
Unibus-managed Execution of Scientific
Applications on Aggregated Clouds0

Jaroslaw Slawinski, Magdalena Slawinska, Vaidy Sunderam
Math and Computer Science, Emory University

Atlanta, GA 30322, USA
{jaross,magg,vss}@mathcs.emory.edu

Abstract—In this paper we examine the feasibility of
running message passing applications across clouds. Our
on-going Unibus project aims to provide a flexible ap-
proach to provisioning and aggregation of multifaceted
resources and facilitate resource usage for both resource
providers and end-users. In order to achieve that the
Unibus approach explores: (1) virtualization of access to
diverse resources via proposing the Capability Model and
developing specific resource drivers to concrete resources,
and (2) soft and successive conditioning to enable automatic
and transparent to the user’s resource provisioning.

Cloud computing opens exciting research opportunities
for Unibus in terms of aggregation challenges. This partic-
ular work briefly describes main Unibus components and
concepts. We also demonstrate how to employ Unibus to
create an aggregated set of computing chunks provided
by two commercial cloud providers and how Unibus
virtualizes access to those resources. We also present
how Unibus simplifies usage of the aggregated computing
platform on the example of the execution of NAS Parallel
Benchmarks (NPB). We show and discuss the performance
results obtained from NPB and the mpptest benchmark.

I. INTRODUCTION

The vigorous and rapid growth of the cloud indus-
try creates new computing opportunities that change
the character of computing for business enterprises,
academia and individuals. Aside from traditional com-
putational centers, clusters, Grids, local desktops, etc,
computational power can be delivered on-demand to ev-
eryone who can afford it. The increased availability and
affordability of computing opportunities [2] encourage to
explore the feasibility of aggregation of various comput-
ing resources available to end-users. Whereas executing
applications on aggregated resources may not be always
as efficient as intended due to, for instance, resource
heterogeneity at different levels (hardware, software),

0This is the extended version of the CCGRID’10 paper [1].
Research, publication, and presentation supported in part by DOE
grant DE-FG02-06ER25729, and NSF grant CNS-0720761

network issues (bandwidth, throughput, latency, etc),
required Quality of Service, there are many situations
in which the capability of aggregating resources brings
profits (e.g., Grids). This, however, becomes challenging
taking into account resource heterogeneity, proprietary
authentication/authorization policies, security and cross-
resource network issues, resource provisioning (build,
software deployment, etc), the configuration of execution
environments, to name a few issues that need to be
addressed by resource aggregation.

Our on-going research project, titled Unibus, aims
to simplify running applications on heterogeneous re-
sources. In particular, it focuses on exploring new meth-
ods for resource provisioning and aggregation in an auto-
matic and transparent to end-users fashion. We approach
that by resource access virtualization that provides nec-
essary abstractions which allow for access and use of
multifarious resources in a unified manner. Resource
access virtualization is based on (1) the Unibus Capabil-
ity Model that models resource capabilities and delivers
respective resource abstractions and (2) mediators that
act as resource drivers for abstractions defined in the
Capability Model. Resource access virtualization allows
to automate provisioning and resource aggregation, and
allows to handle intricacies of resource provisioning and
aggregation by Unibus.

In this work, we focus on two goals: (1) we prac-
tically examine the Unibus approach to aggregation of
heterogeneous cloud resources and execution of scientific
applications on initially unconditioned resources, and (2)
we experimentally assess the viability of executing mes-
sage passing applications across clouds. To achieve those
goals we selected NAS Parallel Benchmarks (NPB) [3]
as a representative set of scientific applications. Although
this choice might be debatable (e.g., NPB were designed
to evaluate homogeneous systems), yet (1) NPB allow to
demonstrate how the Unibus automates various aspects
of resource provisioning and aggregation as NPB require

the dependency-related build effort (Fortran and C com-
pilers, MPI), and (2) obtained results can still provide
a decent quantitative insight into performance of both
individual clouds (which are homogeneous) as well as
aggregated cloud resources (NPB implement different
degrees of intensity of interprocessor communication).

II. RELATED WORK

Enabling resources to execute software applications
requires assuring appropriate execution environments on
computing chunks by deploying relevant dependencies
and performing necessary configuration. Several research
projects (e.g., ReST [4], NetBuild [5], Modules [6],
our companion project Harness Workbench Toolkit [7])
have attempted to address issues related to resource
provisioning. There is a number of package management
systems that support deployment of binary and source
files (e.g., rpm [8], apt-build [9], apt-build [9]). At this
stage of the project, Unibus does not introduce a new
resource provisioning system but focuses on the orches-
tration of tools and toolkits (such as package managers,
or proprietary application build/deployment systems) in
order to provision resources and setup the execution
environment for the software application. Provisioning
is orchestrated through the conditioning process that
changes the resource specialization level using typical
deployment software.

Resource aggregation requires ’homogenization’ at a
certain level, e.g., (1) system level (hardware, software)
by utilizing homogeneous systems, (2) standardization
level by enforcing conformity to standards or specifi-
cations, (3) abstraction level by generalization, or (4)
application level by using specific APIs or libraries.

The classical example of resource homogeniza-
tion at the system level is hardware virtualization.
Virtualization-based IaaS (Infrastructure as a Service)
such as Amazon EC2 [10], Rackspace [11], GoGrid [12]
virtualize hardware and enable users to setup a ho-
mogeneous execution environment by allowing them to
run instantiable images in many copies. Still, however,
aggregation of computing chunks delivered by different
providers might be challenging as particular clouds may
substantially differ with respect to exposure levels (hard-
ware, OS kernel), access APIs, image formats (if any),
security policies, etc.

