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Abstract

Inversion of 3D time-domain electromagnetic data is a challenging problem due to

its size and nonlinearity. In this paper we present a general formulation for invert-

ing time domain electromagnetic data. To overcome the difficulties we combine and

develop many computational tools including: Quasi-Newton methods and precondi-

tioners, artificial time stepping and source terms. This combination allows us to deal

with realistic geophysical problems.
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1 Introduction

In this paper we develop an inversion methodology for large scale parameter identification
problems which evolve from 3D time domain electromagnetic simulations. This type of
problem is of major interest in geophysics, medical imaging and non-destructive testing; see
for example [29, 27, 10, 6, 30, 16, 7] and references therein. The forward model consists of
Maxwell’s equations in time where the permeability is fixed but electrical conductivity can be
highly discontinuous. The parameter regimes considered give rise to highly stiff problems in
the time domain. The goal of the inversion is to recover the conductivity given measurements
of the electric and/or magnetic fields.

There are many practical challenges to solving the inverse problem. First, a fast, accurate
and reliable algorithm for 3D forward modeling is required. Second, the sensitivities for such
problems are too numerous to be formed or stored in a reasonable amount of time and
space. Finally, finding the minimum of the objective function obtained by matching the
data and incorporating a priori information on the conductivity field can be difficult due to
the nonlinearity of the problem.

Further difficulties are often confronted when trying to invert a particular data-set. For
example, in geophysical surveys such as large-loop UTEM surveys or CSAMT surveys, the
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transmitter may be some distance away from the area of interest. Discretizing a spatial
volume that includes the transmitter and receivers can result in an excessively large problem.
Also, most transmitter waveforms have an on-time and off-time and the ideal scenario is that
electromagnetic fields have completely decayed away before the next waveform begins. In
conductive environments however the decay time might extend for a couple of periods of the
input waveform. Modelling the field data then requires an extended source that consists of a
few repetitions of the waveform. This increases the time for forward modelling, or effectively
the size of our space-time inverse problem.

A main impediment to inverting time domain electromagnetic data is the size of the
problem and the number of computations to be carried out. To be more specific, assume
that the forward problem (in continuous space) is written in the form

A(m)u − b = 0 (1.1)

where A(m) is a version of Maxwell’s equations (including boundary conditions), m = log(σ)
is the log conductivity, u stands for the fields and b represents sources and boundary values.
We assume for simplicity of exposition that A is invertible for any relevant m, that is, there
is a unique solution to the forward problem.

In the inverse problem we measure some function of the fields and desire to recover the
model m. Let us write the measured data as

dobs = Qu + ε (1.2)

where Q is a measurement operator which projects the fields (or their derivatives or integrals)
onto the measurement locations in 3D space and time, and ε is the measurement noise. The
data are finite in number and contaminated with noise, and therefore there is no unique
solution. To obtain a single model which depends stably on the data we incorporate a-

priori information and formulate the inverse problem (in continuous space) as a constrained
optimization problem of the form

min
m,u

1

2
‖Qu − dobs‖2 + βR(m) (1.3)

subject to A(m)u − b = 0.

Here, β > 0 is the regularization parameter, and R(·) is a regularization operator reflecting
our a-priori information. Typically, we know that m is a piecewise smooth function over
the spatial domain Ω in 3D, so we assume that R(·) involves some norm of ∇m over Ω,
e.g., weighted L2 or L1 or a Huber combination [24, 12]. This type of regularization can be
written as

R(m) =

∫

Ω

ρ(|∇m|) dx + γ
1

2

∫

∂Ω

(m − mref )
2dx (1.4)

where ρ is given by the Huber function and m0 is some background reference model and
γ is a user-specified constant that adjusts the relative influence of the two terms in the
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regularization functional. The choice of this functional ensures that the weak form has
Dirichlet boundary conditions and that in regions far away from where we have data, the
model converges to a known background. This choice also guaranties that the Hessian of the
regularizer is invertible.

Next, the problem (1.3) is discretized using some finite volume method over a finite grid
representing the domain in space and time. This yields the finite dimensional optimization
problem

min
m,u

1

2
‖Qu − dobs‖2 + βR(m) (1.5)

subject to A(m)u − b = 0,

where u, m and q are grid functions ordered as vectors and correspond to their continuous
counterparts above, and Q and A are large, sparse matrices. The matrix A depends on m
and is nonsingular. The discrete regularization function has the form

R(m) = e>ρ(|∇hm|) + γ||W (m − mref ||
2 (1.6)

where ∇h is the discrete gradient operator and e is a vector of ones.
In previous work [21] we have used an inexact, all-at-once methodology [5, 17, 3] to solve

(1.5), solving the forward problem and the inverse problem simultaneously in one iterative
process. While this approach can be highly efficient, it requires storage of all time-space
history of the fields.

