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Abstract. A k-rainbow path in a graph with colored edges is a path of length

k where each edge has a different color. In this note, we settle the problem
of obtaining a constructive k-coloring of the edges of Kn in which one may

find, between any pair of vertices, a large number of internally disjoint k-

rainbow paths. In fact, our construction obtains the largest possible number
of paths. This problem was considered in a less general setting by Chartrand

et al. (2007).

1. Introduction

Given an edge-colored simple graph G, a path P in G is called rainbow if the
edges of P are assigned distinct colors. Let l ≤ k be integers. Suppose that the
edges of G are k-colored. For a, b ∈ V (G), denote by p(a, b) the maximum number of
internally disjoint rainbow paths of length l having endpoints a and b. The rainbow
(k, l)-connectivity of G is the minimum p(a, b) among all distinct a, b ∈ V (G).

A related concept has been studied in a sequence of papers by Chartrand et
al. [CJMZ07, CJMZ07B, CJMZ08] and also [CLRTY08, JOZ08]. In particular, the
following theorem is given.

Theorem 1 ([CJMZ08]). For any r, there exists an explicit 2-coloring of Kr in
which the number of bi-chromatic paths of length 2 between any pair of vertices is
at least

b
√
r − 1c.

Using our definitions, the theorem above is a statement about the rainbow (2, 2)-
connectivity of a given 2-coloring of the edges ofKr. In this note, we greatly improve
and generalize the above lower bound for graphs of sufficiently large order by pro-
viding a different constructive coloring. Our construction attains asymptotically
the maximum rainbow connectivity possible.

Theorem 2. For any k ≥ 2 and r ≥ r0 = r0(k) there exists an explicit k-coloring
of the edges of Kr having rainbow (k, 2)-connectivity(k − 1

k
− o(1)

)
r.

More generally, we shall also consider the problem of finding longer rainbow
paths.
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Theorem 3 (Main result). For any 3 ≤ l ≤ k there exists r0 = r0(k) such that,
for every r ≥ r0, there is an explicit k-coloring of the edges of Kr having rainbow
(k, l)-connectivity (

1− o(1)
) r

l − 1
.

This result is also asymptotically best possible, since any collection of internally
disjoint paths of length l can contain at most r/(l − 1) paths.

Our proof employs a very recent breakthrough due to Bourgain [Bou05, Rao07],
which consists of a powerful explicit extractor. Roughly speaking, an (explicit)
extractor is a polynomial time algorithm used to convert some special probability
distributions into uniform distributions. (See [Sha02] for a good but somewhat
outdated survey on extractors.)

The application of extractors in graph constructions already appears as early as
[WZ99], where extractors are used directly to obtain good expander graphs. Similar
applications followed, e.g. [CRVW02, TSUZ01]. Although some constructions are
obtained by simply looking at extractors from a graph perspective (extractors can
be seen as graphs), the analysis of our construction is more delicate and requires
additional ingredients.

It is also noteworthy that a random k-coloring of a sufficiently large complete
graph has asymptotically optimal rainbow (k, l)-connectivity. Therefore, our prob-
lem is to obtain an explicit edge coloring. By explicit, we mean that there is a
polynomial time algorithm to compute such an edge coloring.1

2. Paths of length two

A simple application of the Cauchy-Schwarz Inequality shows that one cannot
hope to find a k-coloring of E(Kr) in which every pair of vertices is connected
by (1− 1/k)(r − 1) rainbow paths of length two.

Theorem 4. For any k-coloring of the edges of Kr there exists a pair of vertices
having at least

r − 1
k
− 1

monochromatic paths of length 2 between them.

Proof. Denote by χ : E(Kr) → [k] the fixed coloring of Kr. Let us count the
triples (u, v, w) of different vertices satisfying χ({u,w}) = χ({v, w}). For fixed
w ∈ V = V (Kr) and l ∈ [k], denote by N(w, l) =

∣∣{v ∈ V : χ({v, w}) = l
}∣∣ the

number of vertices connected to v by an edge of color l. Then, the number of pairs
u 6= v ∈ V \ {w} such that uwv is a monochromatic path is given by

k∑
l=1

N(w, l)
(
N(w, l)− 1

)
=

k∑
l=1

N(w, l)2 − r + 1.

Applying the Cauchy–Schwarz inequality we get that the number of such pairs is
at least

1
k

(r − 1)2 − (r − 1).

