
Modified HSS Iteration Methods for a Class

of Complex Symmetric Linear Systems∗

Zhong-Zhi Bai

State Key Laboratory of Scientific/Engineering Computing
Institute of Computational Mathematics and Scientific/Engineering Computing

Academy of Mathematics and Systems Science
Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, P.R.China

Email: bzz@lsec.cc.ac.cn

Michele Benzi

Department of Mathematics and Computer Science
Emory University, Atlanta, GA 30322, USA

Email: benzi@mathcs.emory.edu

Fang Chen†

Department of Mathematical Sciences, Xi’an Jiaotong University
Xi’an 710049, P.R. China

Department of Mathematics and Physics
Xi’an University of Post and Telecommunication

Xi’an 710121, P.R. China

July 13, 2009

Abstract

In this paper, we introduce and analyze a modification of the Hermitian and skew-
Hermitian splitting iteration method for solving a broad class of complex symmetric linear
systems. We show that the modified Hermitian and skew-Hermitian splitting (MHSS) it-
eration method is unconditionally convergent. Each iteration of this method requires the
solution of two linear systems with real symmetric positive definite coefficient matrices.
These two systems can be solved inexactly. We consider acceleration of the MHSS iteration
by Krylov subspace methods. Numerical experiments on a few model problems are used to
illustrate the performance of the new method.

Keywords: complex symmetric matrix, Hermitian and skew-Hermitian splitting, iter-
ation method, Krylov subspace method, convergence analysis, preconditioning.

AMS(MOS) Subject Classifications: 65F10, 65F50, 65N22; CR: G1.3.

∗Supported by The National Basic Research Program (No. 2005CB321702) and The National Outstanding
Young Scientist Foundation (No. 10525102), P. R. China, and by the US National Science Foundation Grant
DMS-0511336.

†Corresponding author.

1



2 Z.-Z. Bai, M. Benzi and F. Chen

1 Introduction

We consider the iterative solution of systems of linear equations of the form

Ax = b, A ∈ C
n×n and x, b ∈ C

n, (1)

where A ∈ C
n×n is a complex symmetric matrix of the form

A = W + iT, (2)

and W,T ∈ R
n×n are real symmetric matrices, with W being positive definite and T positive

semidefinite. Here and in the sequel we use i =
√
−1 to denote the imaginary unit. We assume

T 6= 0, which implies that A is non-Hermitian.

Complex symmetric linear systems of this kind arise in many problems in scientific computing
and engineering applications, including diffuse optical tomography [1], quantum mechanics [14],
molecular scattering [10], structural dynamics [7], and lattice quantum chromodynamics [8]. For
more examples and additional references, we refer to [5].

The Hermitian and skew-Hermitian parts of the complex symmetric matrix A ∈ C
n×n are

given by

H =
1

2
(A + A∗) = W and S =

1

2
(A − A∗) = iT,

respectively, hence, A ∈ C
n×n is a non-Hermitian, but positive definite matrix. Here A∗ is used

to denote the conjugate transpose of the matrix A. Based on the Hermitian and skew-Hermitian
splitting (HSS)

A = H + S

of the matrix A ∈ C
n×n, we can straightforwardly employ the HSS iteration method, introduced

in Bai, Golub and Ng [3], to compute an approximate solution for the complex symmetric linear
system (1)-(2). An algorithmic description of the correspondingly induced HSS iteration method
is given as follows.

The HSS Iteration Method. Let x(0) ∈ C
n be an arbitrary initial guess. For k =

0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 ⊂ C
n converges, compute the next

iterate x(k+1) according to the following procedure:

{
(αI + W )x(k+ 1

2
) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI − W )x(k+ 1

2
) + b,

(3)

where α is a given positive constant and I is the identity matrix.

Note that this HSS iteration scheme is a specialized version of the original one, in which
the complex symmetric structure of the coefficient matrix A ∈ C

n×n is particularly highlighted.
Since W ∈ R

n×n is symmetric positive definite, we know from [3] that the HSS iteration method
is convergent for any positive constant α.

Of course, at each step of the HSS iteration we need to solve two linear sub-systems with
their coefficient matrices being the symmetric positive definite one αI + W and the shifted



On Modified HSS Iteration Methods 3

skew-Hermitian one αI +iT , respectively. The matrix αI +W can be treated in real arithmetic,
so the iterate x(k+ 1

2
) in the first-half step may be effectively computed either exactly by the

Cholesky factorization or inexactly by the conjugate gradient scheme; see [9]. The matrix
αI +iT is, however, complex and non-Hermitian, although it is positive definite and symmetric;
it necessitates the use of complex arithmetic, and the iterate x(k+1) in the second-half step
may be computed either exactly by some variant of Bunch-Parlett factorization or inexactly by
certain Krylov subspace iteration schemes such as the Concus-Golub-Widlund (CGW) method
or GMRES; see [9, 12, 13]. We refer to [3, 4] for actual implementations and detailed analyses
of inexact variants of the HSS iteration method.

