : be = 1}.

LP 1: Min c · x, subject to LP 2: Max � · y, subject to

x(N(e)) ≥ 1 for all e ∈ D y(N(e)) ≤ ce for all e ∈ E

xe ≥ 0 for all e ∈ E ye ≥ 0 for all e ∈ D

First note that y is feasible for LP 2, i.e. y ∈ R. The variable yv always
contains the maximum value that any y-value of an edge incident with v can be
increased by to maintain a feasible solution to LP 2. Using this and the fact that
any positively set y-value for an edge vu is at most cvu′ , where u′ ∈ δ(v), we see
that y is a feasible solution to LP 2.

The primary solution x constructed in steps 5 and 6 is chosen so that it
satisfies the complementary slackness conditions with y. First, only tight edges
are chosen to be in the solution F , i.e. whenever xe > 0 then y(N(e)) = ce.
Second, if ye > 0 for some e = p(v)v with be = 1, and v is considered in step 6,
then we only add edges to F in Case 2 with the additional conditions xe=0 and
xp(v) = 0. But this means no edge incident with p(v) is already in F and we add
at most one edge incident with v to F , i.e. x(N(e)) ≤ 1. As we will show below
x is a feasible solution to LP 1 and therefore x(N(e)) = 1. Thus x and y satisfy
the complementary slackness conditions.

To show that x is a feasible solution for the primal LP let e = vu ∈ D where
v = p(u) and assume to the contrary that for all x(N(e)) = 0. For now assume
e is not incident with a leaf or with the root.

Let f = p(v)v denote the parent edge of e. The sibling edges of e are all edges
vu′ ∈ E with u′ �= u and u′ �= p(v); the children edges of e are all edges uw ∈ E
with w �= v. We claim that neither any of the children edges and sibling edges
of e nor e itself have a tight dual inequality. If one of them did, then it was not
added to F during step 6 because f imposed a constraint on the complementary
slackness condition, i.e. f ∈ D and yf > 0. However, we can only have yf > 0 if
none of the sibling edges of e and e itself were tight when yf was considered to
be increased in step 2. This means at least one of the children edges of e must
be tight and if neither f nor e nor any of the sibling edges of e are in F , then
this child edge of e must be in F , a contradiction to our assumption.

Hence none of the sibling edges and children edges of e and e itself are tight.
Therefore, the only reason ye was not increased any further must be that f was
tight already after e was considered. Consequently, none of the sister edges of f
which are in D nor the parent of f (if it has one) can have a positive y-value.
This finally contradicts our assumption, since then we should have picked f for
the primal solution in step 6 (Case 2).
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We now consider the cases that e is incident with a leaf or with the root. If
e is incident with a leaf, then certainly one of its sister edges or e itself must be
tight. Hence for the parent edge f of e either f /∈ D or yf = 0, hence at least
one of the tight children edges of f must be in F and hence we again have a
contradiction.

Finally, when e is incident with the root and neither e nor any of the other
edges incident with the root are in F , then it must be that all edges incident
with the root are not tight. But then, if e is not incident with a leaf at the same
time, at least one of e’s children must be tight and should be added to F during
the algorithm.

Noting that each edge of the tree is considered at most three times in step 2
and at most twice in step 6, we conclude that the algorithm runs in O(|E|) =
O(|V |) time. ��
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