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Abstract

The goal of image registration is twofold. One goal is to enforce a

certain similarity of two images by geometrically transforming one of

the images. The second goal is to keep this transformation meaningful

or regular. There is a large amount of approaches aiming for regularity.

Most of those are based on certain regularization techniques, others

use so-called regridding options.

Here, we present a mathematically sound formulation that explic-

itly controls the deformation in terms of the determinant of the Ja-

cobian of the transformation. In contrast to similar work, we use

pointwise inequality constraints, i.e., the volume is controlled voxel

by voxel and and not by integral measures. This approach guaranties

grid regularity and prevent folding.

As it turns out, the discretization of the volume constraint in-

equality is not straightforward. Therefore, we present a new type of

discretization enabling the detection of twists in a pixel or a voxel.

Such detection is crucial since a twists indicates that a transformation

is physically meaningless.

To solve the large-scale inequality constrained optimization prob-

lem, we present a numerical approach based on an interior point

method. We finally present some numerical examples that demon-

strate the advantage of including inequality constraints explicitly.
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1 Introduction

Registration is the determination of a geometrical transformation that aligns
points in one view of an object with corresponding points in another view of
the same or a similar object. There exist many instances particularly in a
medical environment which demand for registration. Examples include the
treatment verification of pre- and post-intervention images, the study of tem-
poral series of cardiac images, and the monitoring of the time evolution of
an agent injection subject to patient motion. Another important application
is the combination of information from multiple images, acquired using dif-
ferent modalities, like for example computer tomography (CT) and magnetic
resonance imaging (MRI), a technique also known as fusion. The problem of
fusion and registration arises whenever images acquired from different sub-
jects, at different times, or from different scanners need to be combined for
analysis or visualization. In the last two decades, computerized non-rigid im-
age registration has played an increasingly important role in medical imaging,
see, e.g., [16, 9, 24, 17] and references therein.

A numerical treatment of the problem is typically based on two basic
building blocks. The first one is a so-called distance measure D, quantifying
distance or similarity of two given images R and T and the second one is a so-
called regularizer S which penalizes unwanted and/or unreasonable solutions.
Since image registration is an ill-posed problem (see, e.g., [17]), regularization
is inevitable. A common treatment of the registration problem is based
on the following variational approach. Find a smooth transformation u =
(u1, . . . , ud)> : R

d → R
d minimizing the joint energy

J (u) := D(R, T (u)) + αS(u). (1)

Here, α > 0 is a regularization parameter and compromises between sim-
ilarity and regularity. The functional D measure the distance between the
images and can be based e.g. on the Sum of Squares Difference (SSD), mutual
information [22], or normal gradient fields [15, 12]. For ease of presentation,
in this paper we focus on SSD,

D(R, T (u)) = 1
2
‖T (u) − R‖2. (2)

The regularization operator is design to yield a unique deformation field u.
For ease of presentation, we focus on the most common so-called elastic
regularization (cf., e.g., [3, 5, 17]),

S(u) = ω
2

∑

j‖ ∇ uj‖2 + λ+ω
2
‖ ∇ · u‖2, (3)
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where λ, ω are the so-called Lamé-constants; cf., e.g., [17]. It is worthwhile
noticing that our framework enables the usage of any distance measure com-
bined with any regularizer as long as the Gâteaux-derivatives exist.

A registration result is typically evaluated by looking at the image dis-
tance and the regularity of the displacement; cf. Figure 5 and 6. If the
displacement is more or less regular, the mapping might be considered as
reasonable. If, on the other hand, the displacement is irregular, one may
want to reject the results and start with a larger value of α. The worst case
is that the displacement shows twists (or folding), indicating that the trans-
formation is not even bijective. Note that the variational formulation (1)
ensures a “smooth” solution but has no build-in mechanism to prevent a
very irregular displacement.