In this work we aim to deal with very large scale problems and multiple sources. For such
problems one cannot store all the fields on computer hardware that is currently available to
us, and we therefore turn to other avenues for the solution of the problem. A simple way to
reduce storage is to use a reduced space method, which eliminates Maxwell’s equations, and
solves the unconstrained optimization problem

min
m

1

2
‖QA(m)−1b − dobs‖2 + βR(m). (1.7)

This leads to the Euler-Lagrange system

g(m) = J(m)>(QA(m)−1b − dobs) + βRm(m) = 0 (1.8)

where

J(m) = −QA(m)−1G(m)

G(m) =
∂[A(m)u]

∂m
.

and J(m) is the sensitivity matrix (see [20] for derivation) and Rm(m) = ∂R
∂m

.
We search for an m that solves (1.8). The evaluation of g(m) involves a number of

computations. To calculate Rm(m) we use the chain rule

Rm(m) = ∇>

h ρ′(|∇hm|)∇hm + γW>W (m − mref ).

3



Also, the forward problem must be solved to generate predicted data, and calculating the
action of J(m)> on a vector requires the solution of the adjoint problem. If a gradient descent
type method is used to solve (1.8) then each iteration requires the solution of a forward and
adjoint problem which means solving Maxwell’s equations forward and backward in time. In
addition a line search involving forward modeling must be carried out.

Newton-type methods are generally far superior to descent methods when solving (1.8).
If a Gauss-Newton method is used, then at each iteration we solve the linear (but dense)
system

(J(m)>J(m) + βRmm)s = −g(m) (1.9)

where s is a model perturbation. This system is never formed explicitly but is solved using
conjugate gradient (CG) methods. At each CG iteration J(m) and J(m)> are applied to a
vector and hence a forward and adjoint problem must be solved. Even with reasonably good
preconditioners, a few tens of CG iterations are likely required to get a good estimate of s.
This results in many forward modellings and hence the cost of a Newton-CG algorithm is
also too high. We therefore turn to Quasi-Newton techniques.

In a quasi-Newton method we solve a system

B(m)s = −g(m) (1.10)

where B is an approximation to the Hessian. One of the most successful methods for un-
constrained optimization is the limited memory BFGS (L-BFGS) method [26]. In a BFGS
method either B or it’s inverse, B−1, is built up through successive iterations. The main
computations at each iteration are construction of the gradient and performing a line search.
The constituent vectors for constructing B need to be stored. The limited memory version
of BFGS addresses this issue. While the method is highly attractive for inverse problems,
naive implementation of L-BFGS usually fails (see [15] for details).

In this paper we propose a practical strategy that combines the strengths of Gauss-
Newton and quasi-Newton approaches. Firstly, we alter the usual Tikhonov methodology to
use an iterated Tikhonov approach that partially overcomes difficulties in solving the opti-
mization problem when the regularization parameter is small. We then explore a particular
implementation of L-BFGS and use the constructed approximate inverse Hessian as a pre-
conditioner for the Gauss-Newton iteration. This substantially reduces the number of CG
iterations in solving (1.9). We also present strategies for dealing with some of the practical
issues mentioned earlier. In particular we introduce a source correction procedure that allows
us to reduce the spatial volume of the region to be inverted and ameliorates discretization
errors. We also introduce a technique to work with problems that have an extended time
source.

The paper is divided as follows. In Section 2 we describe the solution of the forward
problem. In Section 3 we discuss how to modify the right hand side of the forward problem
such that the size of the discretized domain is smaller. In Section 4 we discuss the overall
approach for the solution of the problem and motivate the use of Quasi-Newton methods.
In Section 5 we discuss efficient implementation of Quasi-Newton methods. In Section 6 we
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discuss how to deal with extended waveforms source-signals. We give numerous examples in
Section 7 and the paper is summarized in Section 8.

2 Solution of the forward problem

In this section we present our forward problem, Maxwell’s equations, and discuss solution
procedures suitable for the parameter regimes of interest. Most, but not all of the present
development follows our previous work [18, 16, 21].

