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Abstract. There is an increasing need for sharing data repositories
containing personal information across multiple distributed and private
databases. However, such data sharing is subject to constraints imposed
by privacy of individuals or data subjects as well as data confidentiality
of institutions or data providers. Concretely, given a query spanning mul-
tiple databases, query results should not contain individually identifiable
information. In addition, institutions should not reveal their databases
to each other apart from the query results. In this paper, we develop a
set of decentralized protocols that enable data sharing for horizontally
partitioned databases given these constraints. Our approach includes a
new notion, l-site-diversity, for data anonymization to ensure anonymity
of data providers in addition to that of data subjects and a distributed
anonymization protocol that allows independent data providers to build
a virtual anonymized database while maintaining privacy for both data
subjects and data providers.

1 Introduction

Current information technology enables many organizations to collect, store,
and use various types of information about individuals in large repositories.
Government and organizations increasingly recognize the critical value and op-
portunities in sharing such a wealth of information across multiple distributed
databases.
Problem scenario. An example scenario is the Shared Pathology Informat-
ics Network (SPIN)1 initiative by the National Cancer Institute. The objective
is to establish an Internet-based virtual database that will allow investigators
access to data that describe archived tissue specimens across multiple institu-
tions while still allowing those institutions to maintain local control of the data.
There are some important privacy considerations in such a scenario. First, per-
sonal health information is protected under the Health Insurance Portability and
Accountability Act (HIPAA)23 and cannot be revealed without de-identification

1 Shared Pathology Informatics Network. http://www.cancerdiagnosis.nci.nih.gov/spin/
2 Health Insurance Portability and Accountability Act (HIPAA).

http://www.hhs.gov/ocr/hipaa/.
3 State law or institutional policy may differ from the HIPAA standard and should be

considered as well.



or anonymization. In addition, institutions can not reveal their private databases
to each other due to confidentiality of the data. In addition, they may not want
to reveal the ownership of their records even if the records are anonymized.

These scenarios can be generalized into the problem of privacy-preserving
data publishing for multiple distributed databases where multiple data custo-
dians or providers wish to publish an integrated view of the data for querying
purposes while preserving privacy for both data subjects and data providers. We
consider two privacy constraints in the problem. The first is the privacy of indi-
viduals or data subjects (such as the patients) which requires that the published
view of the data should not contain individually identifiable information. The
second is the privacy of data providers (such as the institutions) which requires
that data providers should not reveal their private data or the ownership of the
data to each other besides the published view.
Existing and potential solutions. Privacy preserving data publishing or data
anonymization for a single database has been extensively studied in recent years.
A large body of work contributes to algorithms that transform a dataset to meet
a privacy principle such as k-anonymity using techniques such as generalization,
suppression (removal), permutation and swapping of certain data values so that
it does not contain individually identifiable information [6].

There are a number of potential approaches one may apply to enable data
anonymization for distributed databases. A naive approach is for each data
provider to perform data anonymization independently as shown in Fig. 1a.
Data recipients or clients can then query the individual anonymized databases
or an integrated view of them. One main drawback of this approach is that data
is anonymized before the integration and hence will cause the data utility to suf-
fer. In addition, individual databases reveal their ownership of the anonymized
data.

An alternative approach assumes an existence of third party that can be
trusted by each of the data owners as shown in Fig. 1b. In this scenario, data
owners send their data to the trusted third party where data integration and
anonymization are performed. Then, clients can query the centralized database.
However, finding such a trusted third party is not always feasible. Compromise
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of the server by hackers could lead to a complete privacy loss for all participating
parties and data subjects.



In this paper, we propose a distributed data anonymization approach as
illustrated in Fig. 1c. In this approach, data providers participate in distributed
protocols to produce a virtual integrated and anonymized database. Important
to note is that the anonymized data still resides at individual databases and
the integration and anonymization of the data is performed through the secure
distributed protocols. The local anonymized datasets can simply be unioned
using secure union algorithms [11, 2] and then published or can alternatively
serve as a virtual database that can be queried. In that case, when users query
the virtual database, each individual database executes the query on its local
anonymized dataset, and then engage in the distributed secure union protocol
to assemble the results that are guaranteed to be anonymous.
Contributions. We study the problem of data anonymization for horizontally
partitioned databases in this paper and present the distributed anonymization
approach for the problem. Our approach consists of two main contributions.

First, we propose a distributed anonymization protocol that allows multi-
ple data providers with horizontally partitioned databases to build a virtual
anonymized database based on the integration (or union) of the data, and a
distributed querying protocol that allows clients to query the virtual database.
As the output of the distributed anonymization protocol, each database pro-
duces a local anonymized dataset and their union forms a virtual database that
is guaranteed to be anonymous based on an anonymization principle. The pro-
tocol utilizes secure multi-party computation protocols for sub-operations such
that information disclosure between individual databases is minimal during the
virtual database construction and query answering.