The basic idea of the following new approach is to integrate this evaluation
practice directly into the mathematical framework. In our new formulation,
we explicitly demand for transformation regularity and ensure bijectivity.
Mimicking the human evaluation, we constrain the wanted transformation
in terms of minimal and maximal expansion. For any set V ⊂ R

d and
ϕ(x) = x + u(x) we compute the volume and the transformed volume

vol(V, ϕ) :=

∫

ϕ(V )

dy =

∫

V

det(Id + ∇u) dx (4)

and require that the ratio vol(V, ϕ)/vol(V, x) is reasonable. For a smooth
displacement u it is therefore equivalent to require

0 < C(u) := det(Id + ∇u) < ∞ for all x ∈ Ω. (5)

However, for most practical considerations, the above bounds are not suffi-
cient. Some registration algorithms monitor the size of the Jacobian C(u) and
re-initialize or stop the registration if its value is small (cf., e.g., [17]). This
monitoring is usually done implicitly and is not a part of the mathematical
formulation. Therefore, registration algorithms require manual intervention
and visual inspection of the distorted grids in order to achieve physically
acceptable results. Another straightforward idea to prevent grid folding is to
use high values of the regularization parameter α. However such values can
cause an inferior distance between the images.

A seemingly simple approach to enforce a “reasonable” Jacobian is to add
an additional regularization to the objective functional,

J (u) := D(R, T (u)) + αS(u) + β‖C(u) − 1‖2.
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Similar approaches were suggested in [4, 19, 6]. However, this approach has
some disadvantages. For a finite, not too large β, we have only an overall
penalty for “non-reasonable” transformations; locally, the transformation can
still be irregular. The penalty approach with a moderate β’s does not prevent
vanishing Jacobians. On the other hand, it is well-known that increasing
β generally leads to ill-conditioned optimization problems; see, e.g., [18].
Furthermore, for large β’s one gets a volume preserving constraint which
may be too tight for many applications: in practice, one is often interested
in a softer inequality constraint which allows parts of the image to shrink in
a prescribed band.

In this paper we examine inequality constraints applied to the trans-
formed volume. Thus, an additional regularity of the transformation enters
the mathematical formulation of the registration problem. As a consequence,
our numerical approach explicitly controls the displacement and therefore no
manual intervention is required in order to obtain application conform reli-
able displacements. Furthermore, this approach prevents folding of the grid
even for very small regularization parameters α. Our approach is based on
the inequality constraint minimization problem

minimize J (u) := D(R, T (u)) + αS(u) (6a)

subject to κm(x) ≤ C(u) ≤ κM(x), (6b)

where we use non-negative compressibility functions κm ≤ κM . For κm ≡
κM ≡ 1, we obtain equality constraints and thus volume preserving image
registration with hard equality constraints; cf. e.g. [19, 23, 14].

The constraints are phrased as a determinant of the Jacobian. Hence,
the constraints are polynomials of degree d in derivatives of u. The solution
of continuous optimization problems with differential inequality constraints
is not trivial. Here we use the discretize then optimize approach. In the first
stage we discretize the optimization problem (6a) and the constraints (6b).
We then solve the finite dimensional (but relatively large) discrete optimiza-
tion problem. Although the fundamental structure here may be considered
discrete, it is highly useful to view it as an instance of a family of finer and
finer discretizations of a continuous problem; see, e.g., [1, 11, 2]. In an abuse
of notation, we use the same notation for discrete and continuous variables.

The rest of the paper is organized as follows. In Section 2 we discuss the
underlying discretization. Particularly the discretization of the Jacobian is a
delicate matter and care must be taken in order to obtain meaningful results.
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In Section 3 we summarize and discuss an interior point method for the
solution of the optimization problem. We elaborate on the solution of the
linear system obtained in each iteration and describe a multilevel approach
that enable to accelerate the computation. Finally, in Section 4 we present
2D and 3D examples that demonstrate the effectiveness and superiority of
our approach.

2 Consistent Discretization

Choosing a stable discretization method for a system of partial differential
equations (PDE’s) with mixed derivatives is a delicate matter. In particu-
lar, the discretization of the constraint is not straightforward. We start by
discussing the discretization of the displacement field followed by the dis-
cretization of the constraint which consists of the main difficulty. We then
briefly describe the discretization of the objective function.

