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Abstract. In the solution of Fluid-Structure Interaction problems, partitioned procedures are
modular algorithms that involve separate fluid and structure solvers, that interact, in an iterative
framework, through the exchange of suitable transmission conditions at the FS interface. In this
work we study, using Fourier analysis, the convergence of partitioned algorithms based on Robin
transmission conditions. We derive, for different models of the fluid and the structure, a frequency
dependent reduction factor at each iteration of the partitioned algorithm, which is minimized by
choosing optimal values of the coefficients in the Robin transmission conditions. Two-dimensional
numerical results are also reported, which highlight the effectiveness of the optimization procedure.
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1. Introduction. In the framework of Domain-Decomposition methods for the
solution of differential problems, one of the most popular non-overlapping method
is the one based on successive exchanges of interface Robin data and called Lions’
method (see [18] and, e.g., [7, 16]). Recently, this strategy has been applied to the
Fluid-Structure Interation (FSI) problem, which describes any physical phenomenon
where a fluid and a structure interact by exchanging normal stresses through an
interface (see [3]).

The solution of the FSI problem is problematic, since the fluid and the structure
subproblems are coupled through the geometry problem (that is the determination
of the unknown interface position) and through the interface continuity conditions,
namely the continuity of the velocity and of the normal stresses at the FS interface.

Whatever treatment for the geometry problem is considered (e.g. fixed point,
Newton, explicit extrapolation in time), a sequence of linearized FSI problems, im-
plicitely coupled through the interface conditions, has to be solved (see Sect. 2.1).
Implicit coupling of the interface conditions is required in many applications featuring
a large added mass effect of the fluid on the structure (see [6]) and it allows to achieve
at the numerical level perfect energy balance between fluid and structure.

One possible strategy for the solution of such problems is to consider modular
algorithms (also referred to as partitioned procedures), that involve separate fluid
and structure solvers in an iterative framework. In particular, they interact through
the exchange of suitable transmission conditions at the FS interface, and guarantee,
at convergence, the satisfaction of the continuity conditions. Modular algorithms
can be reinterpreted, in the framework of the Domain-Decomposition method, as
preconditioned Richardson iterations over a suitable interface equation (see [2, 8]).
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This allows one to introduce more performing Krylov methods for the solution of
the FSI problem. In particular we mention the Dirichlet-Neumann/GMRES and
the Robin-Neumann/GMRES schemes, which lead to different modular algorithms
(see [2, 4]).

The introduction of Robin-Robin (RR) partitioned procedures in the framework
of FSI problems, as generalization of the classic Dirichelt-Neumann (DN) scheme, has
been motivated to overcome the limitations of the latter algorithm. In particular,
the performances of the DN scheme when the added mass effect is high (that is
when the fluid and structure densities are similar) are very poor, and a (sometimes
big) relaxation is needed to reach convergence (see [6, 12, 23]). On the contrary, RR
schemes highlighted better convergence properties in the presence of a high added-
mass. In particular, in [2, 3] the Robin-Neumann (RN) scheme has been shown to
converge without relaxation, in the test cases studied, and to feature a big saving in
computational time with respect to DN scheme.

This behaviour has been mostly evidenced by numerical tests and only few the-
oretical results of the convergence properties of partitioned procedures for the FSI
problems are available so far. In particular, at the best of the authors’ knowledge, the
only convergence analysis have been proposed in [6] for the DN scheme and in [3] for
the RN scheme. We mention also the analysis in [4] and in [2] for DN-GMRES and
RN-GMRES schemes. In all the cases, the analysis has been performed on a simplified
problem where the fluid is described by a 2D potential flow and the structure by a 1D
reduced model (the independent rings in [6] and the generalized string in the other
works).

The first goal of this work is to extend the convergence analysis of RR schemes
(and then of DN) to more general classes of subproblems. In particular, we consider
the generalized Stokes equations to describe the discretized-in-time fluid problem
and a 2D linear elastic incompressible structure in the half plane. In particular,
the proposed analysis are based on the application of the Fourier transform (see,
e.g, [1, 13,14]) and on the determination of a reduction factor.

Secondly, we focus on parameters in Robin transmission conditions. Obviously,
the convergence velocity of RR schemes heavily depends on the choice of these pa-
rameters. A proposal for these parameters has been given in [3], based on heuristic
considerations. This choice has revealed to be satisfactory in order to overcome the
limitations of the DN scheme, but a rigorous optimization procedure is still missing.

The second goal of this work is to optimize the values of parameters in the Robin
interface conditions, starting from the new convergence analysis proposed in this work
and following the literature on Optimization Schwartz Methods (see [1, 13, 14] for
instance).

The outline of the paper is as follows. In Sect. 2 we introduce the FSI problem
under investigation, we describe the different treatments of the geometry problem
and we introduce the RR partitioned procedure. In Sect. 3 we perform the new
convergence analysis, extending the results obtained in [3, 6] to more general classes
of FSI problems. In Sect. 4 we propose an optimization procedure for the values of the
parameters in Robin transmission conditions, starting from the convergence analysis.
Finally, in Sect. 5 we present 2D numerical results, which confirm the effectiveness of
the proposed optimal values with respect to the heuristic ones.

2. Problem setting. Let us consider a computational domain Ωt ⊂ R
d (d=2, 3,

being the space dimension). This domain is divided into a sub-domain Ωt
s occupied by

an elastic structure and its complement Ωt
f occupied by the fluid. The fluid-structure
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interface Σt is the common boundary between Ωt
s and Ωt

f (see Fig. 2.1), while with

Γt
i and Γt

i,s we denote the fluid and structure artificial sections. Furthermore, n is the

outward normal on ∂Ωt
f . The initial configuration Ω0 at t = 0 is considered as the

reference one.

Ωt
fΓt
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Fig. 2.1. Example of computational fluid domain Ωt
f

(left) and solid domain Ωt
s (right).

We adopt a purely Lagrangian approach to describe the structure kinematics.
We denote the reference (initial) configuration by Ωs := Ω0

s. Hereafter, η̄ denotes
the displacement of the solid medium with respect to Ωs. For any function ḡ defined
in the reference solid configuration, we denote by g its counterpart in the current
configuration. The solid is assumed to be a linear elastic material, characterized by
the Cauchy stress tensor

T s(η) = λ1(∇η + (∇η)T ) + λ2(∇ · η)I,

where

λ1 =
E

1 + ν
, λ2 =

Eν

(1 + ν)(1 − 2ν)
+ λ1 (2.1)

are the Lamé constants, E is the Young modulus, ν the Poisson modulus and I is the
identity tensor.

On the other hand, the fluid problem is stated in an Arbitrary Lagrangian-
Eulerian (ALE) framework (see, e.g., [9, 17]). The ALE mapping is defined by an
appropriate lifting of the structure displacement. A classical choice is to consider
a harmonic extension operator in the reference domain. In order to write the fluid
problem in ALE coordinates, we recall the definition of ALE time derivative of the
velocity u:

DAu

Dt
=

∂u

∂t
+ w · ∇u,

where ∂u/∂t is the Eulerian derivative and w is the velocity of the points of the fluid
domain defined by the ALE map. Moreover, the fluid is assumed to be homogeneous,
Newtonian and incompressible, with Cauchy stress tensor given by

T f (u, p) = −pI + µ(∇u + (∇u)T ),

where p is the pressure and µ the dynamic viscosity.
Then, the full FSI problem in strong form reads:
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1. Fluid-structure problem. Find the fluid velocity u, pressure p and the struc-
ture displacement η̄ such that






ρf
DAu

Dt
+ ρf ((u − w) · ∇)u −∇ · T f = ff in Ωt

f × (0, T ),

∇ · u = 0 in Ωt
f × (0, T ),

ρs
∂2η̄

∂t2
− ∇̄ · T̄ s = f̄s in Ω0

s × (0, T ),

u =
∂η

∂t
on Σt × (0, T ),

T f n − T s n = 0 on Σt × (0, T ),

(2.2)

2. Geometry problem. Given the interface structure displacement η|Σt , find a
map A : Ω0

f → Ωt
f e.g. through an harmonic extension Ext of the boundary

displacement

At(x0) = x0 + Ext(η̄|Σ0),

such that Ωt
f = At(Ω0

f ).