Second, we propose a new notion, l-site-diversity, to ensure anonymity of data
providers in addition to that of data subjects for anonymized data. We present
heuristics and adapt existing anonymization algorithms for l − site− diversity
so that anonymized data achieve better utility.
Organization. The remainder of this paper is organized as follows. Section
2 briefly reviews work related to our research. Section 3 discusses the privacy
model we are using and presents our new notion on l− site− diversity. Section
4 presents our distributed anonymization approach including the distributed
anonymization protocol and distributed querying protocol. Section 5 presents a
set of experimental evaluations and Section 6 concludes the paper.

2 Related work

Our work is inspired and informed by a number of areas. We briefly review the
closely related areas below and discuss how our work leverages and advances the
current state-of-the-art.
Privacy preserving data publishing. Privacy preserving data publishing for
centralized databases has been studied extensively [6]. One thread of work aims
at devising privacy principles, such as k-anonymity, l-diversity, t-closeness, and
m-invariance, that serve as criteria for judging whether a published dataset pro-
vides sufficient privacy protection. Another large body of work contributes to



algorithms that transforms a dataset to meet one of the above privacy principles
(dominantly k-anonymity). In this study, our distributed anonymization proto-
col is built on top of the k-anonymity and l-diversity principle and the greedy
top-down Mondrian multidimensional k-anonymization algorithm [12].

There are some works focused on data anonymization of distributed databases.
[9] presented a two-party framework along with an application that generates
k-anonymous data from two vertically partitioned sources without disclosing
data from one site to the other. [20] proposed provably private solutions for
k-anonymization in the distributed scenario by maintaining end-to-end privacy
from the original customer data to the final k-anonymous results.

In contrast to the above work, our work is aimed at horizontal data dis-
tribution and arbitrary number of sites. More importantly, our anonymization
protocol aims to achieve anonymity for both data subjects and data providers.
Secure multi-party computation. Our approach also has its roots in the
secure multi-party computation (SMC) problem [7, 4, 13, 18, 5]. In SMC, a given
number of participants, each having a private data, wants to compute the value
of a public function. An SMC protocol is secure if no participant can learn more
from the description of the public function and the result of function.

Our problem can be viewed as designing secure SMC protocols for anonymiza-
tion (building virtual anonymized database) and query processing (assembling
query results). Our distributed anonymization protocol utilizes existing secure
SMC protocols for subroutines such as computing sum [16], kth element [1] and
set union [11, 2]. Our protocol is carefully designed so that intermediate infor-
mation disclosure can be minimized.

3 Privacy Model

In this section we present the privacy goals that we focus on in this paper,
followed by models and metrics for characterizing how these goals are achieved,
and propose a new notion for protecting anonymity for data providers. As we
identified in Section 1, we have two privacy goals. First, the privacy of individuals
or data subjects needs be protected, i.e. the published virtual database and
query results should not contain individually identifiable information. Second,
the privacy of data providers needs to be protected, i.e. individual databases
should not reveal their data or their ownership of the data apart from the query
results of the published virtual database.
Privacy for data subjects based on anonymity. Among the many pri-
vacy principles that protect against individual identifiability, the seminal work
on k-anonymity [15, 17] requires that a set of k records (entities) to be indis-
tinguishable from each other based on a quasi-identifier set. Given a relational
table T , attributes are characterized into: unique identifiers which identify indi-
viduals; quasi-identifier (QID) which is a minimal set of attributes (X1, ..., Xd)
that can be joined with external information to re-identify individual records;
and sensitive attributes that should be protected. The set of all tuples contain-
ing identical values for the QID set is referred to as an equivalence class. An



improved principle, l-diversity [14], demands every group to contain at least l
well-represented sensitive values.

Given our research goals of extending the anonymization techniques and
integrating them with secure computation techniques to preserve privacy for
both data subjects and data providers, we based our work on k-anonymity and
l-diversity to achieve anonymity for data subjects. While we realize they are
relatively weak compared to principles such as differential privacy, the reason
we chose them for this paper is that they are intuitive and have been justified
to be useful in many practical applications such as privacy-preserving location
services, therefore, techniques enforcing them in the distributed environment will
still be practically important. In addition, their fundamental concepts serve as
basis for many other principles and there is a rich set of algorithms for achieving
k-anonymity and l-diversity. We can study the subtle differences and effects of
different algorithms and their interactions with secure multi-party computation
protocols. Finally, our protocol structure, and the underlying concepts will be
orthogonal to these privacy principles, and our framework will be extensible so
as to easily incorporate more advanced privacy principles.