2.1 Discretizing the displacement

We assume that our discrete images have m1× . . .×md pixels, where d = 2, 3
is the image dimensionality. We also assume that each pixel/voxel is a box of
lengthes h1, . . . , hd. In our description we allow for half step indices. As usual
in image processing, we identify pixels/voxels with cell centered grid points
xi1+ 1

2
,...,id+ 1

2

. Given a box centered at xi1+ 1

2
,...,id+ 1

2

, the four/eight corners are
numbered by full integer indices ik, ik + 1, k = 1, . . . , d. The displacement
u = (u1, . . . , ud) is discretized in the nodal grid (corner of each box; see
Figure 1). This discretization is different from the one proposed in [13] and
it is related to the special structure of the constraints; cf. Section 2.2.

2.2 Discretizing the constraints

Similar to our previous work [14] we are motivated by a finite volume ap-
proach. We discuss the difficulties of finite volume discretization in 2D in
some length. We then also discuss the (non-trivial) extension to 3D.

In the volume preserving approach [13], we demanded that the volume
(or area for 2D) of every deformed box is preserved. We therefore discretized
the volume of every deformed box v, by the cross-product of the diagonals
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xi1+ 1

2
,i2+ 1
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D
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(a) nodal ◦ and cell centered • grid (b) twist

A = [x1
i1,i2

+ u1
i1,i2

, x2
i1,i2

+ u2
i1,i2

],

B = [x1
i1,i2+1 + u1

i1,i2+1, x2
i1,i2+1 + u2

i1,i2+1],

C = [x1
i1+1,i2+1 + u1

i1+1,i2+1, x2
i1+1,i2+1 + u2

i1+1,i2+1],

D = [x1
i1+1,i2

+ u1
i1+1,i2

, x2
i1+1,i2

+ u2
i1+1,i2

].

Figure 1: Cell center xi1+ 1

2
,i2+ 1

2

and transformed cell for d = 2.

(cf. Figure 1(a))

vol(v, ϕ) =

∫

ϕ(v)

dy ≈ 1
2
(C − A) × (B − D).

Here, for ease of presentation, we drop the dependency on the location
i1 + 1/2, i2 + 1/2. This approximation is motivated by the fact that for
smooth and small deformations, the volume of the deformed box (gray area
in Figure 1(a)) can be approximated by order h2 by the volume of the
box spanned by the deformed corners (surrounded by the bold lines in Fig-
ure 1(a)).

For volume preserving registration, this discretization is consistent. How-
ever, if we allow the transformation to shrink or enlarge volume in a certain
amount, the transformation is allowed to be much more irregular and this
discretization can cause difficulties. An intuitive example is illustrated in
Figure 1(b). Here, the top left point A moved by more than the box diame-
ter to A′. This movement results in a “twist” of the box. This twist can not
be observed by measuring the volume of the box: The volume is given by
the volume of the triangle (DCS) minus the volume of the triangle (A′BS).
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Particular, if A′ is close to B, the volume may even be large although a twist
has occurred. In fact, the situation is unstable since an arbitrarily small shift
of A′ can result in a twists. Therefore, box based volume measures do not
detect twists.

It is obvious, that a twisted grid is physically incorrect (at least for all
applications we are aware off). We therefore propose a different discrete
measure that can detect twists of the grid. This new measure is crucial if we
move from volume preservation equalities to volume constraining inequalities.
As in [14], we assume that the transformation is smooth enough such that
a deformed box can be approximated by the box spanned by the deformed
corners.

Based on the previous considerations, we based our discretization on a
triangulation. If a triangle (or tetrahedron in 3D) twists, its volume becomes
negative. Therefore, to prevent twists and singular Jacobians, one has to
consider a discretization based on triangulation. Since a triangle cannot
twist without its volume to change sign, such a discretization is consistent
even in cases of large deformations.