A potential difficulty with the HSS iteration approach is the need to solve the shifted skew-
Hermitian sub-system of linear equations at each iteration step. In some cases its solution is
as difficult as that of the original problem, although there are situations where the matrix T
is structured in such a way as to make linear systems involving αI + iT easy to solve. In
general, however, this will not be the case. A remedy may be using inner iterative schemes
such as some preconditioned Krylov subspace iterations to solve this class of linear systems to
relatively low accuracy. There is now considerable evidence that the good convergence properties
of the HSS iteration method are preserved even when the inner solves are performed to rather
low accuracy, resulting in significant savings, especially for very large problems. When applied
to shifted skew-Hermitian linear systems, however, the Krylov subspace iterations need to be
implemented in complex arithmetic; moreover, their convergence rates tend to be considerably
worse than the rapidly convergent conjugate gradient method applied to symmetric positive
definite linear systems. This may result in slow convergence and low efficiency of the inexact
HSS iteration methods.

In this paper, a modification of the HSS iteration scheme is presented and some of its basic
properties are studied. A considerable advantage of the modified HSS (MHSS) iteration method
consists in the fact that solution of linear system with coefficient matrix αI + iT is avoided
and only two linear sub-systems with coefficient matrices αI + W and αI + T , both being
real and symmetric positive definite, need to be solved at each step. Therefore, operations
on these two matrices, such as complete or incomplete factorizations, can be carried out using
real arithmetic only. The computation of the iterates x(k+ 1

2
) requires only real arithmetic,

whereas the computation of x(k+1) requires a modest amount of complex arithmetic due to the
fact that the right-hand side in the corresponding system is complex. Both can be efficiently
computed either exactly by a sparse Cholesky factorization, or inexactly by a preconditioned
conjugate gradient scheme. For systems arising from elliptic PDEs, multigrid solvers may be
very competitive. Moreover, like the HSS iteration method, the MHSS iteration method also
converges unconditionally to the unique solution of the complex symmetric linear system (1)-
(2). Theoretical analysis shows that an upper bound on the contraction factor of the MHSS
iteration depends on the spectra of the symmetric positive definite matrices W and T , but is
independent of the eigenvectors of the matrices W , T and A. In addition, the optimal value of
the iteration parameter α for an upper bound of the contraction factor of the MHSS iteration
can be determined by the lower and the upper eigenvalue bounds of the matrix W .

The remainder of the paper is organized as follows: in section 2, the MHSS iteration method
is described and its convergence properties are discussed. Some implementation aspects are
briefly discussed in section 3. The results of numerical experiments on a few model problems are
discussed in section 4. Finally, in section 5 we offer brief concluding remarks to end the paper.



4 Z.-Z. Bai, M. Benzi and F. Chen

2 The MHSS Iteration Method

By making use of the special structure of the coefficient matrix A ∈ C
n×n of the complex

symmetric linear system (1)-(2), in this section we derive a modification of the HSS iteration
method that was initially proposed in Bai, Golub and Ng [3]. The new splitting iteration method
will be referred to as the modified HSS (MHSS) iteration method or, in brief, the MHSS iteration
method.

To this end, we first rewrite the complex symmetric linear system (1)-(2) into the system of
fixed-point equations

(αI + W )x = (αI − iT )x + b, (4)

where α is a prescribed positive parameter. Because the complex symmetric linear system (1)-(2)
is also equivalent to the one −iAx = −i b, or more explicitly,

(T − iW )x = −i b,

it can be alternatively rewritten as the system of fixed-point equations

(αI + T )x = (αI + iW )x − i b. (5)

Now, by alternately iterating between the two systems of fixed-point equations (4) and (5), we
can establish the following modified HSS iteration method for solving the complex symmetric
linear system (1)-(2) in an analogous fashion to the HSS iteration scheme in [3].

The Modified HSS Iteration Method. Let x(0) ∈ C
n be an arbitrary initial guess.

For k = 0, 1, 2, . . . until the sequence of iterates {x(k)}∞k=0 ⊂ C
n converges, compute

the next iterate x(k+1) according to the following procedure:

{
(αI + W )x(k+ 1

2
) = (αI − iT )x(k) + b,

(αI + T )x(k+1) = (αI + iW )x(k+ 1

2
) − i b,

(6)

where α is a given positive constant.

Evidently, each iterate of the MHSS iteration alternates between the two symmetric matrices
W and T . As W ∈ R

n×n is symmetric positive definite, T ∈ R
n×n is symmetric positive

semidefinite and α ∈ R is positive, we see that both matrices αI +W and αI +T are symmetric
positive definite. Hence, the two linear sub-systems involved in each step of the MHSS iteration
can be solved effectively using mostly real arithmetic either exactly by a Cholesky factorization
or inexactly by some conjugate gradient or multigrid scheme. This is different from the HSS
iteration method, in which a shifted skew-Hermitian linear sub-system with coefficient matrix
αI +iT needs to be solved at every iteration step. If sparse triangular factorizations are used to
solve the sub-systems involved at each step, the MHSS method is likely to require considerably
less storage than HSS since only two triangular factors rather than three have to be computed
and stored.

After straightforward derivations we can reformulate the MHSS iteration scheme into the
standard form

x(k+1) = M(α)x(k) + G(α)b, k = 0, 1, 2, . . . ,



On Modified HSS Iteration Methods 5

where

M(α) = (αI + T )−1(αI + iW )(αI + W )−1(αI − iT )

and

G(α) = (1 − i)α(αI + T )−1(αI + W )−1.

Note that M(α) is the iteration matrix of the MHSS iteration method.