Privacy for data providers based on secure multi-party computation.
Our second privacy goal is to protect privacy for data providers. It resembles
the goal of secure multi-party computation (SMC). In secure SMC, a protocol is
secure if no participant can learn more from the description of the public function
and the result of function. It is important to note that for practical purposes, we
may relax the security goal for a tradeoff for efficiency. Instead of attempting to
guarantee absolute security in which individual databases reveal nothing about
their data apart from the query results of the anonymized virtual database, we
wish to minimize data exposure and achieve a sufficient level of security.

We also adopt the semi-honest adversary model commonly used in secure
SMC problems. A semi-honest party follows the rules of the protocol, but it can
attempt to learn additional information about other nodes by analyzing the data
received during the execution of the protocol. The semi-honest model is realistic
for our problem scenario where multiple organizations are collaborating with
each other to share data and will follow the agreed protocol to get the correct
result for their mutual benefit.

Privacy for data providers based on anonymity: a new notion. Now we
show that by simply coupling the above anonymization principles and the multi-
party secure computation principles are insufficient in our scenario. While the
secure multi-party computation can be used for the anonymization to preserve
privacy for data providers during anonymization, the anonymized data itself
(considered as results of the secure computation) may compromise the privacy
of data providers. The data partitioning at distributed data sources and certain
background knowledge can introduce possible attacks that may reveal the own-
ership of certain data by certain data providers. We illustrate such an attack, a
homogeneity attack, through a simple example.

Table 1 shows anonymized data that satisfies 2-anonymity and 2-diversity
at two distributed data providers (QID: City, Age; sensitive attribute: Disease).



Even if secure SMC protocols are used to answer queries, given some background
knowledge on data partitioning, the ownership of records may be revealed. For
instance, if it is known that records from New York are provided only by node 0,
then records with ID 1 and 2 can be linked to that node directly. In consequence,
privacy of data providers is compromised. Essentially, the compromise is due to
the anonymized data and cannot be solved by multi-party secure computation.
One way to fix the problem is to generalize the location for record 1 and 2 so
that they cannot be directly linked to a particular data provider.

Table 1. Illustration of Homogeneity Attack for Data Providers

ID City Age Disease
1 New York 30-40 Heart attack
2 New York 30-40 AIDS

ID City Age Disease
3 Northeast 40-43 AIDS
4 Northeast 40-43 Flu

Node 0 Node 1

To address such a problem, we propose a new notion, l-site-diversity, to en-
hance privacy protection for data providers. We define a quasi-identifier set with
respect to data providers as a minimal set of attributes that can be used with
external information to identify the ownership of certain records. For example,
the location is a QID in the above scenario as it can be used to identify the
ownership of the records based on the knowledge that certain providers are re-
sponsible for patients from certain locations. The parameter, l, specifies minimal
number of distinct sites that records in each equivalence class belong to. This
notion protects the anonymity of data providers in that each record can be linked
to at least l providers. Formally, the table T ∗ satisfies l-site-diversity if for every
equivalence class g in T ∗ the following condition holds:

count(distinct nodes(g)) ≥ l (1)

where nodes(g) returns node IDs for every record in group g.
It can be noted that our definition of l-site-diversity is closely related to

l-diversity. The two notions, however, have some subtle differences. First the
l − site − diversity is related to patients and, provided that the information
on origin of the record is treated as a sensitive attribute of patient, it protects
the patients. Second, it also protects the ownership anonymity for data providers
guaranteeing that multiple data providers contribute records to each equivalence
class. The QID set for data providers could be completely different from the QID
set for data subjects. l-site-diversity is only relevant when there are multiple data
sources and it adds another check when data is being anonymized so that the
resulting data will not reveal the ownership of the data. It is worth mentioning
that we could also exploit much stronger definitions of l-diversity such as entropy
l-diversity or recursive (c,l)-diversity as defined in [14].

4 Distributed Anonymization Protocol

In this section we describe our distributed anonymization approach. We first de-
scribe the general protocol structure, then present the distributed anonymization
protocol, followed by the distributed querying protocol.



We assume that the data are partitioned horizontally among n sites (n > 2)
and each site owns a private database di. The union of all local databases,
denoted d, gives a complete view of all data (d =

⋃
di). In addition, the quasi-

identifier of each local database is uniform among all the sites. The sites en-
gage in a distributed anonymization protocol where each site produces a local
anonymized dataset ai and their union forms a virtual database that is guar-
anteed to be k-anonymous. Note that ai is not required to be k-anonymous by
itself. When users query the virtual database, each individual database executes
the query on ai and then engage in a distributed querying protocol to assemble
the results that are guaranteed to be k-anonymous.