2.2.1 Triangulation in 2D

Every box is divided into two triangles T 1,2; cf. Figure 2(a). We compute
the volume of both triangles separately,

2

h1h2

V 1
i1+ 1

2
,i2+ 1

2

= 1
h1h2

(C − B) × (B − A)

= 1 +
u1

i1+1,i2+1
−u1

i1,i2+1

h1
+

u2
i1,i2+1

−u2
i1,i2

h2

+
u1

i1+1,i2+1
−u1

i1,i2+1

h1

u2
i1,i2+1

−u2
i1,i2

h2
−

u1
i1,i2+1

−u1
i1,i2

h2

u2
i1+1,i2+1

−u2
i1,i2+1

h1

2

h1h2

V 2
i1+ 1

2
,i2+ 1

2

= 1
h1h2

(D − A) × (C − D)

= 1 +
u1

i1+1,i2
−u1

i1,i2+

h1
+

u2
ii+1,i2+1

−u2
i1+1,i2

h2

+
u1

i1+1,i2
−u1

i1,i2

h1

u2
i1+1,i2+1

−u2
i1+1,i2

h2
−

u1
i1+1,i2+1

−u1
i1+1,i2

h2

u2
i1+1,i2

−u2
i1,i2

h1

and obtain 2m1m2 inequality constraints for d = 2.
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D
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(a) 2D with two triangles (b) 3D with one tetrahedron

Figure 2: Triangulation of a pixel (a) or voxel (b).

2.2.2 Triangulation in 3D

In 3D, the computation becomes more involved. The displacement field u is
discretized at the corner of each voxel. Once again, a discretization based on
the deformed voxel cannot detect twists. Therefore, every voxel is divided
into six tetrahedrons; cf. Figure 2(b). The volume of a tetrahedron with
corners A, B, D, and E is given by

V A,B,D,E

i+ 1

2

= 1
6
det(D − A, B − A, E − A).

Similar formula are used for the remaining five tetrahedrons. Hence, we end
up with 6m1m2m3 inequality constraints for d = 3.

Remark 1 The number of constraints can be larger than the number of
unknowns. Particularly in 3D, we have roughly 3m1m2m3 unknowns and
6m1m2m3 constraints. However, for κm < 1 < κM the constraints are consis-
tent, i.e., there exists a non-trivial transformation satisfying the constraints.

2.3 Discretizing S

Since many regularizers are phrased in terms of the more complex differential
operators gradient ∇ and divergence ∇· , we introduce the notation ∇h

and ∇h· for the discrete analogs,

∇h uj = (∂h
1 uj, ..., ∂h

d uj)>, (7)

where with i = (i1, . . . , id) and ek ∈ R
d the kth unit vector,

(∂h
kuj)i+ 1

2
ek

:=
1

hk

(uj
i+ek

− uj
i ), j, k = 1, . . . , d.
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I

I
uj

i1,i2

∂h
1 uj

i1+ 1

2
,i2

uj
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∂h
1 uj

i1+ 1

2
,i2+1

uj
i1+1,i2+1

∂h
2 uj

i1,i2+ 1

2

∂h
2 uj

i1+1,i2
1

2 � �

� �

I

I

I

I
N N

N N
u1,2,3

i1,i2,i3
u1,2,3

i1+1,i2,i3

u1,2,3
i1,i2+1,i3

u1,2,3
i1+1,i2+1,i3

u1,2,3
i1,i2,i3+1 u1,2,3

i1+1,i2,i3+1
∂h

1 u1,2,3

i1+ 1

2
,i2,i3+1

∂h
3 u1,2,3

i1+1,i2,i3+ 1

2

∂h
2 u1,2,3

i1+1,i2+ 1

2
,i3

(a) 2D (b) 3D

Figure 3: Edge staggered grids for 2D (a) and 3D (b).

The unknowns uj are discretized on the nodal grid, whereas the derivatives
are discretized on face staggered grids; cf. Figure 3.