1There are stronger notions of explicitness. For instance, one could ask for an algorithm to

compute the color of an edge in polynomial time over the size of the input (the pair of vertices),
which is O(log |V |).
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Summing over every w ∈ V and averaging over the pairs u 6= v, we have (r−1)/k−1,
which implies that at least one pair has at least this number of monochromatic 2-
paths connecting its points. �

Observe that, in view of Theorem 4, the result of Theorem 2 is asymptotically
best possible. Theorem 2 follows from the proof of our main result, Theorem 3.
We remark that a bipartite version of the same result follows using very similar
techniques.

3. Extractors

In order to describe our construction, we need to introduce some background on
the machinery of extractors, a subject intensively developed during the past two
decades. In particular, we shall use Bourgain’s recent breakthrough construction.
We follow the presentation of [Rao07] in the brief recollection of Bourgain’s results
contained in this section.

We start by defining a way to measure randomness in (discrete) probability
distributions. In what follows, we shall abuse notation by using the same letter to
denote a probability distribution and a random variable following that distribution.

Definition 5. A source is a probability distribution on binary strings of a fixed
length. Let X be a source over {0, 1}n. The min-entropy of X is defined as

H∞(X) = − log
(

max
a∈{0,1}n

P[X = a]
)
.

Here, and throughout this manuscript, logarithms have base 2. We shall say that
X is a δ-source if its min-entropy rate r(X) = H∞(X)/n is at least δ.

Definition 6. A source having uniform probability over its support is called a flat
source.

An extractor is a function that converts some distribution into one that is close
to uniform. To define precisely what it means for two distributions to be close, we
state the notion of statistical difference (also known as total variation distance).

Definition 7. The statistical difference between two sources X,Y ⊆ {0, 1}n, is
defined as2

1
2
‖X − Y ‖1 =

1
2

∑
a∈{0,1}n

∣∣P[X = a
]
−P

[
Y = a

]∣∣.
We say that X is α-close to Y if 1

2‖X − Y ‖1 ≤ α.

We are now ready to formally describe the extractor that will be used to define
our constructive coloring.

Definition 8. A function E : {0, 1}n×2 → {0, 1}m is a two-source-extractor for
min-entropy rate δ and error ε if, for any pair of independent sources X and Y
satisfying r(X), r(Y ) ≥ δ, the distribution of E(X,Y ) is ε-close to the uniform
distribution over {0, 1}m.

We say that the extractor E is strong if the sets

S =
{
x ∈ {0, 1}n : E(x, Y ) is ε-close to uniform

}
2The 1/2 factor is used to keep the statistical distance in the range [0, 1].



4 DELLAMONICA, MAGNANT, AND MARTIN

and
T =

{
y ∈ {0, 1}n : E(X, y) is ε-close to uniform

}
are such that P[X ∈ S],P[Y ∈ T ] ≥ 1− ε.

A classical construction of two-source-extractors is due to Vazirani, which gener-
alized Hadamard matrices (corresponding to the case where m = 1 in Theorem 9).

Theorem 9 ([Vaz87, DEOR04]). For every constant δ > 0, there exists a poly-
nomial time strong two-source-extractor Had : {0, 1}n × {0, 1}n → {0, 1}m, with
m = Ωδ(n) and error ε = 2−Ωδ(n), that works with any independent sources X and
Y having H∞(X) +H∞(Y ) ≥ (1 + δ)n.

Bourgain’s idea was to first encode the input bits (and produce a larger, redun-
dant string) and then apply the Hadamard extractor of Theorem 9. To describe
this encoding, we shall use some basic Finite Field Theory (the reader is referred
to the textbook of Dummit and Foote [DF99]).

Let g be a primitive element of GF(2n) (i.e., a generator of the multiplicative
group GF(2n)×). Every element of GF(2n) can be seen as an integer in [0, 2n − 1]
and, clearly, also can be seen as an element of {0, 1}n. If x ∈ GF(2n) let #x denote
the integer corresponding to x. We define gx = g#x. Bourgain’s extractor can be
taken as

(1) Bou(x, y) = Had
(
x̄, ȳ
)
,

where the encoding ·̄ : {0, 1}n → {0, 1}2n is given by

(2) x 7→ x̄ = (x, gx).