The standardization approach, in turn, explicitly en-
forces unification at the level of the standardized en-
tity. Indubitably, the standard-based approach greatly
supports cross-resource aggregation (e.g., Globus [13],
Grid Interoperation Now [14], InterGrid [15], P-GRADE

Grid Portal [16], Lattice [17]). In fact, there are formal
and informal standardization initiatives in the growing
cloud community such as efforts to propose a stan-
dard API (e.g., Simple Cloud API [18], Open Cloud
Manifesto [19]), or projects (e.g., EUCALYPTUS [20],
Nimbus [21], AppScale [22]) that follow or refer to
guidelines established by cloud leaders.

One of the important Unibus foundations is to grant
resource providers freedom in exposing their resources
to end-users (contrary, for instance, to Grids that restrict
resource providers to Virtual Organizations). In this con-
text, resource aggregation at the system or standardiza-
tion level is inadequate. Therefore, Unibus proposes re-
source access unification at the abstraction level. Several
projects attempt to enable resource aggregation also at
that level, e.g., libcloud [23], VGrADS [24], SAGA [25].
The libcloud project aims to find a minimal common
API and currently defines a few API unified operations,
namely, list, reboot, create, destroy, images, sizes. The
Unibus approach to abstracting operations is not as
extreme as in the libcloud project and goes beyond one
resource class. The Unibus Capability Model abstracts
access to resources by specifying abstract operations
logically grouped into interfaces to present resource’s
capabilities in a unified manner. The VGrADS project is
similar to Unibus in that it virtualizes access to different
classes of computational resources such as Grids, clouds,
job schedulers. However, Unibus goes beyond matching
application requirements and available resources as it is
in the case of VGrADS. Unibus takes a step beyond and
attempts to adapt resources to the required specialization
level, if necessary.

The SAGA project bears a very close resemblance
to our approach as it defines standard interfaces such
as job, file, or MapReduce and adaptors to particular
resources that implement those interfaces. Conceptually,
our approach is reversed in regard to SAGA: Unibus
mediators expose all resources’ native operations and
Unibus attempts to bind those native operations with ab-
stract interfaces. Aside from that, there is also a technical
difference between Unibus and SAGA as SAGA requires
application modification. Unibus offers API, however, it
allows for execution of unmodified applications.

The other example of enabling aggregation at the API
level is the GridSolve [26] project. In order to obtain
access to aggregated resources, applications need to be
linked with the GridSolve client library. As mentioned
earlier, Unibus does not require linking applications with
any library to execute the application on aggregated
resources. In typical situations, Unibus users will write

metaapplications that will guide Unibus what resources
and how to use them to execute applications.

In the context of cloud benchmarking, our work is
complementary to [27] as they executed NPB-MPI (class
B) on Amazon EC2 and on a local cluster; we execute
NPB-MPI (class A) on aggregated cloud resources pro-
vided by two different providers.

III. UNIBUS INFRASTRUCTURE FRAMEWORK

The more detailed description of Unibus is provided
in our previous works [28], [29]. In this section, for the
completeness sake we briefly describe essential Unibus
concepts and components on which resource access vir-
tualization and provisioning are based, in particular: (1)
the architectural overview, (2) the Capability Model that
defines resource capabilities and mediators that act as
resource drivers, (3) conditioning that enables resource
provisioning.

A. Unibus Architecture

Unibus foundations draw inspiration from the tradi-
tional VO (Virtual Organization) resource sharing model.
Unlike in Grids, however, where resource virtualization
and aggregation take place at the resource provider’s side
and are performed by resource providers, the Unibus
goal is to relieve them from that burden and shift it
to software (Unibus) at the resource client’s side. In
this manner, Unibus benefits both resource providers
and resource users, as the former expose their resources
in an arbitrary way, and the latter can execute their
applications on resources orchestrated by Unibus in
accordance to their requirements.

The Unibus architecture is presented in Figure 1. In
Unibus, resources are exposed by resource providers
through access points, typically represented by access
daemons (e.g., sshd, ftpd, etc). Resources are described
semantically by their OWL-DL [30] resource descriptors
that contain resource-specific data related to authentica-
tion methods, available access points, installed system
software (OS, libraries, compilers, etc), environment
variables, etc. The example resource descriptors are
presented in Listing 2 and Listing 3, for the readabil-
ity reason in the Turtle notation (Terse RDF Triple
Language) [31]. Resource virtualization is carried out
by the Unibus Capability Model that specifies useful
abstractions in the form of abstract operations that are
logically grouped into resource interfaces. The specifics
of a particular resource is handled by a mediator that
implements the access point protocol(s). The Unibus

Accessible
resources

User access device

Unibus

 Unibus mediators

Standard services

......

.........

.........

3rd parties services

OS network library

......

.........

.........
......
.........
.........

......

.........

.........
......
.........
.........

......

.........

.........

......

.........

.........

Authentication
policies

Resource
descriptor

Resource
access daemon

Cluster
Workstation

Supercomputer

......

.........

.........

Cloud

Network

Capability model

Unibus (meta)application

3rd parties standard

3rd parties standard

Access daemon library

User
space

Proxy=Res.desc.+Mediator

Engine

......

.........

.........

......

.........

.........

SOA or web
services

......

.........

.........

Fig. 1. The overview of Unibus

knowledge engine selects and loads at run-time medi-
ators that are compatible with interfaces requested by
the user, and then exposes the resource as a resource
proxy object. Proxies represent ’connected’ resources in
Unibus. They implement abstract interfaces’ operations
from the Unibus Capability Model (via mediators com-
patible with requested interfaces).

