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Abstract

New measurement devices and techniques in biomedical images provide medical doctors
with a huge amount of data on blood flow and vascular morphologies. These data are crucial
for performing (and validating) individual-based simulations of hemodynamics (see e.g. [1]).
Availability of velocity measures inside a region of interest poses problems that are new to
the community of computational hemodynamics and however well known in other engineering
fields. In particular, integration of data (measures) and numerical simulations has been an issue
of utmost relevance in the prediction of fluid geophysics phenomena and, in particular, weather
forecast. In computational hemodynamics a mathematically sound assimilation of data and
numerical simulations is needed, on one hand for improving reliability of numerical results,
on the other one for filtering noise and measurements errors. In this paper we consider and
compare some possible methods for integrating numerical simulations and velocity measures
in some internal points of the computational domain. Preliminary numerical results for a 2D
Stokes problem are presented both for noise free and noisy data, investigating convergence rate
and noise sensitivity.

Keywords Computational fluid dynamics, Optimization techniques, Inverse problems,
Data assimilation techniques, Hemodynamics.

1 Introduction and Motivation

The development of numerical methods in incompressible fluid dynamics has received a strong
impulse in the last 15 years from cardiovascular applications (see e.g. [1, 2, 3]). Specific numerical
techniques have been proposed for the effective solution of fluid-structure interaction problems,
the coupling of models featuring a different level of detail (lumped parameter, 1D, 3D), and the
integration of medical images and numerical simulations. In particular, the last topic is crucial for
the development of numerical solvers with a clinical impact. It is well known that vascular geometry
plays a major role in the development of vascular pathologies. The combination of data coming from
medical images and numerical simulations is a fundamental step for performing individual-based
simulations. This integration process has been enhanced in the last years by the development of
both new imaging devices and numerical methods for processing medical images (see e.g. [1, 4, 5]).
Measurements devices have been improved also for flow and pressure data; some of them make
available measurements of the velocity field in the region of interest (see Fig. 1).

Availability of these data opens the problem of a mathematically sound integration of measures
and simulations aiming at an overall improvement of reliability of numerical results. This problem
is not new in other engineering fields. In particular, we mention geophysics and meteorology, where
data come from different sources like Radar, Lidar or satellite images and are currently used for
enhancing the quality of weather forecast. The procedure of including measured data into numerical
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Figure 1: Blood velocity measured in the ascending aorta of a patient with MRI [6].

simulations is called Data Assimilation (DA). Data are usually sparse, irregularly distributed in
space and time and noisy for different reasons: instrumental noise, sampling, interpretation of
instrumental measurements, etc...

In this paper we present some possible methods for DA in computational hemodynamics and
compare their performances on a simple test case. In particular, we move from velocity measure-
ments in the computational domain (see Fig. 1) and assimilate these data in the simulation of the
incompressible fluid dynamics in the region of interest. After a brief overview of DA techniques
during the last 50 years and of recent developments of this procedure in biomedical applications,
in Section 2 we report the mathematical formulation of the considered approaches. In Section 3
we discuss the numerical results and we identify the most effective methods; in Section 4 we draw
conclusions and we present future research guidelines.

1.1 State of the art

DA was firstly introduced in fluid geophysics, where the aim was to use very sparse measurements
of a physical variable in order to predict the weather evolution. The basis of DA is an automated
procedure based on interpolation of the data, called simple analysis. This preliminary technique
provided the ground for the development of new methods where the physics of the data analyzed was
taken into account. The first proposed methods were based on the Estimation Theory : the analysis
step is performed combining information from physical models and statistical correlations between
observed data. The central method in this category is the Kalman filter introduced by Kalman
in 1960; many variants of this technique have been lately introduced [7, 8]. In the meantime, the
Dynamic Relaxation method was considered for time independent DA, based on the fact that the
solution of a steady problem can be seen as the steady state of a time dependent problem. The
basics of this method is the solution of the Partial Differential Equations (PDEs) governing the
system where some artificial source terms are added in order to force the solution to match the
observed data as time evolves. Later on, the numerical solution of PDEs was made simpler by the
introduction of efficient discretization schemes; also, the theory of control and optimization became
well known and used in many practical applications [9]. These facts allowed several methods for
control problems to be used in the solution of DA problems. Nowadays, we can consider three
groups of DA techniques: (1) Kalman filter based approaches [8]; (2) control theory methods [9];
(3) stochastic methods [7].