Note that the partial derivatives of uj are located at different positions.
Thus, for the divergence ∇h· , we average to the cell centered grid. Particu-
larly, for d = 3, we end up with

(4 ∇h · u)i1+ 1

2
,i2+ 1

2
,i3

1

2

= (8)

(∂h
1 u1)i1+ 1

2
,i2,i3

+ (∂h
1 u1)i1+ 1

2
,i2,i3+1 + (∂h

1 u1)i1+ 1

2
,i2+1,i3

+ (∂h
1 u1)i1+ 1

2
,i2+1,i3+1

+ (∂h
1 u1)i1,i2+ 1

2
,i3

+ (∂h
1 u1)i1,i2+ 1

2
,i3+1 + (∂h

1 u1)i1+1,i2+ 1

2
,i3

+ (∂h
1 u1)i1+1,i2+ 1

2
,i3+1

+ (∂h
1 u1)i1,i2,i3+ 1

2

+ (∂h
1 u1)i1,i2+1,i3+ 1

2

+ (∂h
1 u1)i1+1,i2,i3+ 1

2

+ (∂h
1 u1)i1+1,i2+1,i3+ 1

2

Based on this discrete analogs, the elastic potential (3) is discretized by

Sh(u) = ‖Bu‖2
2 := λ+ω

2
‖ ∇h · u‖2 + ω

2

∑d

j=1 ‖ ∇
h uj‖2. (9)

In our registration process we like to exploit fast optimization techniques.
Therefore, we also have to consider the derivative

Sh
u
(u) = (λ + ω)( ∇h· )> ∇h · u − ω∆hu =: Au, (10)

where A is a discretization of the well-known Navier-Lamé operator and ∆h

is the usual seven points discrete vector Laplacian.
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Remark 2 With the nodal discretization of uj, the divergence operator is
not the discrete adjoint (transpose) of the gradient operator. The transpose
of the discrete divergence ( ∇h· )> is still an O(h2) approximation to the
gradient but the resulting discrete operator Ah is not h-elliptic. Therefore,
we take advantage of the above consistent and h-elliptic discretization.

2.4 Discretizing T and D

Since we are heading for a continuously differentiable objective function, we
need to have an appropriate image model. Particularly, d-linear image ap-
proximations can not be used. As discussed in [14], we use a smoothing
B-spline approximation to the given discrete date. The smoothing param-
eter is used for noise reduction and automatically chosen according to the
Generalized Cross Validation method (GCV) [10]. For data interpolation
using B-splines see [21]. Since the grid is regular, the spline coefficients can
be computed efficiently using a discrete cosine transform. The continuous
smooth approximation is denoted by T spline.

Given the nodal grid representation of u we use averaging operators P
for the transfer to the cell centered positions,

(Puj)i1+ 1

2
,...,id+ 1

2

:= 2−d
∑

k1,...,kd=0,1 uj
i1+k1,...,id+kd

,

the discretization of T is given by

T (u) := T spline(x1 + Pu1, . . . , xd + Pud),

and the Jacobian Tu of T by

Tu :=
∂T

∂u
(u) =

(

diag(P>∂1T ), . . . diag(P>∂dT )
)

, (11)

where the partial derivatives ∂jT are evaluated at the spatial positions (x1 +
Pu1, . . . , xd + Pud). Note that using a spline approximation for T , Tu is a
sparse matrix with only eight non-zero diagonals.

Our discretization of the SSD distance measure (2) is straightforward,

D(u) := 1
2
‖T (u)−R‖22 and thus Du(u) = Tu(u)>(T (u)−R).

10



3 Solution of the optimization problem

3.1 The Log Barrier Framework

To solve the discretized optimization problem (1), we use a variant of a log-
barrier method [8, 18]. Rather than solving the constrained optimization
problem, we replace it by a sequence of unconstrained optimization prob-
lems Jµ where µ is gradually decreased. Here,

Jµ = D(R, T (u)) + αS(u)− µe>
(

log(C(u)− κm) + log(κM −C(u)
)

, (12)

where µ is the barrier parameter and e = (1, . . . , 1)>. In classical optimiza-
tion algorithms that barrier parameter is chosen large at first and slowly
reduced to zero. The algorithm for solving the optimization problem is sum-
marized in Algorithm 1.