4.1 Selection of anonymization algorithm

Given our privacy models, we need to carefully adapt or design new anonymiza-
tion algorithms with additional check for site-diversity and implement the al-
gorithm using multi-party distributed protocols. Given a centralized version of
anonymization algorithm, we can decompose it and utilize secure SMC protocols
for sub-routines which are provably secure in order to build a secure distributed
anonymization protocol. However, performing one secure computation, and us-
ing those results to perform another, may reveal intermediate information that
are not part of the final results even if each step is secure. An important consid-
eration for designing such protocols is to minimize the disclosure of intermediate
information.

There are a large number of algorithms proposed to achieve k-anonymity.
These k-anonymity algorithms can be also easily extended to support l-diversity
check [14]. However, given our design goal above, not all anonymization algo-
rithms are equally suitable for secure multi-party computation. Considering the
two main strategies, top-down partitioning and bottom-up generalization, we
discovered that top-down partitioning approaches have significant advantages
over bottom-up generalization ones in multi-party computation setting because
anything revealed during the protocol as intermediate results will in fact have a
coarser view than the final result.

Based on the rationale above, our distributed anonymization protocol is
based on the multi-dimensional top-down Mondrian algorithm [12]. The Mon-
drian algorithm uses a greedy top-down approach to recursively partition the
(multidimensional) quasi-identifer domain space. It recursively chooses the split
attribute with the largest normalized range of values, and (for continuous or
ordinal attributes) partitions the data around the median value of the split at-
tribute. This process is repeated until no allowable split remains, meaning that
the data points in a particular region cannot be divided without violating the
anonymity constraint, or constraints imposed by value generalization hierarchies.

4.2 Distributed anonymization protocol

The key idea for the distributed anonymization protocol is to use a set of se-
cure multi-party computation protocols to realize the Mondrian method for the



Algorithm 1 Distributed anonymization algorithm - leading site (i = 0)
1: function split(set d0, ranges of QID attributes)
2: Phase 1: Determine split attribute and split point
3: Select best split attribute a (see text)
4: If split is possible, send split attribute to node 1. Otherwise, send finish splitting to

node 1 and finish.
5: Compute median of chosen a for splitting (using secure k-th element algorithm).
6: Phase 2: Split current dataset
7: Send a and m to node 1
8: Split set d0, create two sets, s0 containing items smaller than m and g0 containing

items greater than m. Distribute median items among si and gi.
9: Send finished to node 1

10: Wait for finished from last node (synchronization)
11: Phase 3: Recursively split sub datasets
12: Find sizeleft = |

⋃
si| and sizeright = |

⋃
gi| (using secure sum protocol)

13: If further split of left (right) subgroup is possible, send split left=true
(split right=true) to node 1 and call the split function recursively (updating ranges
of QID attributes). Otherwise send split left=false (split right=false) to node 1.

14: end function split

distributed setting so that each database produces a local anonymized dataset
which may not be k-anonymous itself, but their union forms a virtual database
that is guaranteed to be k-anonymous. We present the main protocol first, fol-
lowed by important heuristics that is used in the protocol.

We assume a leading site is selected for the protocol. The protocols for the
leading and other sites are presented in Algorithm 1 and 2. The steps performed
at the leading site are similar to the centralized Mondrian method. Before the
computation starts, range of values for each quasi-identifier in set d =

⋃
di need

to be calculated and the total number of data points. A secure kth element
protocol can be used to securely compute the minimum (k=1) and maximum
(k = n where n is the total number of tuples in the current partition) value of
each attribute across the databases [1]. Note that the total number of data points
is already computed before the split function is called (see next paragraph).

In Phase 1, the leading site selects the best split attribute and determines
the split point for splitting the current partition. In order to select the best
split attribute, the leading site uses a heuristic rule that is described in details
below. If required, all the potential split attributes (e.g., the attributes that
produce subgroups satisfying l−site−diversity) are evaluated and the best one
is chosen. In order to determine the split medians, a secure kth element protocol
is used (k = dn

2 e) with respect to the data across the databases. To test whether
given attribute can be used for splitting, we calculate a number of distinct sites
in subgroups resulting from splitting on this attribute using the secure sum
algorithm. The split is possible, if records in both subgroups are provided by
at least l sites. In Phase 2, the algorithm performs split and waits for all the
nodes to finish splitting. Finally in Phase 3, the node recursively checks whether



Algorithm 2 Distributed anonymization algorithm - non-leading node (i > 0)
1: function split(set c)
2: Read split attribute a and median m from node (i− 1); pass them to node (i+ 1)
3: if finish splitting received then return
4: Split set c into si containing items smaller than m and gi containing items
greater than m. Distribute median items among si and gi.