The application of DA techniques to hemodynamics is a new field of investigation; so far, some
DA techniques have been used in medicine in order to estimate model parameters (see [10]). More
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recently, DA has been taken into account also for blood flow: a control based approach has been
chosen for recovering the velocity field [11] in an unsteady simulation. The goal is to minimize a
weighted difference of the predicted state variable and a measured field at a specific time, subject
to the state equations using the initial condition as a control variable.

2 Proposed Approaches

In this Section we present the mathematical formulation of the problem and we describe several
methods for its numerical solution. For the sake of simplicity, at this preliminary stage, we focus
on the steady Stokes equations; this analysis will provide the ground for the solution of the Navier-
Stokes (NS) equations for real applications, that will be addressed in future works.

2.1 Mathematical formulation

We introduce some notations: let Ω ⊂ R2 represent the domain of interest, i.e. the vessel; Γw the
surface surrounding the vessel; Γin and Γout the base surfaces of inflow and outflow. Let L2(Ω) be
the usual Hilbert space of square summable functions and H1(Ω) be the space of vector functions
whose components are in L2(Ω) together with their first derivatives, H1

Γ the corresponding space
of H1 functions with null trace on the portion Γ of ∂Ω . We denote by u(x) ∈ H1

Γw
(Ω) and

p(x) ∈ L2(Ω) the velocity and pressure fields respectively. The general statement of the problem is
as follows. Let us denote by d ∈ RD (D ∈ N) the vector of the measured data s.t. di, i = 1, ..., D,
is the measured velocity at point xi (we assume measurement points to lie on some internal layers,
which we denote Γd - see Fig. 2). We assume that Γin ⊂ Γd. Velocity and pressure fields are
assumed to fulfill in Ω the equations

−ν∆u +∇p = 0, ∇ · u = 0. (1)

On the boundary Γw we assume u = 0, while on Γout we prescribe homogeneous Neumann boundary
conditions. We aim at solving the following problem: find u and p so that u fits the available
measures d (in some sense) under the constraints (1).

Different methods can be devised for solving this problem, with different way for fitting the
data. Here, we address in particular two techniques. The former is specifically devised for this
problem and relies upon the assumption that available measures are taken over internal sections
of the domain of interest, i.e. points xi belong to a set of transversal sections of the vascular
district at hand (see Fig. 2). Although this is a quite restrictive assumption, it reflects the way the
measurements are actually taken (see Fig. 1). The latter method, on the contrary, is based on a
more general approach, relying upon the theory of control for distributed systems.

2.2 Splitting techniques

The idea is to split the domain into subdomains (see Fig. 1, 2), where the measurement sections
act as domain interfaces. Measurements are used as boundary data for solving the global problem
by subdomains. More precisely, let us assume to have s subdomains Ωi (i = 0, . . . , s− 1), such that
the measured data lie on the interfaces. Let us denote by Γi the interface, with i = 0, 1, . . . s − 1
so that Γ0 = Γin and Γs = Γout. Let di be the set of measures on interface Γi, or more precisely
an interpolating function over Γi of the data (we will use piecewise linear interpolation). Denote

3



Figure 2: Schematic representation of the domain with velocity measures (left) and its subdomain
splitting (right).

mesh no update c = ∆x0 c = ∆x1 c = ∆x2

40× 10 2.58e3 1.25e4 1.25e4 1.25e4
80× 20 1.05e4 8.30e4 8.30e4 8.30e4

Table 1: 1-norm condition number estimate of S for different values of c.

by u =
∑s
i=1 u0,i + Eid where u ∈ H1

Γw
(Ω), u0,i ∈ H1

∂Ωi
(Ωi), and Eid ∈ H1(Ωi) is an arbitrary

extension in Ωi of the data di and di+1. We want to solve the following problem. Find u s.t. for
any vi ∈ H1

∂Ωi
(Ωi), qi ∈ L2(Ωi)

s−1∑
i=0

∫
Ωi

ν∇u : ∇vi dx−
∫
Ωi

p∇ · vi dx−
∫
Ωi

qi∇ · u dx = 0. (2)

In principle, we can distinguish two approaches, according to the sequences “first split then
discretize” or “first discretize then split”. We focus on the latter approach, since the former has
some strong drawbacks that prevent its use, as we point out later on.