Resource aggregation occurs at the proxy level and
at the synthetic resource level. Synthetic resources are
introduced to Unibus in order to provide a useful ab-
straction. This is convenient in certain situations, e.g.,
using one conceptual entity such as the ParallelSsh
synthetic resource is more practical than exercising a set
of individual ssh-enabled resources in order to execute
actions on those resources in parallel.

In order to facilitate common tasks such as resource
conditioning, monitoring, resource discovery, etc, Unibus
offers its API and Unibus services (standard or provided
by third parties).

B. Unibus Capability Model

The Unibus Capability Model, schematically pre-
sented in Figure 2, is at the heart of resource access
virtualization as it specifies abstract operations logically
grouped into interfaces. Both operations and interfaces

are defined semantically in the model and uniquely
identified by their URIs.

Ssh
mediator

OpenSsh
mediator

Sftp RO
mediator

EC2
mediator

HTTP
mediator

SyntheticCluster
mediator

Generic Cluster
mediator

Sftp RW
mediator

SSH+NFS
mediator

SyntheticCluster
mediator

EC2
mediator

Rackspace
mediator

ClusterMPI
mediator

Cluster
mediator

My best Cluster
mediator

M
ed

ia
to

r c
ap

ab
ili

ty

im
pl

em
en

ta
tio

ns

Capability operations

pbs:submit
ssh:Sftp

ssh:exec

Capability interfaces

posix:open

posix:read
posix:write

sftp:get

sftp:put

ec2:run_instance

posix:close

ucloud:deletehostsucloud:addhosts

fs:Readable

EC2
mediator

EC2 w/img.
mediator

HTTP
mediator

Globus-Nimbus
mediator

C
ap

ab
ili

ty
 m

od
el

posix:File

ssh:Ssh
ssh:shell

ssh:subsystem

obFile:open

fs:Transferablempi:mpiexec

ec2:EC2

ucloud:ISimpleCloud

mpi:getHeadNode

mpi:IClusterMPI

Globus-Nimbus
mediator

Fig. 2. The Unibus Capability Model

Operations correspond to actions that can be directly
performed on resources (and consequently, in Unibus,
on resource counterparts, i.e., proxies) such as mpiexec,
run instance, get, put. The interfaces combine operations
that are logically connected, e.g., represent allowable
operations on a given access point. For instance, the
interface IReadable can combine operations such as
open, read, and close; ISsh – exec, put, get; ISimpleCloud
– addhosts, deletehosts.

Particular implementations of abstract operations (and,
accordingly, interfaces) are provided via mediators that
implement the specifics of resource access points. Unibus
is capable of selecting the appropriate mediator for
a requested interface since mediators’ operations are
mapped to relevant abstract operations in the Capability
Model. Typically, mediators’ developers will reuse avail-
able libraries to implement access point capabilities. For
instance, currently some of supported standard Unibus
mediators take advantage of third party libraries; the
ssh and sftp mediator is based on the Paramiko SSH2
library [32], the EC2 mediator uses the Boto EC2
library [33]. The rest of mediators provided by Unibus
is developed from scratch: the Rackspace mediator, the
PBSQueue mediator and the ElasticWulf cluster [34]
mediator.

C. Conditioning

Unibus provisions resources through the process
known as conditioning that increases the resource spe-
cialization level. In particular, there are two classes

of conditioning services: (1) soft conditioning, and (2)
successive conditioning. Soft conditioning alters resource
capabilities in terms of installed software, e.g., installing
an MPI implementation on a resource or a gcc com-
piler allows to execute MPI applications or compile C
programs, respectively. Successive conditioning results
in enhancement of resource access capabilities, e.g.,
Globus Toolkit installation adds the Grid access point
on the resource. Typically, successive conditioning will
be supported by soft conditioning in order to enable new
access points on a resource.

IV. CLOUD ORCHESTRATION IN UNIBUS

The aim of this work was to exercise the Unibus
approach to automated provisioning and aggregation of
cloud resources. For the reasons explained in Section I,
we selected NAS Parallel Benchmarks (NPB) [3]. NPB
cover a representative spectrum of classes of HPC appli-
cations and implement different degrees of intensity of
interprocessor communication (no significant interpro-
cessor communication, regular and irregular short and
long distance communication, etc). NPB-MPI introduce
a few classes with respect to a problem size. Since in
our experiment the financial factor was involved, and
cloud providers charge also for the in/out bandwidth,
after preliminary tests in the class B, finally we decided
to perform benchmarks in the smallest class A.

A. Experimental Testbed

The experiment setup to execute benchmarks is
presented in Figure 3. Our experiment was hosted
on two clouds provided by Amazon EC2 [10] and
Rackspace [11]. In many aspects both cloud infrastruc-
tures are similar. For instance, hardware virtualization is
Xen-based, computational chunks are exposed to end-
users via ssh and, to perform typical cloud tasks (im-
age selection, creating/terminating/rebooting/shutdown
instances (Amazon EC2) or servers (Rackspace)) can be
accessed and managed via API or interactively, via a web
page. Differences are subtle, yet remarkable and concern,
for instance, processors types and their speed; granularity
of computational power available for the user (only 64-
bit 4-core hosts with a choice of RAM/HDD sizes up to
16GB/620GB on Rackspace versus a few classes of re-
sources offered by Amazon EC2 including 32-bit/64-bit
architectures, 1-8 cores, up to 68GB RAM and 1.67TB
HDD); operating systems, only a few Linux-based op-
tions on Rackspace versus a plethora of images including
Windows-family on Amazon; access tools provided for
managing a cloud resource, the lack of commandline

Elastic Computing Cloud

Ssh instances

Access device

Unibus

AWS

Access daemon

Proxy =

Network

1. allocation
3. release

:my_ec2
IEC2

ISimpleCloud
#add_instance

Synthetic
resource

1. instantiation

Implemented
capabilities:
operations &
interfaces

2. run

:111570
ISsh

#exec, #op..