2.1 Reformulation and discretization

The time-dependent Maxwell equations can be written as

∇× E + µ
∂H

∂t
= 0, (2.11a)

∇× H − σE − ε
∂E

∂t
= sr(t) (2.11b)

over a domain Ω × [0, tf ], where E and H are the electric and magnetic fields, µ is the
permeability, σ is the conductivity, ε is the permittivity and sr is a source. The equations
are given with boundary and initial conditions:

n × H = 0 (2.11c)

H(0,x) = H0 (2.11d)

E(0,x) = 0 (2.11e)

although other boundary and initial conditions could be used.
Since the equations are very stiff [4, 21] we turn to implicit methods, and use a BDF

(Backward Difference Formula) type method. For the work here we choose the simplest,
lowest order member of both these families of stiff integrators, namely, the backward Euler
method. This allows us to simplify the presentation, however we have also implemented a
BDF(2) integrator and the reader is referred to [19, 21, 23].

Semi-discretizing (2.11), (2.11c) over a time step [tn, tn+1] yields the equations

∇× En+1 + αnµHn+1 = αnH
n in Ω (2.12a)

∇× Hn+1 − (σ + αnε)En+1 = sn+1
r − αnεEn in Ω (2.12b)

n × Hn+1 = 0 on ∂Ω. (2.12c)

where αn = (tn+1 − tn)−1. The superscripts in (2.12) denote the time level, with solution
quantities at n + 1 being unknown while those at n are known.

Rather than working with the fields En+1 and Hn+1 we first eliminate Hn+1 from (2.12)

Hn+1 = Hn − (αµ)−1∇× En+1.
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Substituting, we obtain an equation for En+1

∇× µ−1∇× En+1 + ασEn+1 + α2εEn+1 = α(∇× Hn + αεEn − s). (2.13)

As discussed in [18, 16] the discretization of the system (2.13) is difficult to solve using
iterative methods. Introducing the potentials A, φ to write E = A + ∇φ we get

(∇× µ−1∇× −∇µ−1∇· )A + α(σ + αε)(A + ∇φ)n+1 = (2.14)

α(∇× Hn + αεEn − s)

∇ · (σ + αε)(A + ∇φ)n+1 = α∇ · εEn −∇ · s (2.15)

For ease of notation we introduce σ̂ = σ + αε. The continuous equations are discretized
in space using a finite volume technique on a staggered grid. See (see details in [18, 16, 21]).
Variables A and E are defined at the center of cell faces, H is defined on the edges, and φ
in the cell centers. Upon discretization we obtain

(
Lµ + αMσ̂ αMσ̂G

DMσ DMσ̂G

)(
A

φ

)
=

(
α(CeH

n + αεEn − s)
εαDEn − Ds

)
(2.16)

where
Lµ = CeMµCf − GM c

µD

and the matrices Ce, Cf , G and D are respectively the discretizations of the curl on the edges
and faces, the gradient and the divergence. The matrix Mσ̂ is a discretization of σ + αε on
the cell faces. It is composed of harmonic averages of σ̂ for the two cells in contact at a face.
The matrix Mµ consists of arithmetic averages of the permeability for cells adjacent to an
edge.

This linear system can be solved using standard iterative methods [28] and effective
scaleable preconditioners can be designed for it [18, 1].

2.2 Summary - the forward problem

In many applications we are concerned with multiple sources and with multiple time steps.
For solving the inverse problem it is useful to formulate the forward problem as a single
equation (see for example Section 1).

We note that it is possible to rewrite the system as a lower block bidiagonal system for
A, φ and H of the form

A(m)u =





A1(m)
B2 A2(m)

B3 A3(m)
. . . . . .

Bs As(m)









u1

u2
...

us




=





q1

q2
...

qs




(2.17)
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where

un =




An

φn

Hn



 , An(m) =




Lµ + αnMσ̂ αnMσ̂∇h 0
∇h · Mσ̂ ∇h · Mσ̂∇h 0

α−1
n M−1

µ ∇h× 0 I





qn =




−αnsr

n

−∇h · sn
r

0



 , Bn =




−εα2

n −εα2
n∇h −αn∇

T
h×

−∇h · εαn −∇h · εαn∇h 0
0 0 −I



 .

In the case of multiple sources we obtain a block diagonal system where each block
has the same structure as (2.17). Note that only the diagonal blocks in (2.17) depend on
the conductivity. Also, once we have an efficient solver for one block Ak(m), solving the
forward problem (2.17) is straightforward (with the cost of solution increasing by a factor of
s compared to the cost of solving for one block).

3 Corrective Sources

Our boundary condition requires the domain to be large enough such that the magnetic fields
are dramatically reduced. This may require that a very large domain be modeled. This is
especially true if the sources are far from the receivers, as they are in many EM surveys.

To make the problem tractable we introduce a correction procedure which has many
elements of a primary/secondary field formulation. The methodology can be used to reduce
the size of the problem and also to provide a first order correction for discretization errors.
We first write the steps in a generic manner and then show how this is implemented in the
time domain equations.