Matrix Updating In this case, we first discretize the global problem (2), then we force the data
in the degrees of freedom where they are available as for usual Dirichlet conditions. Formally, being
A and b are the matrix and the r.h.s. coming from the discretization of the system and Ai and
Ii the i-th rows of A and I (identity matrix), this is equivalent to perform the following steps: (1)
replace Ai with cIi, where c is a coefficient; (2) replace bi with cdi; (3) for j 6= i set bj = bj−ajidi
and aji = 0.

The modification of A affects the condition number of the matrix. For this reason, the coefficient
c is tuned for reducing this effect. In Tab. 1 we report the condition number for different values of
c on two different meshes. The condition number after the update is increased of about one order
of magnitude. This has the clear drawback of requiring a higher computational effort in solving
the linear systems. Even more important is the fact that the solution of the system becomes more
sensitive to the perturbations on the data and in particular to the noise in the measures. Despite
of its simplicity, this approach is therefore anticipated to be extremely sensitive to the noise, as we
see in the Numerical Results section.

Remark Domain Splitting We can split the problem by subdomains and then perform the
numerical discretization of subproblems separately. This corresponds to take in (2) alternatively
all the test functions vi = 0, qi = 0 apart from one. Then, we perform the discretization of each
problem. Observe that in the first s−1 subdomains we have Dirichlet conditions over ∂Ωi. For this
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reason, we force uniqueness of the pressure by taking a null average pressure or fixing the pressure
in one node. Moreover, boundary data are supposed to be compatible with the incompressibility
constraint

∫
∂Ωi

u · n dγ = 0. In principle, this method is fast and prone to parallelism, since each
subproblem is solved independently of the others. However, presence of the noise has two important
drawbacks: (1) the divergence compatibility condition is actually violated; (2) measurements errors
affect the solution inside each domain, without filtering. Concerning the second point, it is known
that perturbations on the boundary affect the solution of a Stokes problem with a decay featuring
an exponential dependence on the distance from the boundary (see [12]). Presence of noise on the
interfaces brings therefore errors inside the domain, yielding extremely inaccurate results. For this
reason we do not dwell any longer with this approach, since it results more inaccurate than the
others (errors are at least about ten times larger than the others).�

2.3 Control based formulations

In this Section we present a different, more general, approach based on the theory of control for
distributed systems. Let us introduce the problem: for all v ∈ H1

Γw
(Ω), q ∈ L2(Ω)

S :
∫
Ω

ν∇u : ∇v dx−
∫
Ω

p∇ · v dx−
∫
Ω

q∇ · u dx +
∫

Γin

h v dγ = 0. (3)

Here, h(x) ∈ H−1/2(Γin) is the Neumann data at the inflow boundary, while homogeneous Neumann
boundary conditions are still assumed at the outflow. Let us denote by F the set of solutions to
S as a function of the inflow Neumann data h. Correspondingly, the discretized Stokes problem
is denoted by Sh and the solution set by Fh. The basic formulation of the problem reads: find
the inflow Neumann conditions such that the distance (to be defined) between velocity and data is
minimal. As usual, we have two possible approaches, the Optimize then Discretize (OD) approach
and the Discretize then Optimize (DO) one.

Optimize then Discretize We define the distance between solution and data as

J(u) =
1
2

∫
Γd

(
u− d

)2dγ, (4)

where d is here an extension of the vector data (for the sake of simplicity we do not change notation).
We solve the problem: find h s.t. for the corresponding solution u, p to S, J(u) ≤ J(v), ∀v ∈ F .
The Lagrangian of the problem regarded as a constrained optimization procedure reads

L(u, p,λu, λp,h) = J(u) +
∫
Ω

ν∇u : ∇λudx−
∫
Ω

p ∇ · λudx−
∫

Γin

hλudγ +
∫
Ω

λp∇ · u dx; (5)

where λu and λp are the Lagrange multipliers associated with velocity and pressure. The necessary
conditions for optimality are (see [9])

∂L
∂(λu,λp) =

∫
Ω

ν∇u : ∇vdx−
∫
Ω

p ∇ · vdx−
∫

Γin

hvdγ +
∫
Ω

q ∇ · u dx = 0 ∀v ∈ H1
Γw
, q ∈ L2

∂L
∂(u,p) =

∫
Γd

(u− d) wdγ +
∫
Ω

ν∇ · λu∇wdx +
∫
Ω

λp∇ ·wdx−
∫
Ω

r ∇ · λudx = 0 ∀w ∈ H1
Γw
, r ∈ L2

∂L
∂h = −

∫
Γin

λus dγ = 0 ∀ s ∈ H1/2(Γin).