Here, ρf and ρs are the fluid and structure density and ff and f̄s the forcing terms.
System (2.2) has to be endowed with suitable Dirichlet or Neumann boundary con-
ditions on ∂Ωt

f \ Σt and ∂Ω0
s \ Σ0, and initial conditions in Ω0. Two transmission

conditions are enforced at the interface: the continuity of fluid and structure veloci-
ties (2.2)4 and the continuity of stresses (2.2)5. The fluid and the structure are also
coupled by the geometry problem, leading to a non-linear system of partial differential
equations.
Remark 1. In the case of an incompressible structure, we have ν = 0.5. In this case,
the Cauchy stress tensor is given by

T s(η) = λ(∇η + (∇η)T ) − χI,

where χ is the structure pressure, and the structure equation (2.2)3 becomes





ρs

∂2η̄

∂t2
−∇ · T̄ s = f̄s in Ω0

s × (0, T ),

∇ · η̄ = 0 in Ω0
s × (0, T ).

2.1. Time discretization and FS interface treatment. Let us introduce the
backward Euler time discretization for the fluid and the first order BDF scheme for
the structure. The investigation of this work is independent on the time discretization,
so that other schemes can be considered as well.

The main source of non-linearity comes from the fact that the interface (and
hence the fluid domain) is unknown (geometrical non-linearity). This can be treated
numerically in several ways. We focus here either on implicit treatments, where
the FSI problem is solved at each time step by Picard, Newton or quasi-Newton
iterations (see, e.g, [11, 19]), or on explicit treatments, where the interface position
is extrapolated from previous time steps. Similar considerations appy also to the
non-linearity coming from the Navier-Stokes convective term.

Whatever strategy is adopted, a sequence of linearized FSI problems implicitly
coupled through the interface conditions (2.2)4,5 has to be solved. In particular, let
us denote by Ω∗

f , u∗ and w∗ the known fluid domain, fluid velocity and fluid do-
main velocity, where ∗ denotes either an extrapolated value (explicit algorithms) or
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the value of the previous subiteration (implicit algorithm). Moreover, let gm be the
approximation of a function g at time tm := m∆t, where ∆t is the time discretization
parameter. Then, by applying the backward Euler scheme also for the continuity
condition (2.2)4, we obtain the following linear system

Given Ω∗
f , u∗, w∗, un, ηn and ηn−1, find the fluid velocity un+1, pressure pn+1 and

the structure displacement η̄n+1 such that





ρf

∆t
un+1 + ρf ((u∗ − w∗) · ∇)un+1 −∇ · T n+1

f = fn+1
f +

ρf

∆t
un in Ω∗

f ,

∇ · un+1 = 0 in Ω∗
f ,

ρs

∆t2
η̄n+1 −∇ · T̄ n+1

s = f̄
n+1
s +

ρs

∆t2
(2η̄n − η̄n−1) in Ω0

s,

u =
ηn+1 − ηn

∆t
on Σ∗,

T n+1
f n = T n+1

s n on Σ∗,

(2.3)
with suitable boundary conditions on the artificial sections.

For the sake of simplicity, here and in the sequel of the paper we drop the index
n+1 referring to the time step.

2.2. Partitioned procedures. System (2.3) is still coupled through the inter-
face conditions (2.3)4 and (2.3)5. In this work we consider schemes which guarantee
strong enforcement of such conditions, thus achieving a perfect energy balance. In
particular, we focus on the so called modular algorithms that involve separate fluid
and structure solvers interacting through the exchange of suitable transmission con-
ditions at the FS interface Σ∗. At convergence, they guarantee the continuity of the
velocity and of the normal stress at Σ∗. In particular, an algorithm that uses an
explicit treatment of the FS interface position and a strong coupling of the interface
conditions is called semi-implicit (see [5, 10,20]).

The most classical modular algorithm is the Dirichlet-Neumann (DN) scheme,
which consists in solving iteratively the fluid problem with the structure velocity as
Dirichlet boundary condition at the FS interface, and the structure problem with
the fluid normal stress as Neumann boundary condition at Σ∗ (see, e.g., [19, 21]).
However, it has been shown in [6, 12, 23] that in the presence of a large added mass
effect, this procedure needs a strong relaxation and features a very slow convergence.

A new class of iterative procedures based on Robin transmission conditions, which
generalizes the DN approach, has been introduced in [3]. In particular, the Robin-
Robin schemes are based on the following transmission conditions:

αfu − T fn = αf
η − ηn

∆t
− T sn, on Σ∗,

αs

∆t
η + T sn =

αs

∆t
ηn + αsu + T fn, on Σ∗,

(2.4)

obtained by a linear combination of (2.3)4 and (2.3)5, with coefficients αf , αs positive.
We observe that with the choice αf → ∞ and αs = 0 we recover the DN scheme.

In this work we consider a fixed point algorithm consisting of subsequent itera-
tions of fluid subproblems with interface condition (2.4)1 and structure subproblems
with interface condition (2.4)2:

Robin-Robin partitioned algorithm: Given Ω∗
f , u∗, w∗, un, ηn and ηn−1 and

the solution at previous iteration ηm−1, find at each iteration m the fluid velocity



6 L. GERARDO-GIORDA, F. NOBILE AND C. VERGARA

um, the fluid pressure pm and the structure displacement η̄m until convergence, such
that
Fluid problem:

ρf

∆tum + ρf ((u∗ − w∗) · ∇)um −∇ · T f,m = ff +
ρf

∆tu
n in Ω∗

f ,

∇ · um = 0 in Ω∗
f ,

αfum − T f,mn = αf
ηm−1

−η
n

∆t − T s,m−1n, on Σ∗,

Structure problem

ρs

∆t2 η̄m −∇ · T̄ s,m = f̄s + ρs

∆t2 (2η̄n − η̄n−1) in Ω0
s,

αs

∆tηm + T s,mn = αs

∆tη
n + αsum + T f,mn, on Σ∗.

This strategy can also be interpreted as a preconditioned Richardson algorithm ap-
plied to a suitable interface condition (see [2]).

3. Convergence analysis of simplified problems. In this Section we analyze
the convergence of the RR scheme applied to three different reduced FSI problems,
which are simple enough to be analyzed theoretically. On the other hand, they feature
a behavior similar to the more complex system (2.3). Therefore, we expect that the
theoretical results obtained from the analysis of these models give insightful informa-
tion also for system (2.3). This analysis is performed by following the optimization
strategy proposed in the Optimized Schwarz Methods literature (see [1,13,14] for in-
stance). In these works, a convergence analysis of two and three dimensional coupled
problems with Robin trasmission conditions, based on the application of the Fourier
transform, has been derived, for the Laplace, Helmoltz and Maxwell equations.

In order to apply this strategy to the FSI problem, we introduce suitable simplify-
ing assumptions and reduced models. In particular, in all the convergence analysis, we
consider a fixed FSI domain. The fluid domain is the half plane Ωf = {x = (x, y) ∈
R

2 : x < 0}, the FS interface the line Σ = {(x, y) ∈ R
2 : x = 0}, the structure

domain either coincides with the interface Σ (generalized string model) or is the thick
region Ωs = [0,Hs]×R in the case of linear incompressibile elasticity. In all the cases
considered, we allow the FS interface to move only in the normal direction.

We will base our convergence analysis on a Fourier transform in the direction
tangential to the FS interface (corresponding to the y variable in the case at hand),
which is defined, for w(x, y) ∈ L2(R2), as

F : w(x, y) 7→ ŵ(x, k) =

∫

R

e−ikyw(x, y) dy,

where k is the frequency variable. We will then be able to quantify the error, in the
frequency space, between the pressure at the m-th iteration, p̂m(x, k), and the exact
pressure p̂(x, k). This allows us to define, on the FS interface, the reduction factor at
iteration m for each frequency as

ρm(k) :=
|p̂m(0, k) − p̂(0, k)|

|p̂m−1(0, k) − p̂(0, k)| .