The above extractor is able to inherit many useful properties of the Hadamard
extractor, such as being symmetric and strong. The redundant encoding of x and y
serves a purpose: in a more sophisticated analysis of the Hadamard extractor, a
source X works essentially as well as tX, the distribution obtained by adding t
independent samples from X, with only a polynomial loss in the error parameter ε
(i.e., instead of getting error ε we get error ε−a for some constant a > 0). Hence,
if tX has higher min-entropy—in the case X grows with addition—one can extract
randomness even if X has min-entropy smaller than what is needed by Had. The
encoding (2) is proven to grow with addition, as asserted by Lemma 10.

Lemma 10. Let 3X̄ = X̄ + X̄ + X̄ denote the distribution induced by sampling
three independent elements x1, x2, x3 from X and outputing (x1, g

x1) + (x2, g
x2) +

(x3, g
x3). Then there exists an absolute constant α > 0 such that H∞(3X̄) ≥

(1 + α) · 2 ·H∞(X). In terms of min-entropy rates, r(3X̄) ≥ (1 + α) r(X).

The price one has to pay in order to use 3X̄ instead of X̄ in the analysis of the
extractor is an increase of the output error as described by Lemma 11.

Lemma 11. Let X and Y be independent sources over {0, 1}n and suppose that
H∞(t1X) ≥ k1, H∞(t2Y ) ≥ k2. Let Had : {0, 1}n×2 → {0, 1}m be the Hadamard
extractor and

ε = exp
{n− k1 − k2

c
+m

}
,

for c = c(t1, t2). Then Had(X,Y ) is ε-close to the uniform distribution over {0, 1}m.
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In order to have ε small in the above lemma, one needs to have sufficient min-
entropy from t1X1 and t2Y and m, the length of the output, must be sufficiently
small. Given Lemma 10, after encoding (2), sources with min-entropy rate slightly
smaller than 1/2 grow with addition into sources with min-entropy rate slightly
greater than 1/2. Applying Lemma 11 to those sources allows us to make m linear
in n, while keeping the error exponentially small.

Theorem 12 ([Bou05, Rao07]). There exists an absolute constant ν > 0 such that
the (explicit) function Bou : {0, 1}n×2 → {0, 1}m is a strong extractor for sources of
min-entropy (1/2− ν)n with m = Ω(n) and, furthermore, has error ε = 2−Ω(n).

Another important observation regarding the above encoding is the following.

Claim 13. Given any X, we have H∞(2X̄) ≥ 2H∞(X)− 1.

Proof. First, let us change variables by setting y = gx and then (x, gx) = (logg y, y).
(We may assume that x 6= 0 by paying a small price in terms of min-entropy, for
instance, one can “move” the probability from 0 to an arbitrary fixed string). Since
we have logg y1 + logg y2 = logg y1y2, an element of 2X̄ = X̄ + X̄ would be of the
form x = (logg y1y2, y1 + y2). If we have x = (logg y3y4, y3 + y4) then the following
system of equations must be satisfied{

y1y2 = y3y4

y1 + y2 = y3 + y4.

Since this field has characteristic 2, we have y1 + y3 = y2 + y4 and it follows that

y2
1 + y2

3 = (y1 + y3)2 = (y1 + y3)(y2 + y4)

= (y1y2 + y3y4) + y1y4 + y2y3 = y1y4 + y2y3.
(3)

Hence, y1(y1 + y4) = y3(y2 + y3) and we also have y1 + y4 = y2 + y3. Therefore
either y1 = y4 (and y2 = y3) or y1 = y3 (and y2 = y4). Hence, an element of 2X̄ is
the image of at most 2 pairs in X̄× X̄. The probability of any such element is thus
at most 2 times the maximum probability of a pair in X̄2. By the independence
assumption, a pair in X̄2 has probability bounded by 2−2H∞(X). It follows that an
element in 2X̄ has probability bounded by 2 × 2−2H∞(X) = 2−2H∞(X)+1 and the
claim follows. �

From this we get that another interesting property of the Hadamard extractor
is inherited by Bourgain’s extractor.

Lemma 14. For any positive constant γ, there is m = Ω(γn) for which

Bou : {0, 1}n×2 → {0, 1}m,

as defined in (1) is a strong extractor for any X and Y such that either
A) H∞(X) +H∞(Y ) ≥ (1 + γ)n or
B) H∞(X), H∞(Y ) ≥ (1/2− ν)n, where ν is the constant of Theorem 12.
Moreover, Bou has error ε = 2−Ω(γn).

Proof. Let m1 = − γn
2c(2,2) , where c(·, ·) is the implicit function in Lemma 11.