(6)
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Several methods are available for the discretization of this system; in this work we rely on the Finite
Element (FE) method. Let U ∈ Ru, P ∈ Rp and H ∈ Rh be the vectors representing the computed
solutions on the grid points, being u, p and h the dimensions of the FE spaces they belong to, they
solve the following linear system: S O N

J S O
O NT O

 ·
 V

Λ
H

 = F , S =
[

C BT

B O

]
,V =

[
U
P

]
,Λ =

[
Uλ

Pλ

]
. (7)

Here, Uλ and Pλ represent the discrete lagrangian multipliers; C, B, J and N are the FE matrices
coming from the discretization of the Laplacian, divergence, derivative of the functional J and
boundary conditions; it is worth specifying that the latter is associated with the integral on the
inflow boundary and involves the control variable. Also, the r.h.s. comes from the evaluation of the
derivative of the functional and involves the data.

Remark A precise characterization of the set F is strictly related to the efficiency of using h
as control variable. In fact, larger is F in the subset of solutions of the Stokes problem and smaller
can be the distance from the data. This problem at the best of our knowledge is still open and will
be subject of future works (see [13, 14]).�

Discretize then Optimize (DO) In this approach, we swap the discretization and optimization
processes. We therefore resort to the problem Sh that in the algebraic form reads SV = NH. The
distance between the (discrete) velocity and the data is defined as

Jh(U) +
a

2
‖LH‖22 =

1
2
‖QU− d‖22 +

a

2
‖LH‖22; (8)

being Q the selection matrix extracting the velocity U at the points where measures are available.
Since data are sparse and noisy and the problem can be ill-posed, a regularization term is added
to the objective function, a is the regularization parameter (chosen according to some suitable
techniques) and L is a discretized differential operator applied to the control variable H and will be
specified later. In this discrete setting, we solve: find H s.t. for corresponding solution U, P ∈ Fh,
Jh(U) ≤ Jh(V), ∀V ∈ Fh. For the solution of this minimization problem, we write the Lagrangian,
which reads

Lh(V,H,Λ) =
1
2
‖DV − d‖22 +

a

2
‖LH‖22 + ΛT (SV −NH); (9)

where D = [Q O] and all other terms are defined as in (7). The set of necessary conditions for the
optimality is given by 

∂Lh

∂Λ = SV −NH = 0;

∂Lh

∂V = DT (DV − d) + STΛ = 0;

∂Lh

∂H = aLTLH−NTΛ = 0.

(10)

Upon block elimination, we get the reduced system

(NTS−TDTDS−1N + aLTL)H = NTS−TDTd. (11)

By defining Z=DS−1N system (11) reduces to (ZTZ+aLTL)H = ZTd; Z is called sensitivity matrix,
which is defined as Z=∂DV(H)/∂H and represents the derivative of the predicted data with respect
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to the control variable. The spectral properties of this matrix allow to determine the conditioning
of the problem. Notice that, as long as the size of Z remains small, we can compute it explicitly;
as its dimension grows we can solve the system efficiently employing methods that require only
matrix-vector multiplications for Z and ZT [15]. Finally, we point out that different techniques can
be used for an optimal choice of the regularization parameter a. Among the others,we mention the
Discrepancy Principle (DP) and the Generalized Cross Validation (GCV) [16].

3 Numerical results

In this Section we report numerical results obtained performing the presented approaches on a 2D
test case. All the preliminary simulations presented in this work are based on the 2D Poiseuille
flow in the rectangular domain Ω = [0, 5]× [−0.5, 0.5], whose analytical velocity reads: uex(x, y) =
[1− 4y2 , 0 ]T .

Data generation We assume data to be given on three internal layers and on the inflow boundary
in correspondence of discretization nodes (in this way the space discretization step ∆x and N , the
number of measurement nodes, are related). These data are generated adding to the exact solution a
random noise uniformly distributed in space (globally) and normally distributed point-wise (locally)
in such a way that the signal-to-noise ratio, SNR, is fixed; this fact determines the parameters of the
error probability distribution in the generation process. In real applications this value is strongly
determined by the biomedical tools used to observe the data. In the case of noisy data from a 4D
scan of the aorta SNR is of the order of 10 for flow measures.