The RR algorithm converges if, at each iteration m, we have ρm(k) < 1 for all the
relevant frequencies of the problem, namely for 0 ≤ k ≤ kmax, where kmax is the
maximal frequency supported by the numerical grid, and is of order π/h (h being the
mesh parameter).
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3.1. Potential flow - Generalized string model (P/GS). The first simpli-
fied model is obtained by considering a potential flow described by the Darcy equations
for the fluid and the generalized string model for the structure (see [22])

ρfδtu + ∇p = 0 in Ωf ,

∇ · u = 0 in Ωf ,

u · n = δtη on Σ,

p = ρsHs δttη + βHs η − GHs ∂yyη, on Σ,

(3.1)

where G = Kλ1/2, with K the Timoshenko correction factor, and we have set δtw :=
w−wn

∆t , δttw := δtw−δtw
n

∆t , where w could be a scalar or a vector function and as usual
we have omitted the time index n+1. The reaction term β, arising in the derivation of
the generalized string model in the 3D case, is introduced also in the 2D case to take
into account for transversal membrane effects. Problem (3.1) has to be completed with
initial conditions and with boundary conditions here reducing to the assumption of
boundedness for x → −∞ and |y| → ∞. We point out that the structure displacement
is in the x direction, which is the normal direction to the FS interface. The structure
equation (3.1)4 enforces the continuity of the normal stress at the interface along the
normal direction. We observe that the analysis of this symplified problem has been
already performed in [3]. For completeness, we report here the analysis via Fourier
transform, which is functional for the further developments.

By combining linearly (3.1)3 and (3.1)4 with coefficients (αf ,−1) and (αs, 1),
respectively, we obtain two Robin boundary conditions. Observe that in this problem
the viscous terms have been neglected so the fluid Cauchy stress tensor reduces to
the only pressure. By setting ux = u · n, with n the normal unit vector to the FS
interface, and using coefficients (αf ,−1), we obtain

αf ux − p = αf δtη − ρsHs δttη − βHs η + GHs ∂yyη,

that is

αf ∆t δtux − p = αf δtη − ρsHs δttη − βHs η + GHs ∂yyη − αf un
x .

Then, the Robin transmission condition for the fluid problem can be rearranged as

αf ∆t δtux − p =

(
αf

∆t
− ρsHs

∆t2
− βHs

)
η + GHs ∂yyη + F1(u

n
x , ηn, ηn−1), (3.2)

where F1(u
n
x , ηn, ηn−1) accounts for terms at previous time steps.

By using coefficients (αs, 1), we have

ρsHs δttη + βHsη − GHs∂yyη + αs δtη = p + αsux,

and the Robin condition for the structure problem can be rearranged as
(

ρsHs

∆t2
+ βHs +

αs

∆t

)
η − GHs ∂yyη = αs ∆t δtux + p + F2(u

n, ηn, ηn−1), (3.3)

where again F2(u
n, ηn, ηn−1) accounts for terms at previous time steps.

Let m be an iteration index. Then, the corresponding iterative Robin-Robin
algorithm reads:
Given u0, p0, η0, solve for m ≥ 0
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1. Fluid problem

ρfδtum+1 + ∇pm+1 = 0 in Ωf ,

∇ · um+1 = 0 in Ωf ,

αf ∆t δtux,m+1 − pm+1 =

(
αf

∆t
− ρsHs

∆t2
− βHs

)
ηm+

+GHs ∂yyηm + F1(u
n
x , ηn, ηn−1) on Σ;

(3.4)
2. Structure problem

(
ρsHs

∆t2
+ βHs +

αs

∆t

)
ηm+1 − GHs ∂yyηm+1 = (3.5)

= αs ∆t δtux,m+1+pm+1+F2(u
n
x , ηn, ηn−1) on Σ.

We have the following
Proposition 1. The reduction factor of iterations (3.4)-(3.5) is given by

ρm(k) = ρP/GS(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

· ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣∣ , (3.6)

which is independent of the iteration m.
Moreover, for all Fourier modes k ∈ [0, kmax], there exist αmax

f = αmax
f (k) and

αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (3.4)-(3.5) converge if αf ∈
[0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different from 0.

Proof. Thanks to the relation

∂xp = −ρfδtux, on Σ, (3.7)

obtained by restricting the first equation of the fluid problem (3.4)1 on the FS inter-
face, it is possible to rewrite the Robin interface conditions (3.4)3 and (3.5) in terms
of the sole pressure, obtaining, on Σ,

αf ∆t

ρf
∂xpm+1 + pm+1 =

(
ρsHs

∆t2
+ βHs −

αf

∆t

)
ηm − GHs ∂yyηm − F1(u

n
x , ηn, ηn−1),

(
ρsHs

∆t2 + βHs + αs

∆t

)
ηm − GHs ∂yyηm = pm − αs ∆t

ρf
∂xpm + F2(u

n
x , ηn, ηn−1).

(3.8)
We point out that for the structure problem we wrote the m-th iteration instead of
the m + 1-th.

Since the problems involved are linear, we analyze without loss of generality
the convergence to the zero solution when the forcing terms vanish, namely for
F1(u

n
x , ηn, ηn−1) = F2(u

n
x , ηn, ηn−1) = 0.

The divergence free condition on u allows us to rewrite the fluid problem in the
unknown pressure

△p = 0 in Ωf . (3.9)

Applying the Fourier transform in the y direction, we obtain the following ordinary
differential equation for the pressure

−∂xxp̂m+1 + k2p̂m+1 = 0 in (−∞, 0),
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whose solution is given by p̂m+1(x, k) = A(k)ekx + B(k)e−kx. The boundedness
assumption on the solution entails B(k) = 0, thus

p̂(x, k) = A(k) ekx, (3.10)

for a suitable A(k).
Now, the interface conditions (3.8) become

p̂m+1 +
αf∆t

ρf
∂xp̂m+1 =

(
ρsHs

∆t2
+ βHs + GHs k2 − αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2 + βHs + GHs k2 + αs

∆t

)
η̂m = p̂m − αs∆t

ρf
∂xp̂m, for x = 0.

By noticing that ∂xp̂m+1 = Am+1(k) k ekx, we have

(
ρf + αf∆t k

ρf

)
Am+1(k) =

(
ρsHs

∆t2
+ βHs + GHs k2 − αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2
+ βHs + GHs k2 +

αs

∆t

)
η̂m =

ρf − αs∆t k

ρf
Am(k), for x = 0.

We thus have |Am+1(k)| = ρ(k)|Am(k)|, with reduction factor ρ given by (3.6).
In order to guarantee convergence, we have to find suitable values of αf and αs

such that ρP/GS < 1. To do this, if we consider the two factors d1 and d2 such that
ρP/GS = |d1 d2| in (3.6), we obtain sufficient conditions by imposing that |d1| < 1 and

|d2| < 1, separately. For the first term, d1 =
ρsHs
∆t

+βHs ∆t+GHs∆t k2−αf

ρsHs
∆t

+βHs ∆t+GHs∆t k2+αs

, it is sufficient

to have αf ∈ [0, αmax
f ), with

αmax
f (k) = 2

(
ρsHs

∆t
+ βHs ∆t + GHs∆t k2

)
. (3.11)

For the second term, d2 =
ρf−αs∆t k
ρf +αf∆t k , it is sufficient to have αs ∈ [0, αmax

s ), where

αmax
s (k) =

2ρf

∆t k
.

A less sharp upper bound, but independent of k, is given by

αmax
s =

2ρf

∆t kmax
. (3.12)

Remark 2. We observe that function A(k) is in general complex. However, in the
particular case where the initial condition for the x component of the fluid velocity is
symmetric with respect to the x−axis, then its Fourier transform is real and therefore
A is real for each time (see (3.7)) and ux remains symmetric at each time.
Remark 3. For the DN scheme, that is for αf → ∞ and αs = 0, we obtain

ρP/GS(k) =

∣∣∣∣
ρf

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣ .

Taking k = 0, we have that no convergence of the DN scheme is achieved, even with
relaxation (ρP/GS(0) → ∞). This is due to the unboundedness of the fluid domain. If
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we consider a bounded domain R× [−L, 0], we have that k ∈ (kmin, kmax), with kmin

of the order of π/L > 0 (see [6]). In this case, the reduction factor of the DN scheme
is always bounded, but it highlights a high dependence of the convergence performances
on the ratio ρf/ρs, as well on kmin. In particular, if ρf/ρs is not small enough, for
k sufficiently small we have ρP/GS(k) > 1, so that a relaxation is needed to reach
convergence. On the contrary, for a general RR scheme the sensitivity of ρP/GS on
the ratio ρf/ρs is minimal and, as stated by Proposition 1, there exist always suitable
values of αf and αs such that for each k convergence is guaranteed without relaxation.

3.2. Stokes - Generalized string model (S/GS). Let us now consider the
coupling between the unsteady Stokes problem for the fluid and the generalized string
model for the structure. The fluid and structure domains are the same of the previous
problem and again we consider only normal displacement of the FS interface.