In addition, if we introduce matrices

B(α) =
1 + i

2α
(αI + W )(αI + T ) and C(α) =

1 + i

2α
(αI + iW )(αI − iT ),

then it holds that

A = B(α) − C(α) and M(α) = B(α)−1C(α). (7)

Therefore, the MHSS iteration scheme is induced by the matrix splitting A = B(α) − C(α)
defined in (7). It follows that the splitting matrix B(α) can be used as a preconditioning
matrix for the complex symmetric matrix A ∈ C

n×n. Note that the multiplicative factor (1 +
i)/(2α) has no effect on the preconditioned system and therefore it can be dropped; hence, the
preconditioning matrix is just the real matrix B(α) = (αI + W )(αI + T ). Note that B(α),
being the product of two symmetric and positive definite matrices, is diagonalizable and has
real positive eigenvalues. Matrix B(α) will be referred to as the MHSS preconditioner.

Concerning the convergence of the stationary MHSS iteration method, we have the following
theorem.

Theorem 2.1 Let A = W + i T ∈ C
n×n, with W ∈ R

n×n and T ∈ R
n×n symmetric positive

definite and symmetric positive semidefinite, respectively, and let α be a positive constant. Then
the spectral radius ρ(M(α)) of the MHSS iteration matrix M(α) = (αI + T )−1(αI + iW )(αI +
W )−1(αI − iT ) satisfies ρ(M(α)) ≤ σ(α), where

σ(α) ≡ max
λj∈sp(W )

√
α2 + λ2

j

α + λj

,

where sp(W ) denotes the spectrum of the matrix W . Therefore, it holds that

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the MHSS iteration converges to the unique solution x⋆ ∈ C
n of the complex symmetric

linear system (1)-(2) for any initial guess.

Proof. By direct computations we have

ρ(M(α)) = ρ((αI + T )−1(αI + iW )(αI + W )−1(αI − iT ))

= ρ((αI + iW )(αI + W )−1(αI − iT )(αI + T )−1)

≤ ‖(αI + iW )(αI + W )−1(αI − iT )(αI + T )−1‖2

≤ ‖(αI + iW )(αI + W )−1‖2‖(αI − iT )(αI + T )−1‖2.



6 Z.-Z. Bai, M. Benzi and F. Chen

Because W ∈ R
n×n and T ∈ R

n×n are symmetric, there exist orthogonal matrices U, V ∈ R
n×n

such that

UT WU = ΛW , V T TV = ΛT ,

where

ΛW = diag(λ
(W )
1 , λ

(W )
2 , . . . , λ(W )

n )

and

ΛT = diag(λ
(T )
1 , λ

(T )
2 , . . . , λ(T )

n ),

with λ
(W )
j (1 ≤ j ≤ n) and λ

(T )
j (1 ≤ j ≤ n) being the eigenvalues of the matrices W and T ,

respectively. By assumption, it holds that

λ
(W )
j > 0 and λ

(T )
j ≥ 0, j = 1, 2, . . . , n.

Now, based on the orthogonal invariance of the Euclidean norm ‖ · ‖2, we can further obtain
the following upper bound on ρ(M(α)):

ρ(M(α)) ≤ ‖(αI + iΛW )(αI + ΛW )−1‖2‖(αI − i ΛT )(αI + ΛT )−1‖2

= max
λj∈sp(W )

∣∣∣∣
α + iλj

α + λj

∣∣∣∣ · max
µj∈sp(T )

∣∣∣∣
α − iµj

α + µj

∣∣∣∣

= max
λj∈sp(W )

√
α2 + λ2

j

α + λj
· max

µj∈sp(T )

√
α2 + µ2

j

α + µj
.

Recalling that µj ≥ 0 holds for all µj ∈ sp(T ) (1 ≤ j ≤ n), we see that
√

α2 + µ2
j ≤ α + µj. It

then follows that

ρ(M(α)) ≤ max
λj∈sp(W )

√
α2 + λ2

j

α + λj

= σ(α).

Obviously, σ(α) < 1 holds true for any α > 0, therefore the MHSS iteration converges to the
unique solution of the complex symmetric linear system (1)-(2). 2

Theorem 2.1 shows that the convergence rate of the MHSS iteration method is bounded by
σ(α), which depends on the eigenvalues of the symmetric positive definite matrix W .

If the extreme eigenvalues of the matrix W are known, then the value of α which minimizes
the upper bound σ(α) can be obtained. This fact is precisely stated as the following corollary.

Corollary 2.1 Let the conditions of Theorem 2.1 be satisfied. Let γmin and γmax be the extreme
eigenvalues of the symmetric positive definite matrix W ∈ R

n×n, respectively. Then

α⋆ ≡ arg min
α

{
max

γmin≤λ≤γmax

√
α2 + λ2

α + λ

}
=

√
γminγmax



On Modified HSS Iteration Methods 7

and

σ(α⋆) =

√
γmin + γmax√

γmax +
√

γmin
=

√
κ(W ) + 1√
κ(W ) + 1

, (8)

where κ(W ) = γmax/γmin is the spectral condition number of the matrix W .

Proof. One can easily show that

σ(α) = max





√
α2 + γ2

min

α + γmin
,

√
α2 + γ2

max

α + γmax



 . (9)

A simple monotonicity argument shows that the minimizer α⋆ of the function σ(α) is the unique
positive root of the algebraic equation in one unknown

√
α2 + γ2

min

α + γmin
=

√
α2 + γ2

max

α + γmax
.