Software details The preliminary comparison among the proposed approaches is performed com-
bining two softwares: FreeFem++2, for matrices generation, and Matlab, for the linear systems
solution. Results presented in the last paragraph on the DO approach are obtained with the C++
FE library lifeV 3 and displayed with the software ParaView.

Computational issues We implement the FE method with choice of compatible FE spaces
P1bubble-P1 for the velocity and pressure fields respectively. In the case of the DO method we
choose the gradient as a smoothing regularizing operator and we generate the optimal parame-
ter by means of DP and GCV methods (obtaining a parameter a of the order of 10−9, since the
conditioning of the problem is not critical).

Comparison results We compare the results with a direct approach, which we call “Dirichlet”
(D). This consists in the solution of the forward Stokes problem with the prescription of the (noisy)
velocity data only at the inflow and it is a consistency benchmark. We expect data assimilation
techniques to give more accurate results than this solution (which is much cheaper). Fig. 3 reports
the mean relative error out of 16 noise realizations with SNR = 20 and 8. Even if much cheaper
in terms of computational saving, the MU method is not accurate enough since the sensitivity to
the perturbation, incremented by the updating, makes it unreliable. For this reason, this is not
considered for any further investigation. The OD and DO approaches yield better accuracy than
the D one; the main issue related to them is the computational effort.

Error analysis for the OD and DO approaches According to numerical results presented, we
focus on the control based techniques and we investigate in more details the dependence of the
discretization error (w.r.t. the exact solution) on the discretization step ∆x and on the amount of
noise. In correspondence of noise free data and decreasing values of ∆x we test the consistency of

2Free C++ like software available on www.FreeFem.org for the solution of 2D PDEs.
3Free C++ library, which the authors are developers of, available on www.lifev.org.
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Figure 3: Mean relative error for OD, DO, MU and D with SNR = 20 (left) and 8 (right).

Figure 4: Relative error vs ∆x = 1
10 ,

1
20 ,

1
40 for OD (left) and DO (right).

the method; in Fig. 4 we report for the OD and the DO approach the l2 relative error versus ∆x
(in a logarithmic scale) and a quadratic reference curve; both methods preserve the O(h2) behavior
predicted by the FE theory: embedding our problem into the optimization scheme does not affect
the FE convergence rate. Also, numerical simulations have been performed in correspondence of
different values of SNR. We obtain a linear behavior of the discretization error as the amount of
noise increases.

DO simulations with noise free and noisy data Among the methods presented, the DO technique
results to be the most accurate and cheaper than the OD one in terms of computational effort. We
present more specific results employing noise free and noisy data. In this analysis we are mainly
interested in the velocity error behavior; nevertheless, in the noise free case, we also report the
pressure error behavior. In Fig. 5, in correspondence of ∆x = 1

20 , the recovered pressure and
velocity vector field is displayed together with the noise free data: in correspondence of the internal
layers the velocity matches the data (exact solution). Fig. 6 reports the computed velocity field
and a noisy data generated with SNR = 10. We note the presence of the noise especially in the
vertical component (zero in the exact solution). Notice in Fig. 6 that even if the data features a
non-zero vertical component as a by-product of the noise, DA yields an almost horizontal velocity
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Figure 5: Pressure and velocity assimilated with noise free data (in black).

Figure 6: Velocity assimilated with noisy data (in black) with SNR = 10.

field. This points out the role of DA as a filtering process of noisy data.

4 Conclusion and future work

The present work represents an exploratory analysis of DA possible methods for incompressible fluid
dynamics, with particular emphasis on cardiovascular applications. In particular, the comparison
among different methods showed that control based approaches are robust and accurate, even if
computationally expensive. Despite their straightaway implementation and low complexity, split-
ting methods are inaccurate because of their sensitivity to noise. The focus of the ongoing work is
the implementation of an efficient solver for the nonlinear NS equations as a combination of the DO
method introduced in the present paper and and the common Newton method for the treatment
of the nonlinearity. In addition, we plan to analyze the dependence of the accuracy of the solution
on the noise. In fact, preliminary results show that the problem at hand is highly sensitive to the
noise nature. Another issue to be considered is the effectiveness of the control variable h over the
entire minimization process and, more in general, its well posedness as a function of the data and
of the control variable h. Finally, the ultimate goal consists in applying these techniques to real
3D geometries in order to used the recovered velocity field for the prediction of physical variables
of medical relevance.

The authors wish to thank M. Perego (Emory University) and C. Vergara (University of Bergamo, Italy)

for useful suggestions and comments in preparing this work
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