:111567
ISsh

#exec, #op..

:i-b751c9df
ISsh

#exec, #op..

:i-3b5cc453
ISsh

#exec, #op..

Rackspace Computing Cloud

Ssh servers

Rack
WS

1. instantiation

:my_rackspace
IRackSpace
ISimpleCloud
#add_instance

Unibus metaapplication
NPB 3.3

boto library

IClusterMPI
:mpi_cluster

#mpiexec ...

paramiko library

Resource
descriptor

Metamediator

Mediator +

... ...

Fig. 3. The experiment setup for the execution of NPB on aggregated
Rackspace and Amazon EC2 clouds. The performance degradation
is explained in the caption of Figure 4.

tools in the case of Rackspace; expenses monitoring, full
and detailed real-time expenses provided on Rackspace
and 1-2 day delayed usage reports provided by Amazon
EC2; security policies and authentication methods, a
RSA key pair to obtain access to Amazon instances and
a one-time generated root password to access Rackspace
servers, etc.

B. Virtualization and Aggregation in Practice

In order to orchestrate cloud resources to execute
benchmarks we employed Unibus. The typical Unibus
usage scenario requires the creation of a metaappli-
cation that is executed on the local user’s machine.
As the Unibus framework is implemented in Python,
the most straightforward approach to implement the
metaapplication is to write a Python script. Listing 1,
presents a metaapplication script (inconsiderably edited
in comparison to the original script for the readability
reason) that we utilized for this experiment. The script
performs a few tasks with regard to: (1) managing the
clouds, (2) instantiation the individual computing hosts
on-demand, (3) provisioning the MPI cluster, (4) launch-
ing the benchmarks, and (5) gathering the benchmarks’
results.

In order to provide a unified access to alike yet differ-
ent cloud resources, we introduced an abstract interface,
named ISimpleCloud that contains two abstract opera-
tions: addhosts and deletehosts. We can take advantage
of the ISimpleCloud interface after loading the code (the
file clouds.py, line 7 in Listing 1) that implements the so-

called composite operations. Composite operations are
a convenient method for highlighting that they may be
composed from the other, previously specified opera-
tions. For instance, the Rackspace implementation of
addhosts uses rs:create server, rs:list nodes, whereas
the Amazon EC2 implementation uses ec2:instance run.
Loading composite operations from the file clouds.py
enables obtaining relevant proxies (which implement
the interface ISimpleCloud) to cloud hosts. We also
had to describe cloud resources in respective resource
descriptors for Rackspace and Amazon EC2 resources,
as presented in combined Listing 2, for the readability
reason in the Turtle (Terse RDF Triple Language) [31]
notation. Resource descriptors are dynamically loaded
by Unibus (line 7 in Listing 1). The operation addhosts
(line 23 in Listing 1) launches new hosts in the cloud and
updates the Unibus resource user space with the infor-
mation related to the created host (host type: Rackspace
server, EC2 instance, Linux OS; hostname, user name,
authentication methods (password or private key)). The
operation may be provided with optional parameters
with regard to the required host architecture, number of
cores, RAM, and image identifier. The complementary
operation deletehosts (line 25 in Listing 1) terminates
unnecessary hosts and removes their definitions from the
resource user space.

The metaapplication script presents usage of the
Unibus synthetic resources to facilitate host aggrega-
tion. In particular, the script generates the mpi cluster
synthetic resource descriptor, presented in Listing 3, to
provide a single abstraction for hosts orchestrated to act
as an MPI cluster. Meanings of ClusterMPI, headNode
or node (line 31, Listing 1) are defined in the Unibus core
semantics. The ClusterMPI proxy performs tasks related
to the MPICH2 configuration (creates necessary files
such as mpd.conf, mpd.hosts, machinefile), benchmarks
executions, and obtaining the results.

C. Technical Experiment Setup

Benchmarks (NPB-MPI version 3.3) were compiled
with default parameters in the problem size class ’A’ for
64 processes, and were always executed on 16 4-core
computational hosts, i.e., total 64 cores, the 64-bit archi-
tecture. We used the MPICH2 [35] MPI implementation.
The technical specification of the machines used in our
experiment is summarized in Table I.

The script executed two series of all benchmarks.
The MPI cluster head node was always allocated in the
Amazon’s cloud and shared the CPU with benchmark

Listing 1. The Unibus metaapplication that allows to run NAS Parallel Benchmarks on aggregated resources (edited for readability)
1 from unibus import *
2 # a l s o o t h e r i m p o r t s , h e l p i n g f u n c t i o n s and c o n s t a n t s
3

4 # load my u s e r space d e f i n i t i o n s (c l o u d s)
5 import_resources("my_resources.owl")
6 # load c o m p o s i t e ops addhos t s , d e l e t e h o s t s (I S i m p l e C l o u d)
7 load_composite(’components/operations/clouds.py’)
8

9 my_clouds = UResource(’my_rackspace’), UResource(’my_ec2’)
10 cloud_prx = [r.createProxy(’ISimpleCloud’) f o r r in my_clouds]
11

12 f o r needs, cpus in benchmark_node_number_generator(HOST_NO):
13 #manage t h e s s h h o s t s f o r t h e c u r r e n t benchmark s e r i e s
14 hosts = list_Rack(), list_AEC2() #how many h o s t s c u r r e n t l y ?
15