Let A denote a general operator which depends upon m, our physical property of interest
(i.e. electrical conductivity), ũ is a field, and q̃ is a source. m, ũ, q̃ are all functions with a
relationship

A(m)ũ = q̃ (3.18)

The above equations are also provided with boundary conditions. Analytic, or quasi-
analytic, solutions are available only for simple situations, for example, finding the fields in
a half-space due to an electric or magnetic source. For realistically complicated earth models
we obtain a numerical solution by solving a discrete system

Ah(m)uh = qh (3.19)

where Ah is a matrix that results from the discretization of A, uh is a vector of (discrete)
field values, and qh is a vector that contains the discretized source and boundary conditions.

Let m0 be a model for which we can generate an exact solution to equation (3.18) and
let the discrete field values be ũ(m0). It is unlikely that ũ(m0) is an exact solution for the
discrete equations (3.19). The residual is

Ah(m0)ũ(m0) − qh = s. (3.20)
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This discrepancy can be regarded as a corrective source and added to the discrete equations.
We therefore solve

Ah(m)uh = qh + s. (3.21)

It is straightforward to show that when m = m0 the solution of the discrete equations
uh = ũ(m0). So the numerical solution is equal to the ”exact” solution for our reference
problem. The above correction can be used for the following two modeling problems.

1. Discretization errors: The corrective source is a set of currents that compensate for
the differences between the discrete and continuous models for a specific conductivity.
This is particularly useful for dealing with the current source. In geophysical field
applications the source current is carried by a small wire, whereas in the discrete
formulations the current is assumed to be distributed through the face of a cell. If a
receiver is close to a transmitter, the difference in fields can be significant.

2. Reducing the size of the problem. In CSAMT problems, or large loop UTEM surveys,
the data are acquired in a region that is significantly away from the source. Our data
area, and region of interest, is much smaller than the volume that contains the trans-
mitter and receivers. If the discretized volume is outside the region of the transmitter,
the corrective- source will primarily be currents on the boundary of the volume.

The corrective sources provide the needed compensation for a specific conductivity. We
have no mathematical procedure for evaluating how well the correction terms work when the
conductivity changes significantly from m0. However, in the problem of reducing the volume,
it is expected that if a reasonable estimate of the large-scale background conductivity is
known, and if the secondary fields for the structure inside our reduced volume are small
on the outside of the reduced volume, then our procedure should work well. Numerical
experiments substantiate this.

We now apply the above methodology to our time domain problem. Assume we have
calculated the flux Jn

0 and the magnetic field Hn
0 n = 1..N , that correspond to the conduc-

tivity σ0 and the source s. This can be done by analytic formulas [32] or by using 1D codes
that allow for the calculation of highly accurate fields given a simplified earth model. The
corresponding (discrete) electric field is

En
0 = M−1

σ0
Jn

0

Our basic equation is (2.13) and thus the source for time tn+1 is

s0 = CeMµCfE
n+1
0 + αMσ0

En+1
0 + α2εEn+1

0 − α(CeH
n
0 + αεEn

0 − s) (3.22)

Using the potentials we therefore have

(
Lµ + αMσ̂ αMσ̂G

DMσ̂ DMσ̂G

)(
A

φ

)
=

(
s0 + α(CeH

n + αεEn − s)
Ds0 + αDεEn − Ds

)
(3.23)
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Note that upon using s0 in (2.13), and the equivalent A − φ formula (3.23) with the
background conductivity σ0, we obtain the fields E0 and H0. The right hand side of the
equation is zero (up to discretization errors) where there are no electric or magnetic sources.
However, the right hand side is different from zero on the boundary of our domain. This can
be thought of an artificial source which emulates the source influence on a finite grid.

Numerical experiments show that the formulation (3.23) allow us to dramatically reduce
the volume under consideration without sacrificing accuracy.

4 Inversion Framework

4.1 Inversion algorithms

As discussed in the introduction we aim to solve the minimization problem (1.7). There
is one further complication when solving the optimization problem because, in general, the
regularization parameter is unknown a-priori. Therefore, we need to solve the optimization
problem a few times for different regularization parameters. The ”optimal” regularization
parameter has to be chosen using an appropriate criteria such as discrepancy principle [27]
or GCV [22, 31]. A general sketch of the algorithm that achieves this goal is as follows

Algorithm 1 Tikhonov Inversion algorithm:
[m,β] ← INV(m0, β0);

while true do

given β approximately solve (1.7) for mβ with starting guess m0

if mβ fulfills chosen stopping criteria then

break;
end if

update β, set m0 ← mβ

end while

Algorithm 1 is a common implementation of Tikhonov regularization. However solving
the optimization problem (1.7) becomes increasingly harder as the regularization parame-
ter approaches zero. One way to alleviate this difficulty is to use an iterated Tikhonov
regularization [11].