In this case, the fluid stress tensor is given by T f = pI + µ(∇u + ∇T u), since
the viscous term is now considered and the normal component of the normal stress
at the interface Σ is nT · T fn = −p + µ∂xux. Therefore, the Robin-Robin sequential
algorithm for the generalized Stokes-generalized string model coupling is given by

1. Fluid problem

ρfδtu
m+1 − µ△um+1 + ∇pm+1 = 0 in Ωf

∇ · um+1 = 0 in Ωf

αf um+1
x − pm+1 + µ∂xum+1

x =

=
(

αf

∆t −
ρsHs

∆t2 − βHs

)
ηm + GHs ∂yyηm + F1(η

n, ηn−1) on Σ

(3.13)
2. Structure problem

(
ρsHs

∆t2
+ βHs +

αs

∆t

)
ηm+1 − GHs ∂yyηm = (3.14)

= αs um+1
x + pm+1 − µ∂xum+1 + F2(η

n, ηn−1) on Σ,

where we have set uy|Σ = 0 and, again, F1 and F2 account for terms at previous time
steps. We have the following
Proposition 2. The reduction factor of iterations (3.13)-(3.14) is given by

ρS/GS(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

· αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣∣ , (3.15)

where

γf (k) =
√

ρf/(µ∆t) + k2, (3.16)

which is independent of the iteration m.
Moreover, for all Fourier modes k ∈ [0, kmax] there exist αmax

f = αmax
f (k) and

αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (3.13)-(3.14) converge if αf ∈
[0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different from 0.
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Proof. In order to write the fluid Robin interface condition (3.13)3 in terms of
the sole pressure, we need again to write the interface velocity u as a function of p.
However, in this case we have

∂xp = −ρfδtux + µ△ux on Σ,

so that the expression of ux at the interface in terms of p is not straightforward
anymore. However, by applying the divergence operator to the fluid problem (3.13)1
we obtain again problem (3.9) for the pressure solely. We notice that the solution of
this problem after applying the Fourier transform in the y direction is again of the
form (3.10), for a suitable A(k), which in this case depends also on △ux.

Now, the fluid problem in the x direction after the application of the Fourier
transform in the y direction, reads

ρf

µ∆t
ûx − ∂xxûx + k2ûx +

A

µ
k ekx =

ρf

µ∆t
ûn

x , in Ωf , (3.17)

having noticed that ∂xp̂ = kAekx. The homogeneous solutions of this equation are
ûo

x,1(x, k) = B(k) eγf x and ûo
x,2(x, k) = C(k) e−γf x, for suitable B and C and where

γf is given by (3.16). From the boundedness assumption, it follows C ≡ 0. As before,
in the convergence analysis the terms at the previous time steps are discarded, so
that we drop them from now on. As particular solution let us consider ûp

x(x, k) =
− kA

2µγf (k−γf )e
γf x + kA

µ(k+γf )(k−γf )e
kx. Adding this solution to the homogeneous ones,

we obtain

ûx(x, k) =

(
B − kA

2µγf (k − γf )

)
eγf x +

kA

µ(k + γf )(k − γf )
ekx.

The equation for uy reads

ρf

µ∆t
ûy − ∂xxûy + k2ûy − ik

A

µ
ekx =

ρf

µ∆t
ûn

y , in Ωf ,

having noticed that ∂yp̂ = −ikAekx. Then, as before, it is possible to show that the
solution is given by

ûy(x, k) =

(
D +

ikA

2µγf (k − γf )

)
eγf x − ikA

µ(k + γf )(k − γf )
ekx, (3.18)

for a suitable D(k).
From the incompressibility constraint, we have ∂xûx − ikûy = 0, obtaining

(
γfB − ikD +

kA

2µγf

)
eγf x = 0

and then

γfB − ikD +
kA

2µγf
= 0. (3.19)

From the interface condition for the velocity uy, namely uy = 0 for x = 0, we
obtain

ûy(0, k) = D +
ikA

2µγf (k − γf )
− ikA

µ(k + γf )(k − γf )
= 0,



12 L. GERARDO-GIORDA, F. NOBILE AND C. VERGARA

and then D = − ikA
2µγf (k+γf ) , which inserted in (3.19) leads to

γfB +
kA

2µ(k + γf )
= 0. (3.20)

Then, the normal stress at the FS interface in the x direction is

(p̂ − µ∂xûx)|x=0 = A − µ

(
γfB − kA

2µ(k − γf )
+

k2A

µ(k + γf )(k − γf )

)
= A, (3.21)

where the last equality is obtained thanks to (3.20).
Let us finally compute the value of the velocity in the x direction at the FS

interface:

ûx|x=0 = B − kA

2µγf (k − γf )
+

kA

µ(k + γf )(k − γf )
= − kA

µγf (k + γf )
, (3.22)

where the last equality is obtained again thanks to (3.20).
Therefore, owing to (3.21) and (3.22), the interface Robin conditions (3.13)3 and

(3.14) read

− αf kAm+1

µγf (k + γf )
− Am+1 =

(
−ρsHs

∆t2
− βHs − GHs k2 +

αf

∆t

)
η̂m, for x = 0,

(
ρsHs

∆t2
+ βHs + GHs k2 +

αs

∆t

)
η̂m = − αs kAm

µγf (γf + k)
+ Am, for x = 0.

We thus have |Am+1(k)| = ρ(k)|Am(k)|, where the reduction factor ρ is given by
(3.15).

In order to guarantee convergence, we have to find suitable values of αf and αs

such that ρS/GS < 1. Again, to do this, we obtain sufficient conditions by imposing
that the two factors in (3.15) are separately less than 1. The first term is equal to the
previous analysis so that the upper bound αmax

f is given again by (3.11). The second

term is d2 =
αs k−µγf (k+γf )
αf k+µγf (k+γf ) , so that it is sufficient to take as upper bound

αmax
s (k) =

2µγf (k + γf )

k
. (3.23)

A less sharp upper bound, but independent of k, is given by

αmax
s =

2µγ∗
f (k∗ + γ∗

f )

k∗ , (3.24)

where γ∗
f = γf (k∗) and k∗ =

√
(
√

5−1)ρf

2µ∆t is such that αmax
s in (3.23) is minimal.

Remark 4. We point out that functions A(k), B(k) and D(k) are in general com-
plex. In particular, if the initial condition for the x component of the fluid velocity is
symmteric with respect to the x−axis, A and B are real. In this case (3.17) has real
coefficients so that ux is symmetric for each time. Conversely, if the initial condition
for the y component of the fluid velocity is emi-symmteric with respect to the x−axis,
then equation (3.18) has imaginary coefficients, so that D has to be imaginary and
uy is emi-symmetric for each time. This is not surprising, since in the y direction we
have two waves propagating in the two opposite directions.
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Remark 5. For the DN scheme we obtain

ρS/GS =

∣∣∣∣
µγf (k + γf )∆t

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣ =

∣∣∣∣∣
ρf + k2µ∆t +

√
ρfµk2 ∆t + µ2 k4 ∆t2

k (ρsHs + βHs∆t2 + GHs∆t2 k2)

∣∣∣∣∣

which highlights again the high dependence of the convergence performances on the
ratio ρf/ρs. Also in this case, for a general RR scheme the sensitivity of ρS/GS on
this ratio is minimal.

3.3. Stokes - Linear incompressibile elasticity. Let us consider a thick
structure, whose thickness is Hs. Again, the structure domain is unbounded in the y
direction, so that Ωs = [0,Hs] × R. We assume that the structure is incompressible.
This is an assumption verified in many applications, for example in haemodynamics.
Moreover, as in the previous problems, we set uy|Σ = 0, that is we allow the FS
interface to move only in the normal direction. This assumption is not realistic in
many practical applications, but, in the case of haemodynamics, which inspired the
present work, the transversal displacement is typically much smaller than the normal
one. Moreover, as in the generalized string model, to emulate a “cylindrically-shaped”
structure and take into account for transversal membrane effects, we add a reaction
term with coefficient β.

Therefore, the (discretized in time) structure problem reduces to a generalized
Stokes problem and the RR algorithm reads:

1. Fluid problem

ρfδtu
m+1 − µ△um+1 + ∇pm+1 = 0, in Ωf ,

∇ · um+1 = 0, in Ωf ,

αf um+1
x − pm+1 + µ∂xum+1

x =
αf

∆t
ηm

x − χm + λ∂xηm
x + F1(η

n
x , ηn−1

x ), on Σ.