Let m2 = Ω(n) be the output length of the Bourgain extractor of Theorem 12.
Set m = min{m1,m2} and let the output length of both Had and Bou be m in what
follows.
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A: Given independent sources X and Y such that H∞(X)+H∞(Y ) = (1+γ)n,
by Claim 13, H∞(2X̄) + H∞(2Ȳ ) ≥ (1 + γ)2n − 2. By Lemma 11, Bou(X,Y ) =
Had(X̄, HadY ) is 2−Ω(γn)-close to the uniform distribution.

B: If X and Y satisfy H∞(X), H∞(Y ) ≥ (1/2 − ν)n then the conclusion is
immediate from Theorem 12. �

4. Coloring the edges of the complete graph

Let us define a coloring of the complete graph on 2n vertices. Fix Bou as the
extractor of Lemma 14 with γ = ν/2 and suppose that m is the output length
and ε is the error of the extractor. Let the vertex-set of K2n be V = {0, 1}n.
Let S1, . . . , Sk be a balanced partition of {0, 1}m (that means

∣∣|Si| − |Sj |∣∣ ≤ 1
for every i, j). Let f : {0, 1}m → [k] be defined as f(x) = i iff x ∈ Si. An edge
{u, v} ∈ {0, 1}n×2 gets color χ({u, v}) = f

(
Bou(u, v)

)
(this is well defined since Bou

is symmetric).
Note that we are coloring a graph on 2n vertices. This coloring could have several

local flaws (pairs of vertices which have low rainbow connectivity). We shall later
take an edge-coloring induced by an appropriate subset of these vertices as the final
coloring. More concretely, we have n = O(log r), where r is the order of the final
graph.

Define Γ(v, l) =
{
w ∈ V : Bou(v, w) ∈ Sl

}
and set N(v, l) = |Γ(v, l)|.

Lemma 15. The above coloring satisfies the following for all but at most k 2νn/2

vertices v: for any color l ∈ [k], we have N(v, l) ≥ (1− 2kε)2n/k.

Proof. Let Tl be a set of vertices v having N(v, l) < (1 − 2kε)2n/k. Assume that
|Tl| ≥ 2νn/2. Let Xl be a flat source over Tl (thus having H∞(Xl) ≥ νn/2). Let Un
be uniform over V = {0, 1}n. By Lemma 14, the distribution Bou(Xl, Un) should
be ε-close to uniform. But this leads to the following contradiction:

2−m|Sl| − ε ≤ P
[
Bou(Xl, Un) ∈ Sl

]
=

1
|Tl|

∑
v∈Tl

N(v, l)
|V |

< (1− 2kε)
1
k
.

Hence |Tl| < 2νn/2 and
∣∣⋃

l∈[k] Tl
∣∣ ≤ k 2νn/2. �

From this we can also conclude the following about pairs of vertices.

Lemma 16. For any vertex v ∈ V such that N(v, l) ≥ (1− 2kε)2n/k holds for all
l ∈ [k] there are at most k22νn/2+2k vertices w such that, for some (j, l) ∈ [k], we
have

(4)
∣∣Γ(w, j) ∩ Γ(v, l)

∣∣ < (1− 2kε)2 2n

k2
.

Proof. The proof is similar to that of Lemma 15. For some fixed pair (j, l), let
Tj,l be the set of vertices w for which (4) holds and assume |Tj,l| ≥ 2νn/2+2k. Let
Xj,l be the flat source over Tj,l and Y be the flat source over Γ(v, l). Observe
that H∞(Y ) ≥ n + log{1/k − 2ε} ≥ n − log 2k and hence, H∞(Xj,l) + H∞(Y ) ≥
(1 + ν/2)n. It follows that Bou(Xj,l, Y ) is ε-close to uniform. On the other hand,

|Sj |
2m
− ε ≤ P

[
Bou(Xj,l, Y ) ∈ Sj

]
=

1
|Tj,l|

∑
w∈Tj,l

|Γ(w, j) ∩ Γ(v, l)|
N(v, l)

< (1− 2kε)
1
k
,

which is a contradiction. Therefore,
∣∣⋃

(j,l)∈[k]2 Tj,l
∣∣ ≤ k2 2νn/2+2k. �
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Along the same lines we have the following.

Lemma 17. Given two sets X,Y ⊆ V with |X|, |Y | ≥ k 2(1/2−ν)n all but at most
k 2(1/2−ν)n vertices x ∈ X have edges of all k colors going to Y .