The use of iterated Tikhonov for nonlinear problems has been analyzed in [8] and it is
known to give similar results to the Tikhonov regularization. We will further explore the
use of Iterated Tikhonov regularization for geophysical inverse problems in a future paper,
however, for now we discuss the basic theoretical properties of the method.

The iterated Tikhonov regularization is based on the observation that the nonlinear
equation (1.8) can be rewritten as

m − m0

τ
= R̂−1

mmJ(m)>(dobs − QA(m)−1b) (4.24)
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where m0 = 0 and τ = β−1. Equation (4.24) is a single backward Euler step of the nonlinear
ODE

ṁ = R̂−1
mmJ(m)>(dobs − QA(m)−1b) (4.25)

m(0) = 0 (4.26)

This implies that methods other than a single backward Euler method can be used. For
example, in the classical implementation of the Iterated Tikhonov Regularization method a
few backward Euler steps are taken with the same regularization parameter (or time step).
Thus we solve the following sequence of problems with the same regularization parameter
but with a changing reference model mref .

min
m

1

2
‖QA(m)−1b − dobs‖2 + βkR(m − mrefk

) (4.27)

It can be shown under mild assumptions that if we set mref to the solution of the kth

problem, then the algorithm reduces the data misfit at each iteration. A sketch of the
iterated Tikhonov regularization is as follows

Algorithm 2 Iterated Tikhonov Inversion algorithm:
[m,β] ← ITINV(mref , β);

while true do

given the reference model mref approximately solve (4.27) for mk with starting guess
mref

if mk fulfills chosen stopping criteria then

break;
end if

update reference model, set mref ← mk

end while

It is also possible to combine algorithms and change the regularization parameter as well
as the reference model. In this approach both the regularization parameter and the reference
model change at each iteration. This leads to faster reduction in the misfit.

Using an iterative regularization has one main advantage. The regularization parameter
β used at each iteration is larger than the equivalent one used for classical Tikhonov regular-
ization. This can be advantageous since the convergence of the linear solver at each iteration
is highly dependent on the size of the regularization parameter. On the other hand, there
are some disadvantages to the iterative regularization approach. The main one is that it is
difficult to take advantage of solving problems on coarser grids [2]. Our code implements
both strategies for the solution of the problem.

5 Efficient implementation of Quasi-Newton methods

Irrespective of whether we use a Tikhonov or iterated Tikhonov approach, an essential com-
putation is the solution of equations (1.9). These will be solved with a CG solver and the
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efficacy of solution depends strongly on the preconditioner. In previous work [21] we used
the matrix M = (0.1I + βW T W ) as a preconditioner. This worked well for large β but
was less effective as β decreased. To improve computational efficiency we need to find a
better approximation to the Hessian matrix (J>J + βRmm). We will use Quasi-Newton
techniques to construct an approximation to the inverse Hessian and use that matrix as
a preconditioner. As a prelude we discuss Quasi-Newton methods for the solution of the
optimization problems (1.7) and (4.27). We start by introducing some notation, review the
L-BFGS method and discuss important points in it’s implementation.

For a fixed regularization parameter β and reference model mref , given two approximate
solutions mj and mj+1 and the two corresponding gradients gj and gj+1, we define, as is
usual in Quasi-Newton methods,

sj = mj+1 − mj

yj = gj+1 − gj.

The usual Secant Condition [9, 26] is

Hjsj = yj (5.28)

where Hj is an approximation to the Hessian. In our case the Hessian has the structure

Hj = J>

j Jj + Bj + βRmm

where Rmm is a known, sparse, easy-to-evaluate matrix and

Cj := J>

j Jj + Bj

is a dense hard-to-evaluate matrix which corresponds to a compact operator [11]. Common
Quasi-Newton methods do not make use of the known part and evaluate the whole Hessian.
However, we would like to use the known information about the Hessian.

To do that, we also note that for the applications we consider here, we have an ex-
plicit knowledge of the gradients with respect to the data objective function and the model
objective function

gd(m) = J(m)>(QA(m)−1b − dobs) (5.29a)

gm(m) = βRm(m; mref). (5.29b)

Using the separability of the objective function and the gradient we now discuss approxima-
tions to the Hessian.