(3.25)
2. Structure problem

ρsδttη
m − λ△ηm + βηm + ∇χm = 0, in Ωs,

∇ · ηm = 0, in Ωs,

αs

∆t
ηm

x + χm − λ∂xηm
x = αs um+1

x + pm+1 − µ∂xum+1
x + F2(η

n
x , ηn−1

x ), on Σ,

(3.26)
where χ is the pressure for the structure problem and we have set uy|Σ = ηy|Σ = 0.
We have the following
Proposition 3. The reduction factor of iterations (3.25)-(3.26) is given by

ρS/S(k) =

∣∣∣∣
2αf δ − ε∆t − ∆t

2αs δ + ε∆t + ∆t
· αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ (3.27)

where γf is given by (3.16), and

ε(k) = −1 +
2kγ2

s

k2−γ2
s
Hs − 2k2γ4

s

(k2−γ2
s )2 H2

s + O(H3
s ),

δ(k) = (ε(k)+1)
2λγs

(
1

γsHs
− γsHs

6

)
+ O(H2

s ) = k
λ(k2−γ2

s )

(
1 − kγ2

sHs

k2−γ2
s

)
+ O(H2

s ),

γs(k) =
√

ρs/(λ∆t2) + β/λ + k2.
(3.28)
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Moreover, for all Fourier modes k ∈ [0, kmax] there exist αmax
f = αmax

f (k) and

αmax
s = αmax

s (k) such that, given u0, p0, η0, iterations (3.25)-(3.26) converge if αf ∈
[0, αmax

f ) and αs ∈ [0, αmax
s ) and if at least one of the two values is different from 0.

Proof. Let us apply the divergence operator to the structure equation (3.26)1,
obtaining again a problem for the pressure solely:

△χ = 0, in Ωs,

with suitable boundary conditions depending on the value of η. Again, we apply the
Fourier transform in the y direction, so that the solution can be written as

χ̂(x, k) = E(k) ekx + F (k) e−kx, x > 0, (3.29)

for suitable functions E and F . In this case it is not possible anymore to exploit a
boundedness assumption at infinity, so that both terms in (3.29) have to be considered.

Applying the Fourier transform along the y direction to the first component of
the structure problem (3.26)1, we obtain

ρs

λ∆t2
η̂x − ∂xxη̂x + k2 η̂x +

β

λ
η̂x +

kE

λ
ekx − kF

λ
e−kx = 0, x > 0,

having noticed that ∂xχ̂ = kE ekx − kF e−kx. The solution of this problem is given
by

η̂x(x, k) =
kE(k)

λ(k2 − γ2
s )

ekx− kF (k)

λ(k2 − γ2
s )

e−kx+

(
L(k) − kE(k)

2λγs(k − γs)
− kF (k)

2λγs(k + γs)

)
eγsx+

(3.30)

+

(
M(k) +

kE(k)

2λγs(k + γs)
+

kF (k)

2λγs(k − γs)

)
e−γsx,

where γs is given by (3.28)3 and L(k) and M(k) have to be properly determined.
The equation for η̂y reads

ρs

λ∆t2
η̂y − ∂xxη̂y + k2 η̂y +

β

λ
η̂y − ikE

λ
ekx − ikF

λ
e−kx = 0, x > 0,

having noticed that ∂yχ̂ = −ikE ekx−ikF e−kx. The solution of this problem is given
by

η̂y(x, k) =
−ikE(k)

λ(k2 − γ2
s )

ekx− ikF (k)

λ(k2 − γ2
s )

e−kx+

(
N(k) +

ikE(k)

2λγs(k − γs)
− ikF (k)

2λγs(k + γs)

)
eγsx+

(3.31)

+

(
P (k) − ikE(k)

2λγs(k + γs)
+

ikF (k)

2λγs(k − γs)

)
e−γsx,

where N(k) and P (k) are suitable functions of k.
Let us impose the incompressibility constraint ∂xη̂x − ikη̂y = 0. We obtain

(
γsL − ikN +

kE

2λγs
− kF

2λγs

)
eγsx +

(
−γsM − ikP − kE

2λγs
+

kF

2λγs

)
e−γsx = 0.
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This equation has to be satisfied for all x > 0, so that it leads to the following
conditions

γs(L − M) − ik(N + P ) = 0

γsL − ikN + k(E−F )
2λγs

= 0.
(3.32)

Let us now impose that the velocity in the y direction at the FS interface is zero.
From (3.31), we obtain

η̂y|x=0 = N + P = 0,

so that from (3.32)1 we have L = M .
We observe that in the expressions of η̂x and η̂y in (3.30) and (3.31) we do not

rely on any boundedness assumption, since the structure domain in bounded in the x
direction. However, we can prescribe that the normal stress at the outlet x = Hs is
zero. In particular, we have

(λ∂xη̂x − χ̂) |x=Hs
= 0

λ
2 (∂xη̂y − ikη̂x) |x=Hs

= 0.

The first condition allows to give a relation among E,F and L, namely

L =
2γ2

sEekHs + 2γ2
sFe−kHs − (kE(k + γs) + kF (k − γs))e

γsHs

2λγs(k2 − γ2
s ) (e−γsHs − eγsHs)

+

− (kE(k − γs) + kF (k + γs))e
−γsHs

2λγs(k2 − γ2
s ) (e−γsHs − eγsHs)

=
E + F

2λγs

(
1

γsHs
− γsHs

6

)
+ O(H2

s ). (3.33)

The second condition allows to write N as function of E and F , namely

N = − ikL

γs
+

1

γs (eγsHs + e−γsHs)

[
2ik2E

λ(k2 − γ2
s )

ekHs − 2ik2F

λ(k2 − γ2
s )

e−kHs+

− ik

2λγs(k2 − γ2
s )

(
(k + γs)

2E + (k − γs)
2F

)
eγsHs +

+
ik

2λγs(k2 − γ2
s )

(
(k − γs)

2E + (k + γs)
2F

)
e−γsHs

]
=

= − ik

2λγ2
s

(E + F )

(
1

γsHs
− γsHs

6
+

k − γs

k + γs
kHs

)
+ O(H2

s ).

This expression, together with (3.32)2 allows to derive a relation between E and F ,
namely

F (k) = ε(k)E(k),

with ε given by (3.28)1. From (3.33), we have L(k) = δ(k)E(k), with δ given by
(3.28)2.
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Let us compute the values of the displacement and of the normal stress at the FS
interface. From (3.30), we obtain

η̂x|x=0 = 2L = 2 δ E,

and from (3.29) and (3.30)

(λ∂xη̂x − χ̂) |x=0 = −E − F = −(1 + ε)E.

The fluid problem is identical to the one analyzed in the previous section (Stokes/generalized
string). We have therefore

p − µ∂xûx = A for x = 0,
ûx = − kA

µγf (k+γf ) for x = 0.

Then the Robin interface conditions (3.25)3 and (3.26)3 read

− αfk

µγf (k + γf )
Am+1 − Am+1 =

(
2αfδ

∆t
− ε − 1

)
Em for x = 0,

(
2αsδ

∆t
+ ε + 1

)
Em = − αsk

µγf (k + γf )
Am + Am for x = 0,

and the reduction factor is given by (3.27).
In order to guarantee convergence, we have to find suitable values of αf and αs

such that ρS/GS < 1. Again, to do this, we obtain sufficient conditions by imposing
that the two factors in (3.27) are separately less than 1. The second term is equal
to the previous analysis so that the upper bound αmax

s is given again by (3.23). The

first term is d1 =
2αf δ−ε ∆t−∆t
2αs δ+ε ∆t+∆t , so that it is sufficient to take as upper bound

αmax
f (k) =

(ε + 1)∆t

δ
.

Remark 6. For the DN scheme we obtain

ρS/S =

∣∣∣∣
2δµγf (k + γf )

k∆t(ε + 1)

∣∣∣∣ =

∣∣∣∣
µγf (k + γf )

λγ2
sHsk∆t

∣∣∣∣ =

∣∣∣∣
a1ρf + a2

√
ρf + a3

a4ρs + a5

∣∣∣∣ ,

for suitable aj = aj(k, µ, λ, β,Hs,∆t), j = 1, . . . , 5, and again the DN scheme high-
lights a high dependence of the convergence performances on the ratio ρf/ρs. In
particular, we point out that lim∆t→0 ρS/S = ρf/(kρsHs). Also in this case, for a
general RR scheme the sensitivity of ρS/S on this ratio is minimal.