5: Read finished from node i− 1 (sychronization); Send finished to node i+ 1
6: Read split left from node i− 1 and pass it to node i+ 1
7: if split left then call split(si)
8: Read split right from node i− 1, Send split right to node i+ 1
9: if split right then call split(gi)

10: end function split

original data anonymized data
ID ZIP Age
1 30030 31
2 30033 32

ID ZIP Age
1 30030-36 31-32
2 30030-36 31-32

node 0

original data anonymized data
ID ZIP Age
3 30045 45
4 30056 32

ID ZIP Age
3 30037-56 32-45
4 30037-56 32-45

node 1
ID ZIP Age
5 30030 22
6 30053 22

ID ZIP Age
5 30030-36 22-30
6 30037-56 22-31

node 2

ID ZIP Age
7 30038 31
8 30033 30

ID ZIP Age
7 30037-56 22-31
8 30030-36 22-30

node 3

Fig. 2. Distributed anonymization illustration

further split of new subsets is possible. In order to determine whether a partition
can be further split, a secure sum protocol [16] is used to securely compute the
total number of tuples of the partition across the databases.

We illustrate the overall protocol with an example scenario shown in Figure
2 where we have 4 nodes and we use k = 2 for k-anonymization and l = 1
for l-site-diversity. Note that the anonymized databases at node 2 and node 3
are not 2-anonymous by themselves. However the union of all the anonymized
databases is guaranteed to be 2-anonymous.
Selection of split attribute. One key issue in the above protocol is the selec-
tion of split attribute. The goal is to split the data as much as possible while
satisfying the privacy constraints so as to maximize discernibility or utility of
anonymized data. The basic Mondrian method uses the range of an attribute
as a goodness indicator. Intuitively, the larger the spread, the easier the good
split point can be found and more likely the data can be further split. In our
setting, we also need to take into account the site diversity requirement and
adapt the selection heuristic. The importance of doing so is demonstrated in
Figure 3. Let’s assume that we want to achieve 2-anonymity and 2-site-diversity.
In the first scenario, the attribute for splitting is chosen only based on range of
attribute. The protocol finishes with 2 groups of 5 and 4 records (further split
is impossible due to 2-site-diversity requirement). The second scenario exploits
information on records distribution when the decision on split attribute is made
(the more evenly records are distributed across sites in resulting subgroups, the
better). This rule yields better results, namely three groups of 3 records each.

Based on the illustration, intuition suggests that we need to select a split
attribute that results in partitions with even distribution of records from dif-
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Fig. 3. Impact of split attribute selection when l-site-diversity (n = 2) is considered.
Different shades represent different owners of records.

ferent data providers. This makes further split more likely while meeting the
l-site-diversity constraint. Similar to decision tree classifier construction [8], in-
formation gain can be used as a scoring metric for selecting attribute that results
in partitions with most diverse distribution of data providers. Note that this is
used in the complete opposite sense from decision tree where the goal is to parti-
tion the data into partitions with homogeneous classes. The information gain of
a potential splitting attribute ak is computed through the information entropy
of resulting partitions:

e(ak) = −
n−1∑
i=0

p(i,lk)log(p(i,lk))−
n−1∑
i=0

p(i,rk)log(p(i,rk)) (2)

where lk and rk are partitions created after splitting the input set using attribute
ak (and its median value) and p(i, g) is the portion of records that belong to
node i in group g. It is important to note that the calculations need to take into
account data on distributed sites and thus secure SMC protocol need to be used
(e.g. secure sum).

Our final scoring metric combines the original range value based metric and
the new diversity-aware metrics using a linear combination as follows:

∀ai∈Qsi = α
range(ai)

max
aj∈Q

(range(aj))
+ (1− α)

e(ai)
max
aj∈Q

(e(aj))
(3)

where range function returns range of attribute, e(ai) returns values of informa-
tion entropy as defined above when attribute ai is used for splitting and α is a
weighting parameter.

Important to note is that if l-site-diversity is not required (e.g., l=1), then
the evaluation of the heuristic rule above is limited to checking only the range
of attributes, and choosing the attribute with the widest range.