In the BFGS method one uses equation (5.28) to approximate the inverse of the Hessian
directly. The standard BFGS update is (see [9, 26])

H−1
k+1 = (I − γksky

>

k )H−1
k (I − γkyks

>

k ) + γksks
>

k (5.30)

where γk = (s>k yk)
−1. In the L-BFGS method only a limited number of vectors are kept

and the matrix H, or H−1, is never generated explicitly. The vectors {mj, gj} j = 1, . . . `
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are saved and an inverse-Hessian matrix vector product can be calculated using recursion
(see [25] for details).

Although it is possible to use the L-BFGS methods directly. As discussed in [13], if the
matrix Rmm is constant (as when the regularization is quadratic) it is crucial to initiate the
Hessian with βRmm. This implies that when calculating the inverse-Hessian times a vector
one needs to calculate the product v = R−1

mmw. This can be done by the solution of the
system Rmmv = w, which can be achieved directly, or using a multigrid method [14].

However, there are a few difficulties when using L-BFGS for the solution of our particular
problem. Consider the L-BFGS solver imbedded into the algorithms 1, 2. When solving two
adjacent problems, with a different regularization parameter or a different reference model,
the gradients of the previous functions cannot be used. This implies that a standard imple-
mentation of L-BFGS requires restarting the process ignoring all (potentially useful) previous
information. We therefore suggest a variant which makes use of previous approximations to
the solution.

Assume we are in iteration ` of a BFGS algorithm with a reference model mrefk and a
regularization parameter βk and that we have the vectors

{gi = gd
i + βkRm(mi; mrefk), mi} i = 1 . . . `

Now assume that the regularizer part has changed either because βk or mrefk has changed
to βk+1 and mrefk+1

. Straight forward implementation of BFGS requires we restart the
process ignoring information we have previously collected. However, we can circumvent this
and define the following new set of vectors

{ĝi = gd
i + βk+1Rm(mi; mrefk+1

), mi} i = 1 . . . ` (5.31)

It is clear that the set of vectors ĝi i = 1, . . . , ` are the gradients of the modified objective
function which corresponds to previous models m1, . . . , m`. We can therefore use these
vectors to generate a new BFGS approximation to the Hessian. Note that for the class of
regularization we consider here, Rm(mi; mrefk+1

) can be calculated in linear time.
When using the new BFGS vectors we must test the Quasi-Newton condition, y>

j sj ≥ 0.
If this condition does not apply to the new Quasi-Newton vectors then we simply drop the
corresponding pair.

In the L-BFGS method one chooses a maximum number of vectors, (lmax, to be used.
The convergence rate increases with lmax but so will storage requirements. Thus lmax will be
problem and machine dependent.

Although the optimization problem could be solved directly with L-BFGS, we have found
that it gave poor performance. We suspect that for small regularization parameters many
BFGS vectors are needed in order to obtain a good approximation to the Hessian. Neverthe-
less, the BFGS approximation to the Hessian can still perform very well as a preconditioner
for the GN system. This is the role it plays here.
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6 Working with extended waveforms

Most transmitter waveforms have an on-time and off-time and the ideal scenario is that
electromagnetic fields have completely decayed away before the next waveform begins. In
conductive environments however the decay time might extend for a couple of periods of the
input waveform. Modeling the field data then requires an extended time source that consists
of a few repetitions of the waveform. As a example, consider a conductive sphere buried
in a low conductivity background. Suppose that the sphere has a late-time decay constant
τ = 100msec. The waveform is a half-sinusoid pulse followed by an off-time. The data are
acquired in the off-time and stacked over many periods. The final data set is assumed to
be the steady state values. If the fundamental frequency of the transmitter is 10Hz, then
numerical experience shows that at least three cycles of a waveform need to be modeled
before an approximate steady state solution is reached. Rather than carrying out this time
stepping in all forward modelings for the inverse problem we now suggest a new method to
deal with this difficulty.

Assume that the conductivity structure of the earth is known and that we can run the
full forward problem with this conductivity structure. Let ue be the field that corresponds
to time te, which is the time after a few waveforms and assume that the magnetic field is
measured only at time equal to, or larger than, te. We rewrite the system as

A(m)u =





A1(m)
B2 A2(m)

. . . . . .

Be Ae(m)
. . . . . .

Bs As(m)









u1

u2
...
ue

...
us





=





q1

q2
...
qe

...
qs





(6.32)

For the inversion we are interested only in fields at times te and later. But to compute
the field at te we need to know ut−1, the field at te−1. If this were known then we could solve
a much smaller forward problem

Aredured =




Ae(m)

. . . . . .