After solving this equation we find

α⋆ =
√

γminγmax . (10)

By substituting this α⋆ into the expression of σ(α) in (9), we easily obtain the formula (8). 2

An immediate implication of this theorem is that all the eigenvalues of the MHSS-preconditioned
matrix lie in the interior of the disk of radius 1 centered at the point (1, 0); in particular, the
preconditioned matrix is positive stable. If the spectral radius is small, the eigenvalues are
clustered around (1, 0); as is well known, these are desirable properties when a Krylov subspace
method like GMRES is used to accelerate the basic iteration.

We emphasize that the iteration parameter α⋆ in Corollary 2.1 only minimizes the upper
bound σ(α) on the spectral radius ρ(M(α)) of the MHSS iteration matrix M(α), but not
ρ(M(α)) itself. Usually, computing the optimal iteration parameter that minimizes ρ(M(α)) is
not an easy task.

We further observe that when the matrix W is just the n×n identity matrix, the upper bound
on the spectral radius of the iteration matrix attains its smallest possible value, which is equal

to
√

2
2 ≈ 0.7071. In this case, convergence will be quite fast. Hence, if a good preconditioner

Ŵ = L̂L̂T is available for W , it may be useful to precondition the original system Ax = b
symmetrically with Ŵ . That is, the original system should be replaced by Âx̂ = b̂, where
Â = L̂−1AL̂−T , x̂ = L̂T x, and b̂ = L̂−1b.

Finally, we remark that the MHSS iteration scheme and the foregoing convergence result are
equally applicable to the case where matrix W is symmetric positive semidefinite and matrix T
is symmetric positive definite. More generally, if there exist real numbers β and δ such that both
matrices W̃ := βW + δT and T̃ := βT − δW are symmetric positive semidefinite with at least
one of them positive definite, we can first scale the complex symmetric linear system (1)-(2) by
the complex number β − i δ to obtain the equivalent system

(W̃ + i T̃ )x = b̃, with b̃ := (β − i δ)b,

and then apply the MHSS iteration scheme to compute an approximate solution.



8 Z.-Z. Bai, M. Benzi and F. Chen

3 Implementation Aspects

In the MHSS method, the two half-steps comprising each iteration require the ‘exact’ solution of
two symmetric positive definite systems with matrices αI+W and αI+T . However, this may be
very costly and impractical in actual implementations, particularly when the original problem
arises from the discretization of a three-dimensional partial differential equation. To improve the
computing efficiency of the MHSS iteration method we can employ an inner iterative method,
such as the conjugate gradient (CG) method, to solve the two linear systems to some prescribed
accuracies at each step of the MHSS iteration. This results in the inexact modified Hermitian and
skew-Hermitian splitting (IMHSS) iteration method, or shortly, the IMHSS iteration method.
Its convergence can be established in an analogous fashion to that of the inexact HSS (IHSS)
iteration method, by making use of Theorem 3.1 in [3].

The tolerances (or the numbers of inner iteration steps) for the inner iterative methods may
be different and in general they vary according to the accuracy attained in the outer itera-
tion scheme. Therefore, the IMHSS iteration is actually a non-stationary iterative method for
solving the system of linear equations (1)-(2). This means that IMHSS cannot be used as a
preconditioner for GMRES, and flexible GMRES [11] should be used instead.

It is worth mentioning that when the tolerances of the inner iterations tend to zero with
increasing of the outer iterate index, the asymptotic convergence rate of the IMHSS iteration
approaches that of the MHSS iteration. Moreover, if good preconditioners for the matrices
αI + W and αI + T are available, we can use the preconditioned conjugate gradient (PCG)
method instead of CG at each iteration step so that the computational efficiency of the IMHSS
iteration may be considerably improved. For example, if either W or T (or both) have Toeplitz
or block Toeplitz structure, fast algorithms are available for the solution of the corresponding
sub-systems. For more details, we refer to [3, 4, 6].

4 Numerical Experiments

In this section we use three different types of test problems to assess the feasibility and effec-
tiveness of the MHSS iteration method when it is used either as a solver or as a preconditioner
for solving the system of linear equations (1)-(2) with complex symmetric coefficient matrix.
We also compare MHSS with HSS both as iterative solvers and as preconditioners for the (full)
GMRES method and its restarted variant, GMRES(m). We experiment with inexact solves and
compare the two methods from the point of view of the number of inner iterations (denoted as
ITint) and in terms of the total CPU time (denoted as CPU)1.

In our implementations, the initial guess is chosen to be x(0) = 0 and the iteration is termi-
nated once the current iterate x(k) satisfies

‖b − Ax(k)‖2

‖b‖2
≤ 10−6.

For the inexact HSS and the inexact MHSS iteration methods, the stopping criteria for the inner

1ITint denotes the average number of inner iteration steps per outer iteration.



On Modified HSS Iteration Methods 9

CG and the inner GMRES iterations are set to be

‖r(k,ℓk)‖2

‖b − Ax(k)‖2
≤ 10−2, (11)

where r(k,ℓk) represents the residual of the ℓk-th inner iterate in the k-th outer iterate. In
addition, all codes were run in MATLAB (version 7.4.0.336 (R2007a)) in double precision and
all experiments were performed on a personal computer with 2.66GHz central processing unit
(Intel(R) Core(TM) Duo E6750), 1.97G memory and Linux operating system (2.6.23.9-85.fc8).

4.1 Example Descriptions

In this sub-section we describe the numerical examples used to assess the performance of the
MHSS and the HSS iteration methods.