16 # need more r a c k s p a c e / e l a s t i c h o s t s ? − use p r e p a r e d images
17 f o r i in (RS_INDEX, AEC2_INDEX):
18 diff = len(hosts[i]) - needs[i]
19 # s e l e c t p r e p a r e d image
20 img_id = (16400, ’ami-fc50b395’)[i]
21 # need l e s s / more RS / EC2? − remove / add h o s t s
22 i f diff < 0:
23 cloud_prx[i][’#addhosts’](-diff[i], {’IMG’:img_id, ’CORE’:4, ’ARCH’:64, ’RAM’:1024})
24 e l s e:
25 cloud_prx[i][’#deletehosts’](hosts[i][:diff[i]])
26

27 hosts = list_Rack(), list_AEC2() #how many h o s t s c u r r e n t l y ?
28 # i f 16−1 h o s t s t h e one from AEC2 i s o n l y f o r t h e head node
29 all_hosts = (hosts[0] + hosts[1])[:HOST_NO]
30 head_node = hosts[1][0] # a lways e x i s t s (a t l e a s t one)
31 add_resource(’:mpi_cluster a cluster:ClusterMPI; \
32 cluster:headNode %s; cluster:node %s.’ %
33 (head_node, ’,’.join(str(i) f o r i in all_hosts)))
34

35 mpi_res = UResource(’mpi_cluster’)
36 mpi = mpi_res.createProxy(’IClusterMPI’)
37

38 f o r test in (’ep’, ’cg’, ’bt’, ’ft’, ’is’, ’lu’, ’mg’, ’sp’):
39 test_file = ’%s.%s.%d’ % (test, CLASS, cpus)
40 # e x e c u t e t h e benchmark
41 mpi[’#mpiexec’](NPB_PATH + test_file + ’ > ’ + LOG_PATH, cpus)
42 # read t h e t h e l o g and w r i t e i n t h e l o c a l f i l e
43 output_name = ’_’.join((test_file, ’%02d_%02d’ % needs, time.strftime(’%m%d%H%M%S’)))
44 with open(output, ’w’) as f:
45 head_node_sftp = mpi.get_head_node().createProxy(’ISftp’)
46 f.write(head_node_sftp[’#open’](LOG_PATH).read())
47

48 # remove proxy and r e s o u r c e . They w i l l be r e c r e a t e d i n t h e n e x t s e r i e s
49 mpi = None
50 remove_resource(mpi_res)

Listing 2. Cloud resources’ descriptors in the TTL (Turtle) notation (edited for readability)
1

2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3 @prefix my_resources: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/my_resources.owl#>.
4 @prefix uc: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_core.owl#>.
5 @prefix rs: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_rackspace.owl#>.
6 @prefix ec2: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_ec2.owl#>.
7 @prefix : <http://www.dcl.mathcs.emory.edu/hwb/ontologies/my_resources.owl#>.
8 @base <http://www.dcl.mathcs.emory.edu/hwb/ontologies/my_resources.owl>.
9

10 <http://www.dcl.mathcs.emory.edu/hwb/ontologies/my_resources.owl> a owl:Ontology;
11 owl:imports <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_ec2.owl>,
12 <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_rackspace.owl>.
13

14 :my_ec2 a ec2:EC2; ec2:accessKeyPair :access_key_pair .
15

16 :access_key_pair a ec2:AWSKeyPair; ec2:accessKeyId :access_key_id;
17 ec2:secretAccessKey :secret_access_key.
18

19 :access_key_id a ec2:AWSAccessKey; uc:filePath "../keys/ec2/ak.txt".
20

21 :secret_access_key a ec2:AWSSecretKey; uc:filePath "../keys/ec2/secret_ak.txt".
22

23 :my_rackspace a rs:Rackspace; rs:passwordFile "../keys/rackspace_password.txt";
24 uc:userName "magg".

Listing 3. :mpi cluster resource descriptor for the 14/2 case in the TTL (Turtle) notation (edited for readability)
1

2 @prefix owl: <http://www.w3.org/2002/07/owl#>.
3 @prefix cluster: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_cluster.owl#>.
4 @prefix ec2: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_ec2.owl#>.
5 @prefix rs: <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_rackspace.owl#>.
6 @prefix : <http://unibus.owl#>.
7 @base <http://unibus.owl>.
8

9 <http://unibus.owl> a owl:Ontology;
10 owl:imports <http://www.dcl.mathcs.emory.edu/hwb/ontologies/unibus_cluster.owl>.
11

12 :mpi_cluster a cluster:ClusterMPI;
13 cluster:headNode ec2:i-b751c9df;
14 cluster:node rs:111570, rs:111569, rs:111557, rs:111556, rs:111565,
15 rs:111555, rs:111568, rs:111561, rs:111558, rs:111564, rs:111567,
16 rs:111566, rs:111571, rs:111560,
17 ec2:i-b751c9df, ec2:i-3b5cc453.

processes. It performed administrative tasks such as
launching mpdboot; mpiexec: first Rackspace nodes are
taken (four processes per host), then Amazon EC2 nodes
(four processes per host); result staging. We enforced
MPI to use exclusively public IP addresses for all setups
(instead of the local IP addresses) on both clouds in order
to enable inter- cloud communication.

We created two images with preinstalled necessary
software such as MPICH2 and NPB for each cloud, and
performed only the necessary configuration after running
instances (setup of host names, i.e., adding public DNS

to /etc/hosts, and executing hostname public DNS).