4.1. Randomly selecting a subgraph. Although the coloring provided by the
Bourgain extractor is such that for most pairs (a, b), the number of k-rainbow paths
between a and b is very close to the best possible, we do not have any guarantee
that this holds for all pairs. In order to deal with this technicality, we first show
that randomly selecting a small subset of vertices of K2n (much less than

√
2n)

the coloring induced on the edges spanned by those vertices is one satisfying the
requirements. The use of the Bourgain extractor (instead of the classical Hadamard
extractor) is justified if one wishes to analyse the coloring induced by such a small
set of vertices. Since our final goal is a constructive coloring, we shall derandomize
the vertex selection in Subsection 4.2.

Let p = 2−(1+ν)n/2. Assume that we pick elements from {0, 1}n uniformly and
independently with probability p forming some set V ′. Consider the coloring formed
in the induced graph V ′. Observe that the expected cardinality of |V ′| is 2(1−ν)n/2.
Let us say that a pair (v, w) ∈ V is bad (with respect to V ) if either v or w fails
Lemma 15 for some color or if (4) holds for some (j, l) ∈ [k]2. A pair is called good
otherwise.

Let us estimate the expected number of bad pairs that are contained in V ′. The
expected number of pairs containing (at least) one vertex failing Lemma 15 is at
most p2 ·k2νn/2 ·2n = k2−νn/2. The expected number of pairs v 6= w ∈ V such that
both do not fail Lemma 15 but (4) holds for some (j, l) ∈ [k]2 is, by Lemma 16,
p2 · k22νn/2+2k · 2n = k22−νn/2+2k.

We also estimate the expected number of good pairs of V that are bad with
respect to V ′: that is, u 6= v ∈ V is not a bad pair but, for some fixed γ > 0 and
some (j, l) ∈ [k]2,

(5)
∣∣Γ(w, j) ∩ Γ(v, l) ∩ V ′

∣∣ < (1− γ)(1− 2kε)2 2(1−ν)n/2

k2
.

It follows by Chernoff’s inequality (see [Hoe63]) and the union bound that the
expected number of quadruples (w, v, j, l) satisfying (5) is at most

k2 · 22n · exp
{
−cp(1− 2kε)2 2n

k2

}
,

where c = c(γ) > 0.
The number of bad pairs with respect to V ′ has expectation o(1). We also

have that |V ′| is strongly concentrated around its expectation. By choosing an
appropriate value of p, we have |V ′| ∈ [r, r + r2/3] with probability 1 − o(1). By
removing at most r2/3 arbitrary vertices, we get the final graph with the prescribed
number r of vertices. Observe that since we are removing a very small number of
vertices in the end, the effect on equation (5) is negligible. We shall derandomize
the selection of V ′ in order to obtain a graph in which every pair is good (with
respect to V ′).

4.2. Derandomization. In order to obtain a constructive coloring of the edges of
the complete graph, we have to derandomize the random choices made above. So
far, the following procedure has been defined: some large enough n is set and a
coloring of the edges K2n is given by projecting the output of Bourgain’s extractor
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onto the set of colors. A random vertex subset of this graph is taken and, with
probability 1− o(1), the induced edge-coloring has the desired properties.

We would like to stress that the reason we take such a strong construction as
the Bourgain extractor (instead of relying on the well-known Hadamard extractor)
lies in the fact that we must select very few vertices of the initial complete graph
in order to ensure that no two vertices form a bad pair. On the other hand, we
must be able to say something about the distribution of the colors in subsets of the
induced subgraph, and those subsets are very small relative to the original graph.

The derandomization technique that we shall use is the Method of Conditional
Expectations [AS00]. The random induced subgraph is determined by picking ver-
tices independently with probability p. Suppose that the random decisions have
been made for all vertices in a subset S of the vertex set V . Namely, for each v ∈ S
a random decision has been taken and a subset S′ = S ∩V ′ has been selected. The
remaining choices (for vertices in V \S) are independent from the choices made for
S and it is simple to compute expectations in the conditional space where S′ ⊆ S
is fixed.