Example 4.1 (See [2]) The system of linear equations (1)-(2) is of the form
[(

K +
3 +

√
3

τ
I

)
+ i

(
K +

3 −
√

3

τ
I

)]
x = b, (12)

where τ is the time step-size and K is the five-point centered difference matrix approximating
the negative Laplacian operator L = −∆ with homogeneous Dirichlet boundary conditions, on a
uniform mesh in the unit square [0, 1]× [0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈ R
n×n

possesses the tensor-product form K = I⊗Vm+Vm⊗I, with Vm = h−2tridiag(−1, 2,−1) ∈ R
m×m.

Hence, K is an n × n block-tridiagonal matrix, with n = m2. We take

W = K +
3 +

√
3

τ
I and T = K +

3 −
√

3

τ
I,

and the right-hand side vector b with its jth entry bj being given by

bj =
(1 − i)j

τ(j + 1)2
, j = 1, 2, . . . , n.

This complex symmetric system of linear equations arises in centered difference discretizations
of the R22-Padé approximations in the time integration of parabolic partial differential equations
[2]. The R22-Padé approximants satisfy the operator equation

(
I +

1

2
τL +

1

12
τ2L2

)
u =

1

24
φ,

which can be reformulated in factorized form as
[(

L +
3 +

√
3

τ
I

)
+ i

(
L +

3 −
√

3

τ
I

)][(
L +

3 −
√

3

τ
I

)
− i

(
L +

3 +
√

3

τ
I

)]
u = φ.

Hence, the above fourth-order partial differential equation can be reduced to the two second-
order equations

[(
L +

3 +
√

3

τ
I

)
+ i

(
L +

3 −
√

3

τ
I

)]
v = φ (13)



10 Z.-Z. Bai, M. Benzi and F. Chen

and
[(

L +
3 −

√
3

τ
I

)
− i

(
L +

3 +
√

3

τ
I

)]
u = v.

We see that the complex symmetric linear system (12) is exactly the discretized form of the
linear operator equation (13). In our tests, we take τ = h. Furthermore, we normalize coefficient
matrix and right-hand side by multiplying both by h2. For more details, we refer to [2].

Example 4.2 The system of linear equations (1)-(2) is of the form

[(−ω2M + K) + i (ωCV + CH)]x = b, (14)

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous and
the hysteretic damping matrices, respectively, and ω is the driving circular frequency. We take
CH = µK with µ a damping coefficient, M = I, CV = 10I, and K the five-point centered
difference matrix approximating the negative Laplacian operator with homogeneous Dirichlet
boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with the mesh-size
h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I,

with Vm = h−2tridiag(−1, 2,−1) ∈ R
m×m. Hence, K is an n × n block-tridiagonal matrix,

with n = m2. In addition, we set ω = π, µ = 0.02, and the right-hand side vector b to be
b = (1 + i)A1, with 1 being the vector of all entries equal to 1. As before, we normalize the
system by multiplying both sides through by h2.

This complex symmetric system of linear equations arises in direct frequency domain analysis
of an n-degree-of-freedom (n-DOF) linear system. In fact, the equations of motion of an n-DOF
linear system can be written in matrix form as

Mq̈ + (CV +
1

ω
CH)q̇ + Kq = p,

where M , K, CV , CH and ω are the same as above, q is the configuration vector and p is
the vector of generalized components of dynamic forces. Complex harmonic excitation at the
driving circular frequency ω, i.e., of the type p(t) = feiωt, admits the steady-state solution
q(t) = q̃(ω)eiωt, where q̃ solves the linear system E(ω)q̃(ω) = f and E(ω) is the dynamic
impedance matrix. Substituting q(t) = q̃(ω)eiωt and its derivatives into the equation of motion,
the matrix E(ω) can be directly evaluated as

E(ω) = −ω2M + iω(CV +
1

ω
CH) + K.

This leads to the complex symmetric linear system (14). For more details, we refer to [7, 5].

Example 4.3 The system of linear equations (1)-(2) is of the form (W + iT )x = b, with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1e
T
m + emeT

1 ) ⊗ I, (15)

where V = tridiag(−1, 2,−1) ∈ R
m×m, Vc = V − e1e

T
m − emeT

1 ∈ R
m×m, and e1 and em are the

first and the last unit vectors in R
m, respectively. We take the right-hand side vector b to be

b = (1 + i)A1, with 1 being the vector of all entries equal to 1.



On Modified HSS Iteration Methods 11

Table 1: The Experimentally Optimal Parameters αexp for HSS and MHSS Iteration Methods

Grid
Example Method

16 × 16 32 × 32 64 × 64 128 ×128 256 × 256

HSS 0.81 0.55 0.37 0.28 0.20
No. 4.1

MHSS 1.06 0.75 0.54 0.40 0.30

HSS 0.42 0.23 0.12 0.07 0.04
No. 4.2

MHSS 0.21 0.08 0.04 0.02 0.01

HSS 4.41 2.71 1.61 0.93 0.53
No. 4.3

MHSS 1.61 1.01 0.53 0.26 0.13

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

α

IT

 

 

HSS
MHSS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

3500

α

IT

 

 

HSS
MHSS

0.5 1 1.5 2
100

200

300

400

500

600

700

800

900

1000

1100

α

IT

 

 

HSS
MHSS

Figure 1: Pictures of IT versus α for HSS and MHSS iteration methods; left: Example 4.1,
middle: Example 4.2, and right: Example 4.3.