4. Optimization of αf and αs. With the aim of constructing RR schemes
with good convergence properties, the problem of determining suitable values for
parameters αf and αs has to be addressed. Indeed, the convergence performances
of RR schemes heavily depend on this choice (see, in a different context, [15]). By
maximizing the convergence rate of the corresponding algorithm, it is possible to
determine either optimal or optimized values of the coefficients αf and αs in the
Robin interface conditions. The classical approach in the Optimized Schwarz Methods
literature consists in looking for parameters that, if possible, annihilate identically the
reduction factor, ensuring convergence for the scheme in just two iterations for a two-
domain decomposition. Such parameters are referred to as optimal. In particular, in a
two-domain decomposition framework, we recall that the optimal interface conditions
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are of Robin type, where the Dirchlet-to-Neumann operator of one domain is applied
as a boundary condition for the other domain. When such approach is not viable, the
idea is to look for parameters that minimize the reduction factor.

In this section we look for optimized values for αf and αs either k−independent
αf = αf,M , αs = αs,M , which lead to standard Robin boundary conditions (with
standard mass matrix at the interface), or k− dependent values of the form αf =
αf,M +αf,Kk2, αs = αs,M +αs,Kk2, which correspond to generalized Robin boundary
conditions on Σ

αf,Mu − αf,K△Σu + T f n = αf,M

(
η − ηn

∆t

)
− αf,K△Σ

(
η − ηn

∆t

)
+ T s n, (4.1)

αs,M

∆t
η − αs,K△Ση + T s n =

αs,M

∆t
ηn − αs,K△Σηn + αs,Mu − αs,K△Σun + T f n,

(4.2)
where △Σ is the Laplace-Beltrami operator over the interface Σ.

Before presenting the optimization procedures, we recall in the next subsection
the choices proposed in [3] for a heuristic determination of the parameters.

4.1. Determination of αf and αs by heuristic methods. In [20] a mem-
brane model has been proposed to describe in an approximated way the behaviour of
thin structures. It is possible to “insert” the membrane equation into the fluid one
as a boundary term (we highlight that in this case the structure domain coincides
with the FS interface). This leads to a fluid problem with a suitable Robin boundary
condition at the FS interface, which accounts for the structure (see [20]). In [2,3], this
formulation has been used to obtain a plausible value of αf in RR schemes, namely

αheur
f =

ρs Hs

∆t
+ β Hs ∆t, (4.3)

where Hs is the structure thickness and

β =
E

1 − ν2
(4ρ2

1 − 2(1 − ν)ρ2), (4.4)

with ρ1 and ρ2 the mean and Gaussian curvatures of the FS interface, respectively.
We point out that αheur

f is a function of the position on the interface.
RN schemes with αf given by (4.3) exhibit very good performances for a wide

range of added mass and are by far more efficient than DN strategies (see [2,3]). In par-
ticular, the theoretical analysis presented in these works, have shown that RN schemes
with αheur

f are less sensitive than DN schemes to the added-mass effect. Moreover,
numerical experiments with high added-mass effect, highlighted that the RN scheme
converges without any relaxation and faster than the DN scheme. However, in [2]
RN has been shown to be sensitive to the choice of αf , leading to a deterioration
of the performances when the curvature of the FS interface could not be computed
accurately. On the contrary, the RN-GMRES scheme proposed in [2] is more robust
with respect to the choice of αf .

For what concernes the parameter αs, in [3] it has been proved that the operator
describing the added mass effect on the structure is not algebraic and its approxima-
tion by an algebraic relationship is not evident. In particular a generalized Robin con-
dition (that involvs differential operators) is obtained with αs = (ρf/∆t2)M(·), where
M is the added-mass operator, that is the Neumann-to-Dirichlet map (see [3, 6]). In
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order to obtain a “classical” Robin condition, in [3] it has been proposed to approx-
imate the operator M by θµmaxI, where µmax is the maximum eigenvalue of the
added-mass operator, I is the identity operator and θ is a coefficient suitably chosen,
getting

αheur
s = θ

ρfµmax

∆t
. (4.5)

The drawback of this choice is that the scaling factor θ has to be tuned “by hand” to
obtain good convergence properties. The numerical experiments in [3] showed that
the tuned value θ seems to be very robust and practically independent of ρf ,∆t and of
some geometrical parameters defining the physical domain (and then µmax). However,
the performance of the RR scheme with the choices (4.3) and (4.5) is only slightly
better than RN with (4.3).

4.2. Optimization procedures. Our goal is to minimize the reduction factor
ρ in the different cases considered, by choosing the Robin parameters αf , αs in the
class of frequency dependent functions A ≡ {α(k) = αM + αK k2, αM , αK ≥ 0}.
Functions in this class will lead to generalized Robin boundary conditions having a
Mass and a Stiffness matrix on the boundary (see (4.1) and (4.2)).

In all the problems considered the reduction factor ρ(k) can be split as the product
of two factors: ρ(k) = d1(k) · d2(k) where

d1(k) =

∣∣∣∣∣

ρsHs

∆t + βHs ∆t + GHs∆t k2 − αf

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ (Generalized string model)

d1(k) =

∣∣∣∣
2αf δ − (ε + 1)∆t

2αs δ + (ε + 1)∆t

∣∣∣∣ (Linear incompressible elasticity)

and

d2(k) =

∣∣∣∣
ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣ , (Potential flow)

d2(k) =

∣∣∣∣
αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ , (Stokes)

Since the global optimization of ρ for all frequencies is too difficult, we try to
minimize separately the two factors d1 = d1(k, αf , αs) and d2 = d2(k, αf , αs). The
first can be associated to the structure problem and will lead to an optimal selection
of αf ∈ A for all possible frequencies in [0, kmax] and all possible functions αs ∈ A.
Similarly, the second factor can be associated to the fluid problem and leads to the
optimal selection of αs ∈ A uniformly with respect to k and αf ∈ A.

We set therefore the two optimization problems

αopt
f (k) = argmin

αf (k)∈A
max

k∈[0,kmax]
sup

αs∈A
d1(k, αf (k), αs(k)),

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A
d2(k, αf (k), αs(k)).

Of course, by this procedure we will not get the global optimum but, hopfully, improve
the heuristic choice of the Robin coefficients.
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4.2.1. Optimization of αf . We start with the optimization of the factor d1.

Generalized string model. In this case we obtain d1 ≡ 0 for

αGS
f =

ρsHs

∆t
+ βHs ∆t + GHs ∆t k2. (4.6)

We point out that αGS
f < αmax

f , with αmax
f given in (3.11). The previous expression

represents the symbol, in the Fourier space, of the Dirichlet-to-Neumann operator
in the structure domain. We notice that αGS

f = αheur
f + GHs ∆t k2, and then the

convergence analysis in Sect. 3.1 provides a correction of the optimal value of αf with
respect to the heuristic choice (4.3). The dependence of this correction on k introduces
in the Robin interface condition a differential term. In particular, we obtain condition
(4.1) with

αGS
f,M = αheur

f =
ρsHs

∆t
+ βHs ∆t, αGS

f,K = GHs ∆t.

Therefore, the correction given by the convergence analysis of the potential flow/
generalized string problem requires to build a “stiffness” interface matrix.

Linear incompressible elasticity. We have d1 ≡ 0 for αf (k) = (1+ε)∆t
2δ , which,

however, is not in the class A. By considering an approximation of such expression
for Hs small, that is by using the expansions of ε and δ in powers of Hs, given in
(3.28), we obtain the optimized value

αLIE
f = ∆tλγ2

sHs =
ρsHs

∆t
+ βHs ∆t + λHs ∆t k2,

which leads to d1 = O(H3
s ). Observe that we obtain an expression very similar to

αGS
f .

The previous result shows that the approximated reduction factor obtained by
considering Hs small is the same as the one that is obtained when a membrane model
is considered for the structure.

4.2.2. Optimization of αs. We consider now the optimization of the factor d2.

Potential flow. In this case the optimization problem reads

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A

∣∣∣∣
ρf − αs∆t k

ρf + αf∆t k

∣∣∣∣ = argmin
αs(k)∈A

max
k∈[0,kmax]

∣∣∣∣ 1 − αs∆t k

ρf

∣∣∣∣

It is clear that for a generic choice αs(k) = αs,M + αs,K k2 with αs,K > 0 the factor
d2(k) is unbounded for k → ∞ (that is for h → 0). Therefore we restrict the opti-
mization problem only to frequency-independent functions, namely αs(k) = αs,M . In
this case, we have

max
k∈[0,kmax]

∣∣∣∣ 1 − αs∆t k

ρf

∣∣∣∣ =

{
1 if αs,M ≤ 2ρf

∆t kmax
,

> 1 otherwise.