Let N = N0 + N1 + N2, N0, N1 and N2 be the random variables such that N0

counts the number of bad pairs; N1 counts the number of good pairs in V that are
not good with respect to V ′, namely, for some (j, l) ∈ [k]2, they satisfy (5); and
N2 = 2

∣∣|V ′| − (r+ r2/3/2)
∣∣/r2/3. We showed that E[Ni] = o(1) for i = 1, 2, 3 (if we

set p = (r + r2/3/2)2−n).
Note that, given S′ ⊆ S, we can compute the conditional expectation E[N |V ′ ∩

S = S′] in polynomial-time (over 2n = poly(r)). Indeed, computing N0 is just a
matter of enumerating all bad pairs in K2n and adding the conditional probability of
each one being selected. Computing N1 requires a somewhat similar computation:
for each pair of vertices and each pair of colors, the conditional probability of
satisfying (5) is readily evaluated. Clearly, N2 is computed in constant time. The
method works as follows: initially, S = ∅; given an arbitrary v ∈ V \ S, we decide
whether vertex v will be selected by computing two conditional expectations, E1 =
E[N | V ′ ∩ (S + v) = S′ + v] and E2 = E[N | V ′ ∩ (S + v) = S′]. Note that

E0 = E[N | V ′ ∩ S = S′] = pE1 + (1− p)E2.

Clearly, min{E1, E2} ≤ E0. Take i ∈ {1, 2} such that Ei ≤ E0 and put v in S′ if
and only if i = 1. Update S ← S + v and repeat.

Eventually the set S exhausts all elements of V . When that happens, there is a
deterministically chosen set S′ = V ′ ⊆ V for which N = 0 (since N = o(1) is an
integer). It follows that |V ′| ∈ [r, r+ r2/3] and every pair of vertices in V ′ does not
satisfy (5) for any (j, l) ∈ [k]2. Remove an arbitrary set of vertices from V ′ so that
we get |V ′| = r and let the induced colored graph define the coloring of Kr.

In practice, to speed up the process, once a vertex v is chosen to be part of S′,
every vertex which forms a bad pair with v is known not to belong to S′ and we
can update S to contain all these vertices while S′ only gets v.

5. Internally disjoint rainbow paths

The powerful construction of Bourgain’s extractor resembles a random structure
in such a way that a greedy algorithm to find disjoint k-rainbow paths, which can
easily be seen to work (almost surely) in a random coloring, also works with this
constructive coloring.
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Proof of Theorem 3. After the derandomization of Subsection 4.2, we obtain a col-
oring of Kr (with V ′ = V (Kr)) in which, for every pair v 6= w and every pair of
colors (j, l) ∈ [k]2,

(6)
∣∣Γ(w, j) ∩ Γ(v, l) ∩ V ′

∣∣ ≥ (1− o(1))
r

k2
.

Observe that this also implies an upper bound
∣∣Γ(w, j)∩Γ(v, l)∩V ′

∣∣ ≤ (1+o(1)
)
r/k2

for all (j, l) ∈ [k]2.
For simplicity, in this proof we shall consider the case where the length l of the

rainbow paths is equal to k. The same proof yields the result for all 3 ≤ l ≤ k with
obvious modifications.

Let us fix some pair v 6= w and check that there are many disjoint k-rainbow
paths between them. In order to find those paths we use greedy Algorithm 1. We
first classify vertices according to the color of the edges connecting them to both v
and w: if the edge xv has color j and the edge xw has color l, we put x in Xjl. We
wish to use vertices from those classes in a uniform manner, so that they always
have roughly the same cardinality. This is done by choosing the k−1 largest classes
Xj1l1 , . . . , Xjk−1lk−1 and reordering them3 so that j1 6= lk−1. Since the distribution
of colors of edges between the classes should be very uniform whenever the classes
have at least k21+(1/2−ν) elements, if the classes are large, we may find a sequence of
vertices vm ∈ Xjm,lm for m = 1, . . . , k−1, v0 = v, vk = w such that the edges vivi+1

have all distinct colors.
To simplify the notation, we denote X ∪ {x} by X + x and, similarly, X \ {x} is

denoted X − x.
It is straightforward to check that Algorithm 1 either aborts or obtains a col-

lection of internally disjoint rainbow k-paths. Let us first prove that the algorithm
does not abort (when the coloring is given by our construction).

The only way this algorithm aborts is if there are two sets, Y = Ym+1 and X =
Xjmlm with |X| > 2k2(1/2−ν)n and |Y | ≥ k2(1/2−ν)n such that less than k2(1/2−ν)n

vertices x ∈ X have edges of all colors going to Y . But this is a contradiction with
Lemma 17.