4.3 Analysis

Having presented the distributed anonymization protocol, we analyze the pro-
tocol in terms of its security and overhead.
Security. We will now analyze the security of our distributed k-anonymity pro-
tocol. Before we get started, we will first define notation we will use. We will



assume that there are p attributes in QID (P1...Pp). We will also assume that
the final result of the distributed anonymization is denoted T ∗. T ∗ is a table
where each record has the following form:

R1, R2, ..., Rp, s

with Ri being range of attribute Pi and s being secure attribute. Each range Ri

has a form [rF
i − rT

i ].
Our proof will show that, given the result, the leaked information (if any),

and site’s own input, any site can simulate the protocol and everything that was
seen during the execution. Since the simulation generates everything seen during
execution of the protocol, clearly no one learns anything new from the protocol
when it is executed.

Our proof will also use a general composition theorem [7] that covers al-
gorithms implemented by running many invocation of secure computations of
simpler functionalities. Note that in our case the simpler functionalities are se-
cure sum and secure k − th element calculation. Let’s assume a hybrid model
where the protocol uses a trusted third-party to compute the result of such
smaller functionalities f1...fn. The composition theorem states that if a protocol
in hybrid model is secure in terms of comparing the real computation to the
ideal model, then if a protocol is changed in such a way that calls to trusted
third-party are replaced with secure protocols, the resulting protocol is still se-
cure.

We have analyzed the distributed k-anonymity protocol in terms of security
and present the following two theorems.
Theorem 1. Distributed k-anonymity protocol privately computes k-anonymous
view of horizontally partitioned data in semi-honest model when l = 1.
Proof. Let’s first consider a computation in a hybrid model. We will show that
any given node can simulate the algorithm and all what was seen during its
execution given only the final result and its local data. As the distributed k-
anonymity algorithm is recursive, to efficiently simulate the execution of the
algorithm node will use a special data structure that will help to identify group
of records being considered at every step of recursion. The data structure will
have the following form: (Pi → relevant rangei) and can be understood as
constraint on values of attributes from QID. The initial values for relevant ranges
can be simply identified by scanning the table T ∗, and setting the ranges to the
following values:

relevant rangei = [min
t∈T∗

(rF
i ),max

t∈T∗
(rT

i )]

At this point recursive algorithm starts. The arguments of the algorithm
are relevant ranges for all the QID attributes, and the initial relevant ranges
computed above are used for the first time. The algorithm first analyzes relevant
ranges to identify the attribute Pi that was used for splitting. As no l-site-
diversity is required, the attribute that was used for splitting is actually the
attribute with the largest relevant range. Let’s assume that attribute Pj has



the widest range. Now the site knows that this attribute was used for splitting.
The next step requires identification of the split point. It turns out that such
a point of splitting can be easily identified. First, using the relevant ranges the
site identifies a set of relevant records from T ∗. Relevant record is a record that
has all the ranges overlapping with the current relevant ranges:

F = {(R1, ..., Rp, s) ∈ T ∗ : ∀Pi
Ri ∈ relevant rangei}

Now the node analyzes all relevant records. The next step is to identify all
possible splitting points that could be used when the algorithm was executed.
Note that as the same QID attribute could be used for splitting on different
steps of the recursion, there can be few possible points of splitting. Formally
the points of potential splits are distinct values of rT

j that appear in the set of
relevant items F (assuming that Pj was the attribute with the largest range). To
identify the median value (or the value that was used for split) the node checks
which of the potential splitting points is actually a median. This can be easily
done by choosing value that divides the set of relevant records into two sets with
the sizes closest to |F |/2 (note that the subsets resulting from spitting might
not have equal sizes - for instance if number of records is odd).

With the splitting attribute and point identified, the site is ready to simulate
the split. If size of any of the two groups that result from splitting is greater
than or equal to 2 ∗ k, this group can be further split. In such a case the node
updates relevant ranges for that group and calls the recursive function.

Since we showed that the execution of the protocol in a hybrid model can
be efficiently simulated by any node with only knowledge of the final result (we
even did not have to use site’s local dataset), such an execution is secure. From
composition theorem follows that if we change the hybrid model and replace
calls to trusted third-party with secure algorithms, the resulting protocol will
still be secure. This finishes the proof.
Theorem 2. Distributed k-anonymity algorithm privately computes k-anonymous
view of horizontally partitioned data in semi-honest model and when l > 1 it
reveals at most statistics of the data that include:

1. Median values of each attribute from QID for groups of records of size ≥ 2∗k,
2. Entropy of distribution of records for groups resulting from potential splits,
3. Number of distinct sites that provide data to groups resulting from potential

splits, keeping the identity of those sites confidential.