D. Experimental Results

We performed two types of tests: (1) Unibus-managed
execution of NPB (two series), showed in Figures 4, 6, 7;
and (2) manually carried on the mpptest benchmark [36]
to examine message passing performance in terms of
latency and bandwidth in and between two clouds,
presented in Figure 5.

1) NPB: The main experiment was performed in two
series. The results, in the form of the arithmetic average

TABLE I
THE SPECIFICATION OF MACHINES USED FOR THE EXPERIMENT (SOME INFORMATION OBTAINED FROM THE CPUINFO PROGRAM). THE

BANDWIDTH AND PRICES ARE AS REPORTED IN REPORT USAGES AND REGARD ONE FULL SERIES OF TESTS, I.E., ALL BENCHMARKS
EXECUTED FOR EACH SETUP

Rackspace server EC2 instance
Compute Node CPU: 64-bit 4-core AMD Opteron(tm) Processor 2350

HE, 2GHz, 512KB cache; RAM: 1GB; HDD: 40GB
CPU: 64-bit 4-core Intel(R) Xeon(R) E5430, 2.66GHz,
6MB cache; RAM: 15GB; HDD: 1.69TB

OS Fedora Core 8 Ubuntu 9.04
Software gcc/gfortran 4.3.3; Mpich2-1.2; NPB 3.3 gcc/gfortran 4.1.2; Mpich2-1.2; NPB 3.3
Bandwidth
used

IN: 81.8GB; OUT: 78.8GB Inside EC2: 155.6GB; IN: 16.5GB; OUT: 16.2GB

Price 73.75 1USD (reported) 56.97 USD (estimated)

of those two series, are presented in Figure 4. We also
present the cumulative time of the average series in
Figure 6, and measured cumulative bandwidth IN/OUT
reported by Rackspace for the second series, as shown
in Figure 7.

2) Mpptest: The results of the point-to-point test are
presented in Figure 5. This benchmark follows the ping-
pong pattern to measure the latency and bandwidth in
the function of an MPI message size (0-1024 bytes).
The setup for this experiment was as follows: we ran
two servers R1 and R2 on Rackspace and two instances
A1 and A2 on Amazon EC2, and we instructed mpptest
(via relevant configuration files and input parameters) to
run two processes allocated in the following settings:
(1) R1 ↔ R2 (intra-Rackspace), (2) A1 ↔ A2 (intra-
Amazon EC2), (3) R1 ← A1, (inter-cloud) (4) R1 ↔ R1

(intra- Rackspace cores), (5) A1 ↔ A1 (intra- Amazon
cores). The latency and bandwidth for settings (1) -
(3) are presented in Figure 5(a)(b), and Figure 5(c)(d)
shows values for inter-cores communication in respective
clouds.

-50

0

50

100

150

200

0

200

400

600

800

1000

1200

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

Sum RS degradation EC2 degradation

Fig. 6. Total (cumulative) runtime time of the average series of NPB
benchmarks (eight benchmarks)

1This number does not correspond to the number reported in [1];
it is updated accordingly to a correction we received from the
Rackspace, a few months after the experiment

0

5

10

15

20

25

0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15
B

an
d

w
id

th
 [

G
B

]

Rackspace servers IDs

IN

OUT

Fig. 7. Reported by Rackspace, the cumulative IN/OUT bandwidth
to/from the Rackspace cloud for one series/ The number of running
hosts changes as hosts are dynamically added and removed, to reduce
the experiment expenses.

E. Discussion

In general, the overall performance of the ’aggregated’
cloud is about 2-3 times inferior compared to perfor-
mance of individual clouds.

Despite slower Rackspace CPUs (Tab. I, IS in Fig. 4(e)
that is computationally demanding), the Rackspace’s
network better copes with small MPI messages that
results in outperforming EC2 (compare LU (Fig. 4(f))
where a huge number of very small (40 bytes) MPI
messages is transmitted [37]).

The process allocation impacts benchmarks (multigrid
partitioning tests MG, CG, BT, LU (Figs 4 (g)(b)(c)(f));
setups 0/16, 4/12, 8/8, 12/4, 16/0 outperform 2/14, 6/10,
10/6, 14/2 resulting in the comb-like characteristics; to
get the reasonable performance processes across clouds
should be created with step 22 instead of 2 [37]).

BT and SP (Fig. 4 (c)(h)) that involve coarse grain
communication are very sensitive to the slow Internet
connection or communication imbalance (e.g., SP: the
less inter- communication between clouds and the better
communication balance the better overall performance).

EP causes the most difficulties for the interpretation

-200

-100

0

100

200

300

400

500

600

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

ep RS degradation EC2 degradation

(a) EP

-20

-10

0

10

20

30

40

50

0

5

10

15

20

25

30

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

cg RS degradation EC2 degradation

(b) CG

-100

-50

0

50

100

150

200

250

0

50

100

150

200

250

300

350

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

bt RS degradation EC2 degradation

(c) BT

-15

-10

-5

0

5

10

15

20

25

30

0

5

10

15

20

25

30

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

ft RS degradation EC2 degradation

(d) FT

-40

-20

0

20

40

60

80

0

2

4

6

8

10

12

14

16

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

is RS degradation EC2 degradation

(e) IS

-50

0

50

100

150

200

250

0

50

100

150

200

250

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

lu RS degradation EC2 degradation

(f) LU

-20

0

20

40

60

80

100

120

0

1

2

3

4

5

6

7

8

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

mg RS degradation EC2 degradation

(g) MG

-50

0

50

100

150

200

250

300

0

100

200

300

400

500

600

16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

D
e

gr
ad

at
io

n
 [

%
]

R
u

n
ti

m
e

 [
s]

Test case Rackspace/EC2

sp RS degradation EC2 degradation

(h) SP

Fig. 4. NPB Benchmarks results. Times (as reported in benchmarks’ logs) are the arithmetic average of two series. Blue and red lines
show the benchmark performance degradation in the runs on the MPI testbed assembled across two clouds compared to runs executed on
the MPI testbed assembled entirely either in Rackspace (16/0, the blue line) or in EC2 (0/16, the red line). Said differently, the performance
degradation answers the question how much longer the benchmark runs on a heterogeneous testbed compared to a homogeneous testbed.