Therefore, no choice of αs,M will lead to a factor d2 strictly smaller than 1, and we

can chose any αs,M ∈ [0,
2ρf

∆t kmax
] to have exactly d2 = 1. However, in the expressions

of d1, αs is at the denominator, so that in view of the optimization of the factor d1
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we have interest in choosing αs,M as large as possible, leading to the optimized Robin
coefficient

αP
s =

2ρf

∆t kmax
. (4.7)

Notice that this choice coincides with the upper bound of the stability interval
given in (3.12)

Stokes flow. We proceed in a similar way as for the Potential flow. In this case we
have

αopt
s (k) = argmin

αs(k)∈A
max

k∈[0,kmax]
sup

αf∈A

∣∣∣∣
αs k − µγf (k + γf )

αf k + µγf (k + γf )

∣∣∣∣ =

= argmin
αs(k)∈A

max
k∈[0,kmax]

∣∣∣∣
αs k

µγf (k + γf )
− 1

∣∣∣∣

and again we restrict the optimization only to constant values of αs or otherwise the
factor d2 will be unbounded for k → ∞.

Let us denote f(k) = k
µγf (k+γf ) = k

µ
√

a+k2(k+
√

a+k2)
, with a =

ρf

µ∆t . The function

f has a global maximum in [0,∞) at k∗ =

√
a
√

5−1
2 . It is a straighforward calculation

to show that

max
k∈[0,kmax]

|αsf(k) − 1 | =

{
1 if αsf(k∗) ≤ 2

> 1 otherwise

Proceeding as for the potential flow we take the largest value for which d2 = 1 leading
to the optimized coefficient for the Stokes flow

αS
s =

2

f(k∗)
=

2

∆t k∗

√
ρf + µ∆t (k∗)2

(√
µ∆t k∗ +

√
ρf + µ∆t (k∗)2

)
. (4.8)

4.3. Alternative optimization procedure. Another possible way to proceed
to derive optimized parameters for the RR algorithm consists in taking a different
split of the reduction factor, namely ρ(k, αf , αs) = d̃1(k, αf ) · d̃2(k, αs). In such a
case, we can look for parameters αf and αs that optimize separately the two factors,
namely:

αopt
f (k) = argmin

αf∈A
max

k∈[0,kmax]
d̃1(k, αf (k)), αopt

s (k) = argmin
αs∈A

max
k∈[0,kmax]

d̃2(k, αs(k)).

This optimization procedure will lead to the same values for αf as in the previous
section since these are the values that zero the factor d1. However, this procedure
will lead to different values for αs which will depend, this time, both on the fluid and
the structure problem chosen.

4.3.1. Optimization of αs. Potential flow / Generalized string. For the
Potential Flow / Generalized string model, we have

d̃2(k, αs) =

∣∣∣∣∣
ρf − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ .
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First, we observe that if αs = αs,M +αs,K k2 with αs,K > 0, the factor d̃2 is unbounded
for k → ∞, so we restrict the optimization to constant values. Let us denote

f̃(k, αs) =
ρf − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

.

The function f̃(k, αs) is such that f̃(0, αs) =
ρf

ρsHs
∆t

+βHs ∆t+αs

> 0, ∂f̃
∂k (0, αs) < 0 and

limk→∞ f̃(k, αs) = 0, and has exactly one global minimum in k∗(αs) ∈ [0,∞), with
f̃(k∗(αs), αs) < 0. We have, therefore that the optimal value αopt

s satisfies (see Fig.
4.1)

Fig. 4.1. f̃ as a function of k.

min
αs

max
k

|f̃(k, αs)| = min
αs

max{ f̃(0, αs),−f(k∗(αs), αs) }.

We observe that f̃(0, αs) is a decreasing function of αs and −f̃(k∗(αs), αs) is an
increasing function of αs. Moreover, for αs = 0 we have that f̃(k, 0) > 0 is a monotone
decreasing function in k, so that, thanks to the continuity of f̃ , we have f̃(0, 0+) >
−f̃(k∗(0+), 0+). Therefore, the minimum is achieved for

αP,2
s such that f̃(0, αP,2

s ) = −f̃(k∗(αP,2
s ), αP,2

s ). (4.9)

This non-linear problem can be solved numerically given all the parameters of the
fluid and structure model.

Stokes / Generalized String In this case we have

d̃2(k, αs) =

∣∣∣∣∣
µγf (k + γf ) − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

∣∣∣∣∣ .

Again, we observe that if αs = αs,M + αs,K k2 with αs,K > 0, the factor d̃2 is
unbounded for k → ∞, so we restrict the optimization to constant values. Let us
denote

f̃(k, αs) =
µγf (k + γf ) − αs∆t k

ρsHs

∆t + βHs ∆t + GHs∆t k2 + αs

.
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The function f̃(k, αs) is such that f̃(0, αs) =
ρf

ρsHs+βHs ∆t2+αs ∆t > 0, ∂f̃
∂k (0, αs) < 0

and limk→∞ f̃(k, αs) = F̃ := µ
G Hs ∆t > 0, and has exactly one local minimum in

k∗(αs) ∈ [0,∞), with f̃(k∗(αs), αs) < 0. Let us assume that kmax is big enough
to approximate f̃(kmax, αs) with F̃ . We have, therefore that the optimal value αopt

s

satisfies

min
αs

max
k

|f̃(k, αs)| = min
αs

max{ f̃(0, αs), −f(k∗(αs), αs) , F̃ }.

Again, f̃(0, αs) is a decreasing function of αs and −f̃(k∗(αs), αs) is an increasing
function of αs, with f̃(0, 0+) > −f̃(k∗(0+), 0+). Moreover, under the hypothesis on
the data 4µ2ρsβ > ρ2

fG2, we have that f̃(0, 0) > F̃ . Therefore, under this hypothesis,
minimum is achieved for

αopt
s =

{
αs,1 if f̃(0, αs,1) > F̃ ,

αs,2 if F̃ > f̃(0, αs,1),

where

αs,1 such that f̃(0, αs,1) = −f̃(k∗(αs,1), αs,1),

and

αs,2 such that f̃(0, αs,2) = F̃ .

Again, this non-linear problem can be solved numerically given all the parameters of
the fluid and structure model.

5. Numerical Results. In this section we present some numerical results with
the aim of testing the optimized parameters found in the previous analysis. We focus
on two-dimensional numerical simulations, even if the application of the proposed
parameters to three-dimensional problems is under investigation. This is in agreement
with the fact that the convergence analysis has been performed in two-dimensional
domains. However, the application of the optimal coefficients found in this analysis
to three-dimensional cases is under investigation.

For the structure, we consider the following linear elasticity equation

ρs∂ttη − λ1∇ · (∇η + (∇η)t) − λ2∇ · ((∇ · η)I) + βη = 0,

where the Lamé constants are given by (2.1) and a reaction term β, arising in the
derivation of the generalized string model in the 3D case, is introduced also in 2D
to reproduce the behaviour of a cylindrical structure. For its expression we use the
particolarization of (4.4) to the rectangular domain, that is β = E

(1−ν2)R2 , where R is

half the heigth of the rectangle.
For the numerical solution we use a 2D Finite Element Code written in Matlab at

MOX - Dipartimento di Matematica - Politecnico di Milano and at the Department
of Information Technology and Mathematical Methods - Università degli Studi di
Bergamo. Moreover, we consider P1−bubble/P1 elements for the fluid and P1 elements
for the structure. We use the residual normalized to the initial one as stopping
criterion (see [3]), with a tolerance equal to 10−4.

In all the cases, we prescribe an impulse pressure jump between the inlet and the
outlets

∆P (t) =

{
104 dyne/cm2 t ≤ 0.005 s,
0 t > 0.005 s.
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Finally, we set µ = 0.035 poise, ρf = 1 g/cm3 and the following set of reference values:
∆t = 10−3s, ρs = 1.1 g/cm3, E = 1.3·106 dyne/cm2 and the thickness of the structure
Hs = 0.1 cm.

5.1. Results in a rectangle domain. The numerical simulations of this section
are performed in a rectangular domain both for the fluid and for the two structures,
whose size is 6×1 cm and 6×Hs cm, respectively (see Fig. 5.1). We set ν = 0.3, R =

Ω

Ω

Ω

f
0

0
s

s
0

Fig. 5.1. Computational fluid and structure domains.