To prove that the path system P is large, we observe that by selecting the
largest classes on line 5, the cardinalities of the sets Xjl become balanced. This is
formalized, when k ≥ 4, by Claim 18. A similar claim holds for k = 3 with some
slight modifications on the argument.

Claim 18. Suppose that there is a collection of k2 positive numbers such that the
maximum difference between them is at most ∆. If a procedure takes the k − 1
largest elements and decreases them by one at each step, after at most ∆(k + 3)
steps, the maximum difference between any pair becomes bounded by 1.

Proof. Let Mi be the largest element and mi be the smallest element at the ith
step. We denote by Ti,j the jth greatest element at the ith step.

At any given step i, we have the following possibilities:

(i) Mi ≤ mi + 1: the next step also satisfies case (i);

3The case k = 3 (or l = 3 in the general case) is slightly more complicated and we may have
to replace one of the classes by a smaller one to find such ordering.



10 DELLAMONICA, MAGNANT, AND MARTIN

Algorithm 1: Finding disjoint paths
Input: vertices v 6= w.
P ← ∅ ;1

foreach (j, l) ∈ [k]2 do2

Xjl ← Γ(v, j) ∩ Γ(w, l) ∩ V ′ ;3

while min(j,l)∈[k]2 |Xjl| ≥ k21+(1/2−ν)n do4

let Xj1l1 , . . . , Xjk−1lk−1 be some collection of k− 1 sets satisfying j1 6= lk−15

and having maximum
∑k−1
m=1

∣∣Xjmlm

∣∣ ;
Yk−1 ← Xjk−1lk−1 ;6

for m← k − 2 downto 1 do7

Ym ←
{
x ∈ Xjmlm : Γ(x, j) ∩ Ym+1 6= ∅ for all j = 1, . . . , k

}
;8

if |Ym| < k2(1/2−ν)n then9

abort;10

pick v1 ∈ Y1 ;11

Xj1l1 ← Xj1l1 − v1 ;12

K ← {j1, lk−1} ;13

for m = 2 to k − 1 do14

c← min([k] \K) ;15

K ← K + c ;16

pick vm ∈ Γ(vm−1, c) ∩ Ym ;17

Xjmlm ← Xlmlm − vm ;18

P ← P + vv1v2 · · · vk−1w ;19

(ii) Mi+1 = Mi ≥ mi + 2 and mi+1 = mi: this can only happen if Ti,k = Mi.
Note that (ii) can hold for at most k + 1 steps (since each time it happens,
k − 1 numbers equal to Mi are decreased).

(iii) Mi+1 = Mi − 1 ≥ mi + 1 and mi+1 = mi − 1: in this case we must have
Ti,k−1 = Ti,k = · · · = Ti,k2 = mi. Observe that a step in which (iii) holds
cannot be followed by a step in which (ii) or (iii) holds.

(iv) Mi ≥ mi+2, Ti,k < Mi and Ti,k−1 > mi: in this case, we have Mi+1 = Mi−1
and mi+1 = mi.

Before we reach case (i), there can be at most k + 2 steps consecutive steps in
which only either (ii) or (iii) occurs. Every time (iv) occurs, the difference between
the largest and smallest element decreases by 1. Hence, in at most ∆(k + 3) steps
we must reach case (i). This completes the proof of Claim 18. �

Note that, for the family of sets {Xjl}(j,l)∈[k]2 , the initial difference is

∆ = max
(j,l)∈[k]2

|Xjl| − min
(j,l)∈[k]2

|Xjl| = o(r/k2).

Hence, after o(r/k) steps, the sets are all balanced. In particular, since the proce-
dure described by Claim 18 never increases the maximum difference, the condition of
the while loop (line 4) remains true throughout the balancing process. This shows
that, when this loop finishes, every Xjl has cardinality at most k21+(1/2−ν)n + 1.
Therefore, o(r) vertices remain in

⋃
Xjl, all of the other vertices are used in (inter-

nally disjoint) k-paths of P, thus proving the theorem. �
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From the same constructive edge-coloring, we get Theorem 2.

Proof of Theorem 2. It suffices to observe that the construction of Theorem 3 sat-
isfies equation (6) for every pair of vertices and every pair of colors. In particular,
summing the left side of the inequality (6) over j 6= l, we are counting the number
of bi-chromatic paths of length 2 between v and w. The same sum on the right
side of the inequality results in k(k− 1)

(
1− o(1)

)
r
k2 and therefore we conclude the

proof of the theorem. �
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