0

5

10

15

20

25

0

100

200

300

400

500

600

700

800

0

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

La
te

n
cy

 b
e

tw
e

e
n

 c
lo

u
d

s
[m

s]

La
te

n
cy

 in
 c

lo
u

d
s

[μ
s]

MPI message size [B]

RS↔RS

EC2↔EC2

RS↔EC2

(a)

0.0

4.9

9.8

14.6

19.5

24.4

29.3

34.2

39.1

43.9

48.8

0.0

0.5

1.0

1.4

1.9

2.4

2.9

0

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

B
an

d
w

id
th

 b
e

tw
e

e
n

 c
lo

u
d

s
[k

B
/s

]

B
an

d
w

id
th

 in
 c

lo
u

d
s

[M
B

/s
]

MPI message size [B]

RS↔RS

EC2↔EC2

RS↔EC2

(b)

0.0

0.5

1.0

1.5

2.0

2.5

0

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

La
te

n
cy

 [
μ

s]

MPI message size [B]

RS

EC2

(c)

0.0

0.2

0.4

0.6

0.7

0.9

1.1

1.3

1.5

0

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

B
an

d
w

id
th

 [
G

B
/s

]

MPI message size [B]

RS

EC2

(d)

Fig. 5. Latency and bandwidth reported by mpptest for: (a)(b) inter- and intra- cloud communication, (c)(d) the same node inter- core
communication

(Fig. 4 (a)) as it should better perform on EC2 than
on Rackspace. The reason for that might be the short
execution time of the test (an imbalanced ratio process-
ing/communication may favor faster network operations
on Rackspace). The problem size class B would increase
the execution time of the EP test.

To conclude, we expected even worse performance
of the ’aggregated’ cloud than we observed (i.e., 2-3
inferior compared to individual clouds). However, rela-
tively slow network connections inside clouds cause that
the Internet connection between clouds does not make
much difference in the overall benchmark performance.
Considering the monetary factor, computing in a single
cloud might be even a preferred option to maintaining
local clusters (the total cost of a 100 Rackspace servers’
cluster starts from $1.5 per hour). However, computing
on aggregated clouds might be relatively expensive as
costs for computing and network usage may significantly
vary from one provider to another (e.g., in Rackspace 1
GB bandwidth costs 15 times more than 1 hour of a
server; EC2 make those costs at invert).

We also observed the reduction of the effort related to

provisioning tasks. In this experiment, Unibus reduces
the resource provisioning time from approximately 2
man-hours to roughly 40 minutes (build, staging, image
instantiation, etc).

V. SUMMARY

This work aims to demonstrate how to use Unibus to
automatically provision and aggregate cloud resources
to execute message passing applications. This can be
tedious, especially if aggregation of many hosts is con-
sidered (even in the single cloud). Our infrastructure
framework, Unibus, simplifies and automates many pro-
visioning and aggregation related tasks (deployment,
configuration, authentication, etc). To achieve that, we
use our Capability Model that allows to virtualize access
to resources, mediators that implement the specifics of
the resource access points, and conditioning that allows
to increase the resource specialization level. The con-
ducted experiment demonstrated that the performance of
aggregated clouds is 2-3 times inferior in comparison to
the performance of individual clouds.

REFERENCES

[1] J. Slawinski, M. Slawinska, and V. Sunderam, “Unibus-
managed Execution of Scientific Applications on Aggregated
Clouds,” in CCGRID’10. Melbourne, Australia, May 2010.

[2] A. Conry-Murray, “From Amazon To IBM, What 12 Cloud
Computing Vendors Deliver ,” InformationWeek, September
2009.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, et al., “The NAS Parallel Benchmarks,” Intl. J.
of HPC Apps, vol. 5, no. 3, p. 63, 1991.

[4] E. Meek, J. Larkin, and J. Dongarra, “Remote Software Toolkit
Installer,” Tech. Rep. ICL-UT-05-04, ICL UT, June 2005.

[5] K. Moore and J. Dongarra, “NetBuild: Transparent Cross-
Platform Access to Computational Software Libraries,” Con-
currency and Computation: Practice and Experience, Special
Issue: Grid Computing Environments, vol. 14, pp. 1445–1456,
Nov/Dec 2002.

[6] NERSC, “Modules Approach to Software Management.” http:
//www.nersc.gov/nusers/resources/software/os/modules.php,
2008.

[7] M. Slawinska, J. Slawinski, and V. Sunderam, “Portable builds
of HPC applications on diverse target platforms,” in IEEE Intl.
Symposium on Parallel & Distributed Processing, 2009. IPDPS
2009, pp. 1–8, 2009.

[8] E. Bailey, “Maximum rpm. taking the red hat package manager
to the limit.,” Online: http://www.rpm.org/max-rpm, 1997.