Algorithm 1 Constrained Image Registration: u← CIR(u, α);

Choose µ > 0, 0 < γ < 1.
while true do

1 Correction: Approximately minimize Jµ for uµ starting at u; cf. (15).
2 Set µ← γµ.
3 Prediction: Calculate sµ and update u← uµ + sµ; cf. Sec. 3.3.
4 Check for convergence.

end while

In the following we discuss a few non-trivial steps in this algorithm.
Firstly, we discuss the minimization of Jµ for a particular choice of µ (Step 1).
Secondly, we discuss the correction to the approximate solution after µ is de-
creased (Step 3).

3.2 Solving the optimization problem for a fixed µ

To solve the optimization problem for a fixed µ we use a variant of Gauss-
Newton’s method; see, e.g., [18]. The gradient of the objective function is

∇u Jµ = Tu(u)>(T (u)−R) + αAu− µC>

u

(

1

C(u)− κm

−
1

κM −C(u)

�
.

(13)
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We approximate the Hessian of the objective function Jµ using the Gauss-
Newton approximation

Hµ = T>

u
Tu+αA+µC>

u
diag

(

1

(C(u)− κm)2
−

1

(κM −C(u))2�Cu. (14)

The Gauss-Newton direction is then calculated by solving the linear system

Hµs = −∇u Jµ. (15)

For the solution of the system (15) we use the Conjugate Gradient method
with a multigrid V-cycle preconditioner [20].

3.3 Prediction step

The optimization problem (12) is approximately solved for a particular choice
of µ. To obtain an approximate solution of the underlying constrained opti-
mization problem (6), µ has to be decreased to zero.

It is well known [18] that if one initializes every optimization problem
with the numerical solution obtained for the previous µ and wants to ensure
fast converges of the algorithm, then small changes of µ are required. In
order to speedup the reduction process for µ, we use a predictor-corrector
approach [18].

Since we relax µ by a fraction, it is natural to change to a logarith-
mic scale. Replacing µ by e−t, for the solution u(t) for a fixed t we have
∇u J(u(t), t) = 0 and using the chain rule it follows that

e−tC>

u

(

1

C(u) − κm

−
1

κM − C(u)�+ Hµ∂tu = 0. (16)

Discretizing equation (16) we obtain the following rule for the update s =
u(tk+1) − u(tk),

e−tkC>

u

(

1

C(uk) − κm

−
1

κM − C(uk)�+ 1

tk+1 − tk
Hµs = 0. (17)

This results in a linear system with the same Hessian matrix as in (15)
but with a different right hand side. This fact can be exploited if inexact
factorization is used as a preconditioner or a smoother.
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4 Numerical Experiments

To demonstrate the effectiveness of our method we use SPECT data from the
Emory Hospital in Atlanta. The data are 3D images of 128×128×36 voxels
of the heart of a patient through different phases of the cardiac cycle. The
overall goal of the clinical study is to evaluate and track cardiac displacement
from systolic to diastolic.

It’s obvious, that the deformation of the heart is highly non-linear and
thus presents a great challenge to any registration routine. Applying an un-
constrained registration algorithm results in a dilemma: Either the image
distance stays large or the grid folds. For this application, volume or mass
preserving equality constraints as consider in [23, 14] are physiologically in-
appropriate. On the other hand, it is common to assume that the heart
does not change its volume too much [7]. We therefore apply our volume
constrained VCIR approach.

We preform two sets of experiments. In the first set of experiments we
use a 2D slice which allows us to visualize some of the concepts discussed
above in more detail. In the second set of our experiments we process the
3D data and demonstrate that the concepts carry over to 3D.

We experiment with different regularization parameters α. For both,
the 2D and 3D example, we used κm = κ−1

M ≡ 0.3. All computations are
performed using Matlab.

4.1 2D cardiac example

Figure 4 shows two SPECT images of a heart in systolic and diastolic phases.
For the registration of the two phases, we attempt to use two different ap-
proaches. First, we run an unconstrained code that uses elastic registration
[13]. Both algorithms are stopped as soon as ‖uk+1 −uk‖ < voxelsize/10. In
addition, the unconstrained algorithm is also stopped if the minimum value
of the determinant of the Jacobian is less then 10−5.