Here T and W correspond to the five-point centered difference matrices approximating the
negative Laplacian operator with homogeneous Dirichlet boundary conditions and periodic
boundary conditions, respectively, on a uniform mesh in the unit square [0, 1] × [0, 1] with
the mesh-size h = 1

m+1 . Although this problem is an artificially constructed one, it is quite
challenging for iterative solvers and therefore we include it in our tests.

4.2 Experimental Results

For the tests reported in this sub-section we used the optimal values of the parameter α (denoted
by αexp) for both the MHSS and the HSS iteration methods. The experimentally found optimal
parameters αexp are the ones resulting in the least numbers of iterations for the two methods
for each of the numerical examples and for each choice of the spatial mesh-sizes.

From Table 1, we see that for each example αexp decreases with the mesh-size h. For Exam-
ple 4.1, the optimal α decreases approximately by a factor of

√
2 each time m is doubled. For

the other two problems, αexp is roughly halved each time m is doubled. Note that this behavior
is qualitatively in agreement with the expression (10).



12 Z.-Z. Bai, M. Benzi and F. Chen

Table 2: IT and CPU for HSS, MHSS, GMRES(m) and GMRES Methods for Example 4.1

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 44 65 97 136 191
HSS

CPU 0.06 0.18 1.78 16.88 188.76

IT 40 54 73 98 133
MHSS

CPU 0.03 0.14 0.99 8.24 58.53

IT 97 169 283 421 607
GMRES

CPU 0.07 0.69 9.53 83.25 837.84

IT 217 503 805 1199 2034
GMRES(10)

CPU 0.03 0.15 0.85 7.35 80.13

IT 151 347 911 1465 2367
GMRES(20)

CPU 0.03 0.15 1.62 15.51 146.19

Table 3: IT and CPU for HSS- and MHSS-Preconditioned GMRES(m) and GMRES Methods
for Example 4.1

Method Prec 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 26 38 52 67 86
HSS

CPU 0.02 0.15 1.35 12.00 126.77
GMRES

IT 14 17 20 24 29
MHSS

CPU 0.01 0.06 0.34 2.51 15.83

IT 29 43 58 72 102
HSS

CPU 0.02 0.15 1.31 11.46 132.68
GMRES(10)

IT 14 17 21 26 28
MHSS

CPU 0.01 0.06 0.37 2.68 15.00

IT 27 40 56 71 90
HSS

CPU 0.02 0.14 1.27 11.21 120.75
GMRES(20)

IT 14 17 20 25 29
MHSS

CPU 0.01 0.06 0.34 2.61 15.48

We further note that αexp for MHSS is always larger than that for HSS for Example 4.1; while
for Examples 4.2 and 4.3, αexp for MHSS is always smaller than that for HSS; see Fig. 1 for a
graph illustrating the convergence behavior of the two solvers with respect to α. In the case of
Example 4.2 (with m = 64), the graphs are rather flat near the minimum, which shows that the
rate of convergence is not overly sensitive to the choice of α. This sensitivity is somewhat more
pronounced for the other two examples.

Numerical results for Example 4.1 are listed in Tables 2 and 3.

In Table 2 we show IT and CPU for HSS, MHSS, GMRES(10), GMRES(20) and GMRES
methods, while in Table 3 we show results for HSS- and MHSS-preconditioned GMRES(10),
GMRES(20) and GMRES methods, respectively. Not surprisingly, we see from Table 2 that for
all methods, the number of iterations grows with problem size. However, this growth is slower



On Modified HSS Iteration Methods 13

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

m

IT

 

 
HSS−GMRES
MHSS−GMRES
HSS−GMRES(10)
MHSS−GMRES(10)
HSS−GMRES(20)
MHSS−GMRES(20)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

m

IT
 

 
HSS−GMRES
MHSS−GMRES
HSS−GMRES(10)
MHSS−GMRES(10)
HSS−GMRES(20)
MHSS−GMRES(20)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

m

IT

 

 
HSS−GMRES
MHSS−GMRES
HSS−GMRES(10)
MHSS−GMRES(10)
HSS−GMRES(20)
MHSS−GMRES(20)

Figure 2: Pictures of IT versus m for HSS- and MHSS-preconditioned GMRES(10), GMRES(20)
and GMRES methods; left: Example 4.1, middle: Example 4.2, and right: Example 4.3.

for MHSS than for all other methods, and the results show that in almost all cases MHSS is
superior to the other methods in terms of both iteration count and CPU time.

In Table 3 we report results for full GMRES, GMRES(10) and GMRES(20) preconditioned
with HSS and MHSS. We use again the values of αexp given in Table 1, since we found that they
are very close, for the test problems considered in this paper, to the values of α that minimize
the number of preconditioned iterations. From these results we observe that when used as a
preconditioner, MHSS performs much better than HSS in both iteration steps and CPU times,
especially when the mesh-size h becomes small; see Fig. 2. Hence, for this example, also as a
preconditioner MHSS shows much higher quality than HSS. While the number of iterations is
still growing with problem size, the growth is slow and the number of iterations on the finer grid
is quite acceptable with MHSS preconditioning.

Numerical results for Example 4.2 are listed in Tables 4 and 5.

In Table 4 we show IT and CPU for HSS, MHSS, GMRES(10), GMRES(20) and GMRES
methods, and in Table 5 we show results for HSS- and MHSS-preconditioned GMRES(10),
GMRES(20) and GMRES methods, respectively. From Table 4 we see that almost without
exceptions, the stationary MHSS iteration vastly outperforms both the stationary HSS iteration
and the nonstationary full and restarted GMRES iterations.