0.5 and the space discretization parameter is h = Hs/2, both for the fluid and the
structure domains.

The aim of this test is to compare the performance of the proposed parameters
given in (4.6), (4.7) and (4.8) with respect to the heuristic choice. In particular, for the
reference values, we have the following values: αGS

f,M = 681.43, αGS
f,K = 41.12, αP

s =

31.83 and αS
s = 38.95.

In Table 5.1 we show the average number of iterations to reach convergence having
considered as final time T = 0.008 s. In brackets, we show the computational time,
normalized to that obtained with the heuristic choice of αf and with αs = 0.

αf = αheur
f αGS

f αGS
f αGS

f

αs = 0 0 αP
s αS

s

Ref. 5.87 (1.00) 5.37 (0.91) 4.62 (0.79) 4.50 (0.77)
ρs = 0.1 6.00 (1.00) 5.62 (0.94) 4.87 (0.81) 4.87 (0.81)
ρs = 0.01 6.00 (1.00) 5.75 (0.96) 5.00 (0.83) 4.87 (0.81)
Hs = 0.05 6.75 (1.00) 5.87 (0.87) 5.00 (0.74) 5.00 (0.74)

Hs = 0.0125 10.75 (1.00) 7.87 (0.73) 7.62 (0.71) 5.75 (0.53)
∆t = 5 · 10−4 7.00 (1.00) 5.69 (0.81) 4.94 (0.71) 4.87 (0.70)

∆t = 2.5 · 10−4 6.94 (1.00) 5.56 (0.80) 4.81 (0.69) 4.41 (0.64)
E = 6.5 · 105 6.50 (1.00) 5.62 (0.86) 4.87 (0.75) 4.87 (0.75)
E = 1.3 · 105 7.50 (1.00) 5.50 (0.73) 4.37 (0.58) 5.00 (0.67)

Table 5.1

Average number of iterations and relative CPU times (in brackets) for the rectangular domain
for different values of some parameters. Ref. means reference values.

These results show that the Robin-Robin schemes are very robust with respect
to the added-mass effect. Indeed also for structure density 100 times lighter than the
fluid one, convergence is reached without any relaxation and with a small number of
iterations. However, a worsening in the performance is observed when the structure
thickness Hs, the time step ∆t and the Young modulus E decrease. Moreover, these
results show that there is a systematic improvement in the performance of the Robin-
Neumann scheme when adopting the optimized value αGS

f instead of the heuristic



24 L. GERARDO-GIORDA, F. NOBILE AND C. VERGARA

one, with a saving in the computational time up to 27%. A further improvement is
obtained by considering the Robin-Robin scheme with coefficient αP

s or αS
s . In these

cases the saving in computational time is up to 47%. We point out that the proposed
choice is robust, since numerical simulation highlightes that the number of iterations
is independent of the value of the space discretization parameter h.

In the second set of simulations, we want to compare the two different optimization
strategies proposed for the parameter αs in Sect. 4.2 and 4.3, respectively. We limit
the analysis to the Potential flow case, that is we compare the performances of the
RR scheme with αs given by (4.7) and (4.9).

In Table 5.2 we show the average number of iterations to reach convergence having
considered 16 time steps, by changing the Young modulus and the time step. These

αs = αP
s αP,2

s

Ref. 4.62 10.87
Hs = 0.0125 7.73 X

∆t = 6.4 · 10−5 6.00 5.00
∆t = 3.2 · 10−5 10.94 9.00
E = 1.3 · 104 4.62 6.37
E = 1.3 · 103 26.75 15.00

Table 5.2

Average number of iterations to perform 16 time steps for the rectangular domain. Ref. means
reference values. X means no convergence.

results clearly show that the optimized parameter αP,2
s shows a better performance

when the structure stiffness term is small in comparison to the other terms. However,
as highlighted by the performances obtained with the reference values and by the
non-convergence with Hs = 0.0125, this choice seems less robust than αP

s .

5.2. An application to a 2D bifurcation geometry. In this section we in-
vestigate the performance of Robin-Robin algorithm with optimized parameters con-
sidering a 2D geometry which is an idealization of a realistic domain, namely the
human carotid. We use the reference values described in the previous sections and we
set ν = 0.49 in order to model the quasi-incompressibility of arterial vessels.

In Figure 5.2 the pressure in the deformed fluid domain is shown, at three time
instants. In Table 5.3 we show the average number of iterations and the normalized
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Fig. 5.2. Pressure in the deformed fluid domain obtained with αf = αGS
f

and αs = αP
s ;

t = 0.004 (left), t = 0.008 s (middle), t = 0.012 s (right).

computational times (in brackets) for two values of the structure thickness, having
considered as final time T = 0.012 s.

These results show that the improvement in the performances of RR scheme in
using the optimazed parameters αGS

f , αP
s and αS

s is even slightly higher than for the
rectangular case.
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αf = αheur
f αGS

f αGS
f αGS

f

αs = 0 0 αP
s αS

s

Ref. 13.08 (1.00) 9.92 (0.76) 7.00 (0.54) 6.75 (0.52)
Hs = 0.05 23.25 (1.00) 14.08 (0.61) 13.50 (0.58) 12.67 (0.54)

Table 5.3

Average number of iterations and relative CPU times (in brackets) for the carotid domain for
different values of the structure thickness Hs. Ref. means reference values.

6. Conclusions. In this work, we have proposed new convergence analysis of
the Robin-Robin partitioned procedure for the Fluid-Structure Interaction problem.
In particular, we consider 2D generalized Stokes problem both for the fluid and for
structure. These analysis improve and generalize the ones presented in [3, 6] which
referred to a potential flow model for the fluid and a 1D reduced model for the
structure. The analysis have been performed applying the Fourier transform in one
direction, and highlight the dependence of the Dirichlet-Neumann scheme on the ratio
between the densities of the fluid and of the structure, and the robustness of a general
RR scheme with respect to this ratio.

Moreover, in the spirit of the Optimized Schwarz Methods, the reduction factor
of the analysis have been minimized by determining optimal values of the parameters
in the Robin transmission conditions.

The 2D numerical results show that the proposed optimized parameters improve
considerably the speed of convergence of RR schemes.
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on Steklov-Poincaré operators. Computer Methods in Applied Mechanics and Engineering,
195(41-43):5797–5812, 2006.

[9] J. Donea. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-
structure interaction. Computer Methods in Applied Mechanics and Engineering, 33:689–
723, 1982.

[10] M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the
coupling of an elastic structure with an incompressible fluid. International Journal for
Numerical Methods in Engineering, 69(4):794–821, 2007.

[11] M.A. Fernández and M. Moubachir. A Newton method using exact Jacobians for solving fluid-
structure coupling. Computers & Structures, 83(2-3):127–142, 2005.



26 L. GERARDO-GIORDA, F. NOBILE AND C. VERGARA

[12] C. Forster, W. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered
coupling of nonlinear structures and incompressible viscous flow. Computer Methods in
Applied Mechanics and Engineering, 196(7):1278–1293, 2007.

[13] M.J. Gander. Optimized Schwarz methods. SIAM Journal on Numerical Analysis, 44(2):699–
731, 2006.

[14] M.J. Gander, F. Magoulès, and F.Nataf. Optimized Schwarz methods without overlap for the
Helmholtz equation. SIAM Journal on Scientific Computing, 24:38–60, 2002.

[15] L. Gerardo Giorda, P. Le Tallec, and F.Nataf. A Robin-Robin preconditioner for advection-
diffusion equations with discontinuous coefficients. Computer Methods in Applied Mechan-
ics and Engineering, 193,(9-11):745–764, 2004.

[16] W. Guo and L.S. Hou. Generalizations and accelerations of Lions’ nonoverlapping domain
decomposition method for linear elliptic PDEs. SIAM Journal on Numerical Analysis,
41(6):2056–2080, 2003.

[17] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics
and Engineering, 29(3):329–349, 1981.

[18] P.L. Lions. On the Schwartz alternating method iii. In T. Chan, R. Glowinki, J. Periaux,
and O.B. Widlund, editors, Proceedings of the Third International Symposium on Domain
Decomposition Methods for PDE’s, pages 202–223. Siam, Philadelphia, 1990.

[19] F. Nobile. Numerical approximation of fluid-structure interaction problems with application to
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