[9] “Apt-build.” http://freshmeat.net/projects/apt-build/, 2009.
[10] Amazon EC2. http://www.amazon.com/ec2/, 2010.
[11] “The Rackspace Cloud.” http://www.rackspacecloud.com/,

2009.
[12] “GoGrid.” http://www.gogrid.com/, 2009.
[13] I. T. Foster, “Globus Toolkit Version 4: Software for Service-

Oriented Systems.,” J. Comput. Sci. & Technol., vol. 21,
pp. 513–520, July 2006.

[14] M. Marzolla, P. Andreetto, V. Venturi, A. Ferraro, S. Memon,
S. Memon, B. Twedell, M. Riedel, D. Mallmann, A. Streit,
S. van de Berghe, V. Li, D. Snelling, K. Stamou, Z. A. Shah, and
F. Hedman, “Open standards-based interoperability of job sub-
mission and management interfaces across the grid middleware
platforms glite and unicore,” in E-SCIENCE ’07: Proceedings
of the Third IEEE International Conference on e-Science and
Grid Computing, (Washington, DC, USA), pp. 592–601, IEEE
Computer Society, 2007.

[15] M. D. D. Assuncao, R. Buyya, and S. Venugopal, “InterGrid: A
case for internetworking islands of Grids,” in Concurrency and
Computation: Practice and Experience (CPE), Online, Wiley
Press, 2007.

[16] P. Kacsuk, T. Kiss, and G. Sipos, “Solving the grid interoper-
ability problem by P-GRADE portal at workflow level,” Future
Gener. Comput. Syst., vol. 24, no. 7, pp. 744–751, 2008.

[17] A. L. Bazinet and M. P. Cummings, Weber, M. H. W. (Ed.)
Distributed & Grid Computing – Science Made Transparent
for Everyone, ch. The Lattice Project: a Grid research and
production environment combining multiple Grid computing
models. Principles, Applications and Supporting Communities.
Tectum, (to appear). Rechenkraft.net, Marburg. In press.

[18] “Zend, The PHP Company. The Simple Cloud API.” http:
//www.simplecloudapi.org/, 2009.

[19] “Open Cloud Manifesto.” http://www.opencloudmanifesto.org/,
2009.

[20] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-source
Cloud-computing System,” in 9th IEEE International Sympo-
sium on Cluster Computing and the Grid, Shanghai, China,
2009.

[21] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsug-
awa, “Science Clouds: Early Experiences in Cloud Computing
for Scientific Applications,” in Cloud Computing and Its Appli-
cation (CCA-08), October 2008.

[22] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. So-
man, and R. Wolski, “AppScale Design and Implementation,”
tech. rep., UCSB Technical Report Number 2009, 2009.

[23] “libcloud – a unified interface to the cloud.” http://libcloud.org/,
2009.

[24] Y. Kee and C. Kesselman, “Grid Resource Abstraction, Virtu-
alization, and Provisioning for Time-targeted Applications,” in
8th IEEE Intl. Symp. on CCGRID, 2008., pp. 324–331, 2008.

[25] A. Merzky, K. Stamou, and S. Jha, “Application Level Inter-
operability between Clouds and Grids,” Grid and Pervasive
Computing Conference, Workshops at the, pp. 143–150, 2009.

[26] A. YarKhan, J. Dongarra, and K. Seymour, “Gridsolve: The
evolution of network enabled solver,” in Grid-Based Problem
Solving Environments: IFIP TC2/WG 2.5 Working Conference
on Grid-Based Problem Solving Environments, (Prescott, AZ,
USA), pp. 215–226, Innovative Computing Laboratory, Univer-
sity of Tennessee, 2006.

[27] E. Walker., “Benchmarking Amazon EC2,” ;Login:, vol. 33,
pp. 18–23, Oct 2008.

[28] J. Slawinski, M. Slawinska, and V. Sunderam, “The Unibus
Approach to Provisioning Software Applications on Diverse
Computing Resources,” in International Conference On High
Performance Computing, 3rd International Workshop on Ser-
vice Oriented Computing, Dec 2009.

[29] M. Slawinska, J. Slawinski, and V. Sunderam, “The Unibus
Approach to Aggregation of Heterogeneous Computing Infras-
tructures,” in International Conference On HPC, WGUC, Dec
2009.

[30] W3C, “OWL 2 Web Ontology Language: Structural Specifica-
tion and Functional-Style Syntax, W3C Working Draft,” Dec
2008.

[31] W3C, “Turtle – Terse RDF Triple Language.” http://www.w3.
org/TeamSubmission/turtle/, Jan 2008.

[32] “Paramiko, SSH2 protocol for Python.” http://www.lag.net/
paramiko, Jan 2009.

[33] M. Garnaat, “Boto. Python interface to Amazon Web Services.”
http://code.google.com/p/boto/, 2009.

[34] P. Skomoroch, “ElasticWulf: Beowulf cluster run on Amazon
EC2.” http://code.google.com/p/elasticwulf/, 2009.

[35] W. Gropp, “MPICH2: A New Start for MPI Implementations.,”
in Recent Advances in Parallel Virtual Machine and Message
Passing Interface (D. Kranzlmueller, P. Kacsuk, J. Dongarra,
and J. Volkert, eds.), no. LNCS2474 in Lecture Notes in
Computer Science, Springer Verlag, 2002.

[36] W. Gropp and E. L. Lusk, “Reproducible measurements of
mpi performance characteristics,” in Proceedings of the 6th
European PVM/MPI Users’ Group Meeting on Recent Advances
in PVM and MPI, (London, UK), pp. 11–18, Springer-Verlag,
1999.

[37] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo,
and M. Yarrow, “The NAS parallel benchmarks 2.0,” tech. rep.,
1995.