From Table 5 we observe that when used as a preconditioner for GMRES(10), GMRES(20)
and GMRES, MHSS results in fast convergence and performs much better than HSS in both
iteration steps and CPU times, especially when the mesh-size h becomes small; see Fig. 2. Hence,
also for this example MHSS is much better than HSS as a preconditioner.

Numerical results for Example 4.3 are listed in Tables 6 and 7.

In Table 6 we show IT and CPU for the HSS, MHSS, GMRES(10), GMRES(20) and GMRES
methods, and in Table 7 we show results for HSS- and MHSS-preconditioned GMRES(10),
GMRES(20) and GMRES methods, respectively. From Table 6 we see again that when used as
stationary iterative solvers, MHSS requires less iteration steps and computing times than HSS
for achieving the prescribed stopping criterion, especially when the mesh-size h is small. In



14 Z.-Z. Bai, M. Benzi and F. Chen

Table 4: IT and CPU for HSS, MHSS, GMRES(m) and GMRES Methods for Example 4.2

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 86 153 284 540 1084
HSS

CPU 0.05 0.40 4.81 59.75 860.29

IT 34 38 50 81 139
MHSS

CPU 0.02 0.10 0.69 6.83 60.86

IT 42 83 161 308 593
GMRES

CPU 0.01 0.14 2.98 45.44 778.17

IT 128 346 973 3096 9979
GMRES(10)

CPU 0.02 0.11 1.08 19.68 427.16

IT 93 233 632 1704 5202
GMRES(20)

CPU 0.03 0.11 1.50 21.54 388.81

Table 5: IT and CPU for HSS- and MHSS-Preconditioned GMRES(m) and GMRES Methods
for Example 4.2

Method Prec 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 16 22 35 63 114
HSS

CPU 0.02 0.09 0.93 11.34 160.23
GMRES

IT 14 19 27 40 58
MHSS

CPU 0.01 0.07 0.46 4.30 33.65

IT 19 36 121 335 449
HSS

CPU 0.02 0.13 2.47 42.45 428.02
GMRES(10)

IT 14 20 31 48 76
MHSS

CPU 0.01 0.07 0.52 4.75 38.99

IT 16 22 58 227 673
HSS

CPU 0.02 0.09 1.30 29.57 606.33
GMRES(20)

IT 14 19 28 44 69
MHSS

CPU 0.01 0.06 0.47 4.42 35.36

iteration steps, MHSS performs much better than GMRES(10), GMRES(20) and GMRES. In
terms of computing times, MHSS costs less CPU than GMRES except for m = 16, but more
CPU than GMRES(10) and GMRES(20) except for m = 128 and 256. Hence, for this example,
as iterative solvers MHSS outperforms GMRES and behaves much better than HSS, and is much
faster than GMRES(10) and GMRES(20) for large enough problem sizes.

From Table 7 we observe that as preconditioners for GMRES(10), GMRES(20) and GM-
RES methods, MHSS performs much better than HSS in both iteration steps and CPU times,
especially when the mesh-size h becomes small; see also Fig. 2.

We conclude this section with numerical results for the inexact variants IHSS and IMHSS
on all three Examples. In Table 8 we report the average numbers of CG and GMRES inner
iterations per outer iteration of IHSS, where CG is used to solve the linear system with matrix



On Modified HSS Iteration Methods 15

Table 6: IT and CPU for HSS, MHSS, GMRES(m) and GMRES Methods for Example 4.3

Method m × m 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 84 137 223 390 746
HSS

CPU 0.25 0.63 4.71 49.37 674.05

IT 53 76 130 246 468
MHSS

CPU 0.06 0.24 2.27 24.24 239.53

IT 56 113 221 385 721
GMRES

CPU 0.02 0.35 6.54 81.04 1174.11

IT 213 546 1468 4228 14520
GMRES(10)

CPU 0.03 0.17 1.65 26.62 607.30

IT 151 335 778 2406 7935
GMRES(20)

CPU 0.03 0.15 1.49 25.98 492.40

Table 7: IT and CPU for HSS- and MHSS-Preconditioned GMRES(m) and GMRES Methods
for Example 4.3

Method Prec 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

IT 28 46 75 123 208
HSS

CPU 0.04 0.20 2.34 25.39 311.13
GMRES

IT 25 32 46 66 95
MHSS

CPU 0.07 0.13 1.08 9.16 71.19

IT 52 111 209 404 754
HSS

CPU 0.04 0.40 5.02 57.93 753.48
GMRES(10)

IT 26 36 51 77 108
MHSS

CPU 0.02 0.14 1.08 9.01 65.06

IT 30 82 166 304 708
HSS

CPU 0.03 0.31 4.05 43.92 696.58
GMRES(20)

IT 26 34 48 68 109
MHSS

CPU 0.02 0.13 1.01 7.95 65.35

αI + W and GMRES for the system with matrix αI + iT . For IMHSS we report the average
number of inner CG iterations for each of the two sub-systems with matrices αI + W and
αI + T . The stopping criterion for the inner iterations is (11). No preconditioning is used for
these inner iterations. We can see that the average number of inner iterations per outer iteration
is quite small for both IHSS and IMHSS, and it grows slowly with problem size. This growth can
probably be eliminated using a suitable preconditioner, or (for the model problems considered
here) using a suitable multigrid V-cycle.