Proof. Let’s consider a computation in a hybrid model. We will show that any
given node can simulate the the algorithm given only the final result, its local
data and the statistical data that is revealed in points 1, 2 and 3 defined above.
The proof strictly follows the proof of Theorem 1. The same data structure is
used to help the node identify a group of records being considered at every step.
The recursive algorithm is also implemented in the same way as above. The
only difference is the decision step when a node decides on the split attribute.
This time, not only the range of attribute has to be considered, but also the
distribution of records in groups resulting from splitting. Using the final result,



information in points 1, 2 and 3, and the current relevant ranges of QID at-
tributes, any node can decide on split attribute in the following way. First, the
node identifies set of relevant records:

F = {(R1, ..., Rp, s) ∈ T ∗ : ∀PiRi ∈ relevant rangei}

Using the information from point 2 and the relevant ranges, the node can
now calculate score defined in equation 3 for each attribute Pi. Next, using the
information from points 1 and 3 the node can decide which of the attributes
Pi can be used for splitting (first node uses knowledge from point 1 to find
the ranges of attributes of groups resulting from potential split and then the
node uses knowledge from point 3 to decide whether such a split is possible).
Finally, the node chooses an attribute with the largest possible score that satisfies
l−site−diversity. Once the attribute is chosen, the node can continue simulation
in the same way as in the proof of Theorem 1.

We again showed that the execution of the protocol in a hybrid model can
be efficiently simulated by any node with only knowledge of the final result
and the revealed information. Therefore such an execution is secure. From the
composition theorem follows that if we change the hybrid model and replace
calls to trusted third-party with secure algorithms, the resulting protocol will
still be secure.

Overhead. Our protocol introduces additional overhead due to the fact that
the nodes have to use additional protocols in each step of computation. The
time complexity of the original Mondrian algorithm is O(nlogn) where n is the
number of items in the anonymized dataset [12]. As we presented in Algorithm
1, each iteration of the distributed anonymization algorithm requires calculation
of the heuristic decision rule, median value of an attribute, and the count of
tuples of a partition. The secure sum protocol does not depend on the number
of tuples in the database. The secure k − th element algorithm is logarithmic
in number of input items (assuming the worst - case scenario that all the input
items are distinct). As a consequence, the time complexity of our protocol can
be estimated as O(nlog2n) in terms of number of records in a database.

The communication overhead of the protocol is determined by two factors.
The first is the cost for a single round. This depends on the number of nodes
involved in the system and the topology which is used and in our case it is
proportional to the number of nodes on the ring. As the future work, we are
considering alternative topologies (such as trees) in order to optimize the com-
munication cost for each round. The second factor is the number of rounds and is
determined by the number of iterations and the sub-protocols used by each itera-
tion of the anonymization protocol. The secure sum protocol involves one round
of communication. In the secure kth element protocol, the number of rounds is
logM (M being the range of attribute values) and each round requires secure
computations twice. It is important to note that the distributed anonymization
protocol is expected to be run offline on an infrequent basis. As a result, the
overhead of the protocol will not be a major issue.



5 Experimental evaluation

We have implemented the distributed anonymization protocol in Java within
the DObjects framework [10] which provides a platform for querying data across
distributed and heterogeneous data sources. To be able to test a large variety
of configurations, we also implemented the distributed anonymization protocol
using a simulation environment. In this section we present a set of experimental
evaluations of the proposed protocols.

The questions we attempt to answer are: 1) What is the advantage of using
distributed anonymization algorithm over centralized or independent anonymiza-
tion? 2) What is the impact of the l-site-diversity constraint on anonymization
protocol? 3) What are the optimal values for α parameter in our heuristic rules
presented in equation 3?

5.1 Distributed Anonymization vs. Centralized and Independent
Anonymization

We first present an evaluation of the distributed anonymization protocol com-
pared to the centralized and independent anonymization approaches in terms of
the quality of the anonymized data.
Dataset and setup. We used the Adult dataset from UC Irvine Machine
Learning Repository. The dataset contained 30161 records and was configured as
in [12]. We used 3 distributed nodes (30161 records were split among those nodes
using round-robin protocol). We report results for the following scenarios: 1) the
data is located in one centralized database and classical Mondrian k-anonymity
algorithm was run (centralized approach), 2) data are distributed among the
three nodes and Mondrian k-anonymity algorithm was run at each site indepen-
dently (independent or naive approach) and 3) data are distributed among the
three nodes and we use the distributed anonymization approach presented in
section 4. We ran each experiment for different k values. All the experiments in
this subsection used 1-site-diversity.
Results. Figure 4 shows the average equivalence class size with respect to differ-
ent values of k. We observe that our distributed anonymization protocol performs
the same as the non-distributed version. Also as expected, the naive approach
(independent anonymization of each local database) suffers in data utility be-
cause the anonymization is performed before the integration of the data.