Bs As(m)








ue

...
us



 =




qe − Beue−1

...
qs



 (6.33)

The problem is that the field ue−1 is not known unless we had previously performed a full
forward modeling and computed and stored it. Then, if the forward modeling for times te and
beyond are needed, we can avoid computing all previous fields and use the forward problem
(6.33) instead of the full forward problem (6.32). This saves many of the computations.

However, in the course of the inversion process, we do not compute the same field twice.
We need to compute the forward problem only after we update the model. Fortunately,
since the PDE is stiff, if the change to the model is small then the change to the fields is
exponentially smaller. Thus, for small changes in the model, we are able to obtain a good
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enough solution to our forward problem even with the fields ue−1 computed from a near-by
model. This observation motivates the following idea. Replace the forward modeling matrix
A(m) with Ared and guess the fields at time ue−1. This implies that not only is the forward
problem easier to solve, but the gradients and the product of the sensitivity matrix with a
vector are also cheaper to compute. However, we must keep track of ue−1 and update it as
m changes. This idea can be summarized by the following algorithm.

Algorithm 3 Gauss-Newton Time Domain Inversion with Approximate Initial Conditions:
[m] ← GNNV(mref , β);

Initialize: set m = mref and choose β.
while true do

[1] Compute the forward problem and store ue−1

[2] Compute the gradient (equation (1.8)) using the reduced forward modeling Ared

[3] Compute the Gauss-Newton correction s using equation (1.9) with the reduced for-
ward modeling Ared

[4] Update the model, mk+1 ← mk +αs where α is a line search parameter to guarantee
reduction in the objective function.
if mk+1 fulfill chosen stopping criteria then

break;
end if

end while

An important observation can be made when analyzing the algorithm. Note that by
assuming that the perturbation in m is small between iterations we can perform step [1]
only every second or third iterations. Furthermore, if we update ue−1 every second iteration
then the computation of steps [1] and [2-3] can be done in parallel. Thus, given parallel
architecture of two nodes we are able to significantly accelerate our algorithm.

7 Examples

7.1 2-prisms in a halfspace

We consider the case of a square loop with dimensions of 130 × 130 meters located just
above the earth’s surface. The transmitter current is a step-off at time zero and responses
are measured in 32 logarithmically spaced times between 10−6 − 10−3 sec. The earth model
is made of one conductive block of 10 Ωm and a resistive block of 1000 Ω/m buried in a half
space of 100Ωm. There are 100 receiver locations.

The data are five component fields (Hx,Hy,Hz,Ex,Ey) on the surface inside the loop.
Gaussian random noise has been added to the 16, 300 data.

The problem is discretized using 323 cells and the number of unknowns (A, φ,H for all
space time and m) is roughly 14 million. The model objective function used l2−norm of the
gradients and a reference model and starting model what was equal to the true halfspace.
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To solve the optimization problem, we have used the L-BFGS method. We allowed 4
L-BFGS iterations per-β before making a decision about either changing β or to continue
with the same one. The results of our inversion are summarized in Figure 1. The target
misfit of 16, 300 is almost achieved.

0 5 10 15 20 25
0

1

2

3

4

5

6
x 10

5

model norm
misfit

Figure 1: Misfit and model norm in the inversion process

The true and recovered images are shown in Figure 2. The conductive and resistive
blocks are recovered in their true locations. As usual in these smooth model inversions, the
recovered amplitudes of the target bodies are somewhat smaller than the true values and
also edges are smoothed.

7.2 Reducing the volume

A 1.8km×1.1km loop is used in a UTEM survey. The waveform is a continuous on-time saw-
tooth. The background conductivity is 10000 Ωm and a conductive target of 1 Ωm is buried
at 1250m depth. Three component magnetic field data are collected along 6 boreholes. One
borehole intersects the target. The model and survey geometry are shown in Figure 3. The
initial mesh for modeling the data used a volume that included the transmitter and the area
of interest. It had 120,000 cells with cell sizes of 50 m. This mesh is too large to be used
in the inversion and also the extended volume serves little purpose since the data and the
volume of interest is quite confined.