The fact that the two sub-systems arising at each HSS/MHSS iteration are solved inexactly
has a different impact on the number of outer iterations for different test problems. We found
that for Example 4.1, the number of outer iterations is essentially the same for the exact and
inexact versions of these two methods. On the other hand, for Examples 4.2 and 4.3 this is true



16 Z.-Z. Bai, M. Benzi and F. Chen

Table 8: Average Number of Inner Iterations for IHSS and IMHSS Methods for Examples 4.1-4.3

Example Method 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

ITint(CG) 4.8 6.2 8.5 10.7 10.7
IHSS

ITint(GMRES) 4.1 5.0 6.2 7.8 7.3
No. 4.1

ITint(CG) 5.3 6.3 7.3 9.1 8.3
IMHSS

ITint(CG) 5.0 5.9 7.1 8.9 8.1
ITint(CG) 5.1 6.2 5.8 — —

IHSS
ITint(GMRES) 2.2 3.5 5.0 — —

No. 4.2
ITint(CG) 10.5 13.0 15.6 16.2 20.6

IMHSS
ITint(CG) 2.0 3.9 5.0 7.0 9.9
ITint(CG) 6.8 8.5 8.8 10.6 13.5

IHSS
ITint(GMRES) 2.9 3.2 4.0 5.0 6.0

No. 4.3
ITint(CG) 12.2 14.7 15.4 17.6 22.8

IMHSS
ITint(CG) 5.8 6.6 8.0 10.4 14.1

only for the smaller values of m; for the finer meshes we found that solving the sub-systems
inexactly causes a significant growth in the number of outer iterations, even causing IHSS to
converge extremely slowly on the two larger instances of Example 4.2. This phenomenon can be
alleviated by using a tighter tolerance in the inner stopping criterion (11); of course, this causes
an increase in the number of inner iterations. It also seems likely that using a (flexible) Krylov
subspace method like FGMRES [11] to accelerate convergence could be beneficial. We leave a
detailed investigations of these issues for future work.

5 Concluding Remarks

Based on the Hermitian and skew-Hermitian splitting of the coefficient matrix, we have estab-
lished and analyzed a class of alternating splitting iteration methods, including the modified
HSS methods and the corresponding inexact variants, for solving an important class of complex
symmetric linear systems. Numerical experiments have shown that these methods may yield
satisfactory results when applied to linear systems of practical interest.

The basic ideas of designing the MHSS iteration method and its inexact variants can be
straightforwardly extended to more general non-Hermitian linear systems. More specifically, we
consider the system of linear equations

Âx̂ = b̂, with Â ∈ C
n×n nonsingular and x̂, b̂ ∈ C

n.

Let

Ĥ =
1

2
(Â + Â∗) and Ẑ =

1

2i
(Â − Â∗).

Then it holds that

Â = Ĥ + iẐ,



On Modified HSS Iteration Methods 17

with both Ĥ and Ẑ being Hermitian matrices. Now, the correspondingly induced MHSS iteration
method can be described as follows:

{
(αI + Ĥ)x̂(k+ 1

2
) = (αI − iẐ)x̂(k) + b̂,

(αI + Ẑ)x̂(k+1) = (αI + iĤ)x̂(k+ 1

2
) − îb,

where α is a prescribed positive constant. Note that the coefficient matrices of both linear sub-
systems of this iteration scheme are Hermitian, and they are positive definite when both matrices
Ĥ and Ẑ are positive semidefinite. Therefore, we can demonstrate the convergence property of
the above-described MHSS iteration method in an analogous manner to Theorem 2.1 and those
in [3], with only slight and technical modifications.

Acknowledgements: Part of this work was done when Dr. Fang Chen was visiting the State
Key Laboratory of Scientific/Engineering Computing, Chinese Academy of Sciences, during
September 2008-August 2009. She is very much indebted to Prof. Zhong-Zhi Bai for his kind
invitation to visit.

References

[1] S. R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999), R41–R93.

[2] O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric
linear systems, Numer. Linear Algebra Appl., 7 (2000), 197–218.

[3] Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003),
603–626.

[4] Z.-Z. Bai, G. H. Golub and M. K. Ng, On inexact Hermitian and skew-Hermitian splitting
methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428
(2008), 413–440.

[5] M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for
complex linear systems, IMA J. Numer. Anal., 28 (2008), 598–618.

[6] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev.,
38 (1996), 427–482.

[7] A. Feriani, F. Perotti and V. Simoncini, Iterative system solvers for the frequency analysis
of linear mechanical systems, Comput. Methods Appl. Mech. Engrg., 190 (2000), 1719–1739.

[8] A. Frommer, T. Lippert, B. Medeke and K. Schilling, Eds., Numerical Challenges in Lat-
tice Quantum Chromodynamics, Lecture Notes in Computational Science and Engineering,
Vol. 15, Springer, 2000.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition, The Johns Hopkins
University Press, Baltimore and London, 1996.



18 Z.-Z. Bai, M. Benzi and F. Chen

[10] B. Poirier, Efficient preconditioning scheme for block partitioned matrices with structured
sparsity, Numer. Linear Algebra Appl., 7 (2000), 715–726.

[11] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput.,
14 (1993), 461–469.

[12] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869.

[13] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Uni-
versity Press, Cambridge, 2003.

[14] W. van Dijk and F. M. Toyama, Accurate numerical solutions of the time-dependent
Schrödinger equation, Phys. Rev. E, 75 (2007), 036707-1-036707-10.