Using the unconstrained code and starting with α = 10−2 we obtained
a minimal value of the Jacobian of 0.28 which is close to the lower bound
κm = 0.3. The SSD reduction was 66%,

red := D(ufinal)/D(u0 = 0).

In order to decrease the image difference further, we then rerun the uncon-
strained algorithm with a smaller regularization parameter α = 10−3 and
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Figure 4: Heart in two phases: diastolic (reference, left) and systolic (tem-
plate, right); top: 3D visualization, bottom: two 2D slices.

obtained a 47% reduction; the algorithm terminates because of the Jaco-
bian becoming close to singular. However, as can be seen in Figure 5, the
grid starts to degenerate, i.e. the minimum value of the determinant of the
Jacobian is less then 10−5.

We than run our VCIR algorithm. For α = 10−2, we obtain the same
SSD reduction to 66% but here the minimal value of the determinant of the
Jacobian is 0.32. Obviously, the results of the constrained and unconstrained
approaches are nearly indistinguishable, both in terms of the image difference
as well as in terms of the displacements.

Spectacular results are obtained for α = 10−3. Here, the SSD reduction of
the constrained approach is 43%, which is even better than the reduction of
the unconstrained approach with the same α and much better than the reduc-
tion for α = 10−2. Moreover, in contrast to the unconstrained approach, the
minimum value of the determinant of the Jacobian was 0.31 ≥ κm. This is of
course not a surprise since our algorithm is designed to fulfil the constraints.
The regularity of the transformations is visualized in Figure 6.

14



Figure 5: Grids obtained from the unconstrained algorithm; left: α = 10−2,
red = 66%, minC = 0.28, middle: α = 10−3, red = 47%, minC < 10−5,
right: detail of the grid for 10−3.

Figure 6: Grids obtained from VCIR; left: α = 10−2, red = 66%, minC =
0.32, middle: α = 10−3, red = 43%, minC = 0.31, right: detail of the grid
for 10−3.

4.2 3D cardiac example

In this example we test our algorithm on the 3D data; cf. Figure 4. The re-
sults for various regularization parameters, the unconstrained and the VCIR
algorithms are summarized in Table 1. Note that for the constrained ap-
proach, we are able to reduced the regularization parameter down to α =
10−7.

Figure 7 displays a visualization of the volume change for the uncon-
strained and VCIR approaches. We observed that the unconstrained ap-
proach does change the volume significantly particularly in a small area next
to the heart wall (see zoom of slice 10). In an integral measure this small spot
is almost undetectable. However, for this particular medial application the
volume change of the heart wall is crucial and therefore our VCIR approach
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Table 1: Results for 3D registration various regularization parameters, un-
constrained and VCIR approaches.

α SSD red min C

unconstrained
10−4 75% 0.29 · 100

10−5 68% 0.14 · 10−2

10−6 52% < 0

VCIR
10−7 47% 0.30 · 100

is clearly preferable.

5 Conclusions

Regularity of the displacement field is a very important feature in image
registration. In most applications, an extreme expansion or shrinkage and
particularly folding of objects is non-physical. Therefore, registration algo-
rithms should not produce such solutions. Rigridding strategies as introduced
in [5] could be used. However, there is no physical or mathematical justi-
fication for this procedure. There also exists approaches aiming for volume
preservation [19, 6, 23, 14]. But volume preservation is too restrictive for
a wide range of applications. For example, for problems arising in cardiac
imaging it is well-known that the volume of the heart does change within
some bands and a volume preservation is not physically meaningful.

We present a novel registration approach, where the main idea is to add
additional explicit volume inequality constraints. Thus, our mathematical
model takes the constraints into and prevents large changes of the volume
and folding. An analytic solution of the registration problem is not known
and therefore numerical schemes have to be applied. A major concern of this
paper is to point out that a proper treatment of volume inequality constraints
is not straightforward. Here we suggest a nodal grid based discretization for
the unknowns and evaluate the constraints on a triangulation.

Our numerical results indicate that there is a tremendous difference be-
tween the unconstrained and inequality constrained approach.
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