5.2 Achieving Anonymity for Data Providers

The experiments in this section again use the Adult dataset. The data is dis-
tributed across n = 100 sites unless otherwise specified. We experimented with
distribution pattern that we will describe in detail below.
Metric. The average equivalence group size as shown in previous subsection
provides a general data utility metric. The query imprecision metric provides an
application-specific metric that is of particular relevance to our problem setting.
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Given a query, since the attribute values are generalized, it is possible only
to return the tuples from the anonymized dataset that are contained in any
generalized ranges overlapping with selection predicate. This will often produce
a larger result set than evaluating the predicate over the original table. For this
set of experiments, we use summary queries (queries that return count of records)
and we use an algorithm similar to the approach introduced in [19] that returns
more accurate results. We report relative error of the query results. Specifically,
given act as an exact answer to query and est as an answer computed according
to algorithm defined above, the relative error is defined as |act − est|/act. For
each of the tested configurations, we submit 10,000 randomly generated queries,
and for each query we calculate relative error. We report average value of the
error. Each query uses predicates on two randomly chosen attributes from quasi-
identifier. For boolean attributes that can have only two values (e.g. sex), the
predicate has a form of ai = value. For other attributes we use predicate in the
form ai ∈ R. R is a random range and has a length of 0.3∗|ai|, where |ai| denotes
the domain size of attribute.
Data partitioning. In realistic scenario, data is often split according to some
attributes. For instance, consider the patient data scenario, one can assume
a partitioning based on the city attribute where the majority records from a
hospital located in New York would have a New York address while those from
a hospital located in Boston would have a Boston address. Therefore, to test a
realistic scenario, we distributed records across sites using partitioning based on
attribute values. The rules of partitioning were specified using two attributes,
City and Age. The dataset contained data from 6 different cities, and every
1/6th of available nodes were assigned to a different city. Next, records within
each group of nodes responsible for a given city were distributed using Age
attribute by the following rule: records with age less than 25 were assigned to
the first 1/3rd of nodes, records with age between 25 and 55 years were assigned
to the second 1/3rd of nodes, and the remaining records were assigned to the
remaining nodes. The histogram of count of records per node in this setup is
presented in Figure 5 (please note the logarithmic scale of the plot).
Results. We now present the results evaluating the impact of α value under
this setup. Figure 6 present average query error for different α and l values for
the heuristic rule we used. We can observe a significant impact of α value on
the average error. The smallest average error value is observed for α = 0.3 and
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this seems to be an optimal choice for all tested l values. One can observe 30%
decrease in error when compared to using only range as in original Mondrian
(α = 1.0) or using only diversity-aware metrics (α = 0.0). It is worth of mention-
ing that we have also experimented with different distributions of records, and
the results were consistent with what we presented above. We do not provide
these results, however, due to space limitations.

The next experiment was focused on the impact of k parameter on average
error. We present results for l=30 in Figure 7. The plot presents the results
for three different split heuristic rules: using range only, information gain only,
and combining range with information gain with α = 0.3. We observe that the
heuristic rule that takes into account range and information gain gives consis-
tently the best results and a reduction of error around 30%. These results do
not depend on the value of k.

Next, we tested the impact of the l parameter for l − site − diversity. The
Figure 8 shows average error for varying l and k = 200 using the same three
split heuristic rules as in previous experiment. Similarly to the result above, the
rule that takes into account range and information gain gives the best results.
With increasing l we observe an increasing error rate because the data needs to
be more generalized in order to satisfy the diversity constraints.

So far we have tested only scenarios with 100 nodes (n = 100). To complete
the picture in Figure 9, we plot the average size of equivalence class with varying
n, k = 200 and l = 30. One can notice that previous trends are maintained - the
rules do not appear to be dependent on the number of nodes in the system. Also
similar to above, the rule that takes into account range and information gain is
superior to other methods and the query error is in average 30% smaller than
that for others.

6 Conclusion

We have presented a distributed and decentralized anonymization approach for
privacy-preserving data publishing for horizontally partitioned databases. Our
work addresses two important issues, namely privacy of data subjects together
with privacy of data providers. We presented a new notion, l-site-diversity, to
achieve anonymity for data providers in anonymized dataset.



Our work continues along several directions. First, we are interested in devel-
oping a protocol toolkit incorporating more privacy principles and anonymiza-
tion algorithms. In particular, an important point on our future research agenda
is to support serial releases of data with data updates. Such concepts as m-
invariance [19] or l-scarsity [3] are promising ideas and we plan to work on
extending our research in this direction. Second, we are also interested in devel-
oping specialized multi-party protocols such as set union that offers a tradeoff
between efficiency and privacy. Our current set union protocol is based on cryp-
tographic approaches that are computationally expensive. We plan to look into
different approaches such as algorithms based on probabilistic concepts.
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