A smaller mesh encompassing the volume of interest was generated using 25m cells in
the core region. The total number of cells for the inversion was 68400. The corrective source
procedure was implemented and the three components of the time derivative of the magnetic

15



Figure 2: Inversion results (left) the true model (right) recovered.

field were inverted. The true and recovered conductivities are shown in volume rendered and
pixel format in Figures 4 and 5. An example of observed and predicted data for one of the
boreholes is shown in Figure 6 .
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Figure 3: The source loop for the UTEM survey is at the surface. Six drill holes are shown
in green. Three-component dB/dt data are acquired along the drill holes. The target is the
conductive block. Drill hole ]1 just grazes the outside of the target.
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Figure 4: Volume rendered images of the true and recovered model.
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Figure 5: Cross-section of the true and recovered model.
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Figure 6: Observed and predicted data for the first time channels are plotted along borehole
]1.
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7.3 Working with extended waveforms

A surface loop survey is carried out over a conductive prism of 8S/m. The waveform is
a half-sinusoid followed by an off-time. The frequency of the transmitter is f = 1000Hz
and thus the total waveform, comprised of equal length of on-time and off-time segments,
is T = .001sec. Because of its high conductivity and size, the time constant for the target
is greater than T . Multiple waveforms are needed and in Figure 7 we plot the first four of
these along with the time sampling. Constant time-steps were used in the on-time of the
waveform, but logarithmic samples were used in the offtime. The number of time samples
was 193. Also in Figure 8 we plot the decay curves for Hz for the first four cycles. There is
a substantial difference between successive decays.

We next take the fourth decay and use that as data for the inverse problem. All three
components of noise-contaminated magnetic field are inverted. The inversion is carried out
by setting te to be the time of the first data channel. One processor is used to run the
forward modelling from [0, te−1] and stores the field ute−1. This field is updated every time
that the model is changed. The second processor, which is working on generating a model
perturbation, begins each forward modelling with the stored field.

The success of this approach requires that the fields at te from a previous model are close
to the fields that would have been obtained if a complete modelling had been done on the
current model. We have compared the misfit obtained by starting with a near-by model, to
that obtained by carrying out a full modelling. We note that the discrepancies between the
two are reduced as the iterations increase. This is because size of the model perturbation
decreases as the procedure reaches convergence.

An image of the true and constructed models are presented in Figure 9.
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Figure 7: Four cycles of the waveform are shown. The dots denote the time sampling. Time
samplings are uniform during the on-time and logarithmic during the off-time. Data at the
beginning of the off-time for the fourth waveform will be inverted.
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Figure 8: Response curves for Hz at a station near the center of the loop. Labels (1) - (4)
respectively refer to the measurements after the respective number of on-time pulses.
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Figure 9: Inversion results (left) the true model (right) recovered.

8 Summary

We have shown how time domain electromagnetic data can be inverted with a procedure
that recovers the electrical conductivity model and the corresponding fields.

The problem is complex and computationally difficult. We therefore used a combination
of techniques that allow us to solve this problem. These techniques allow us to reduce the
volume under investigation, shorten the integration time of the forward problem and to use
effective inversion methods and preconditioners to quickly converge to the solution. Results
verify that our algorithm is working satisfactorily.
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9 Appendix:Calculating Derivatives

In order to compute the gradient of the objective function (1.8) we need to evaluate the
action of the sensitivity matrix times a vector. While the matrices A(m) and Q are well
define we further need to evaluate the matrix G(m,u), where

G(m,u) =
∂[A(m)u]

∂m
.

The above formula implies that in order to calculate the matrix G(m) we need to differentiate
the forward modeling matrix times a vector with respect to m. This may look complicated
at first; however, note that the matrix A is made of blocks and each block depends on m
only through the matrix Mσ̂. Therefore, if we know how to calculate

N(m, v) =
∂[Mσ̂(m)v]

∂m

then we can differentiate any product involving Mσ̂. For example,

∂

∂m
[∇h · Mσ̂∇hw] = ∇h · N(m,∇hw).

To calculate this derivative, we recall that Mσ̂ operates on the discrete A or ∇hφ which
are cell face variables. The matrix is diagonal and each of its elements has the form

M
(ii)
σ̂ = 2(σ̂−1

1 + σ̂−1
2 )−1

where σ̂1 and σ̂2 are the values of σ̂ at the two sides of the face of the cell. From this form
it is clear that M−1

σ̂ is linear with respect to σ̂−1 and therefore the matrix

Nr(v) =
∂[M−1

σ̂ v]

∂[σ̂−1]

is independent of σ̂ and depends only on the vector field v at each cell. Using this observation
and the chain rule we can easily calculate N ,

N(m, v) =
∂[Mσ̂(m)v]

∂m
=

∂
[
((Mσ̂(m))−1)

−1
v
]

∂m
=

∂
[
((Mσ̂(m))−1)

−1
v
]

∂[σ̂−1]

∂[σ̂−1]

∂m
=

[M−1
σ̂ ]−2 Nr(v) diag(exp(−m)) = M2

σ̂ Nr(v) diag(exp(−m)).

Given the above gradients we can proceed and discuss the solution of the nonlinear system
(1.8).
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