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1. Introduction

Given graphs H and G, an embedding of H into G is an injective edge-
preserving map f : V (H)→ V (G), that is, for every e = {u, v} ∈ E(H), we
have f(e) = {f(u), f(v)} ∈ E(G). We shall say that a graph H is contained
in G as a subgraphs if there is an embedding of H into G. Given a family
of graphs H, we say that G is universal with respect to H, or H-universal, if
every H ∈ H is contained in G as a subgraph.

Consider the probability space of all graphs on n labelled vertices in which
every pair of vertices forms an edge, randomly and independently, with
probability p. We use the notation Gn,p to denote a graph chosen randomly
according to this probability measure; i.e., for any graph G on n labelled

vertices and with m edges, P[Gn,p = G] = pm(1−p)(
n
2)−m. We say that Gn,p

possesses a property Q asymptotically almost surely (a.a.s.) if P[Gn,p ∈
Q] = 1− o(1).

The construction of sparse universal graphs for various families of graphs
received a considerable amount of attention, see, e.g., [1, 3, 4, 6, 9, 11]
and their references. One is particularly interested in (almost) tight H-
universal graphs, i.e. graphs whose number of vertices is equal (or close) to
maxH∈H |V (H)|.

In [6] it is proved that for all ε > 0 and d > 0 there exists c > 0 such
that a.a.s. Gn,p, p = c/n, is T = T

(
d, (1 − ε)n

)
-universal, where T is

the family of trees with (1 − ε)n vertices and maximum degree at most d.
(See [8] for a recent improvement of this result.) In a related paper [12], the
authors obtained an algorithm for finding bounded degree trees in subgraphs
of (n, d, λ)-graphs; in particular, the result of [6] is turned into an embedding
algorithm. In this paper we study the universality of random graphs with
respect to the family of all bounded degree graphs.

Let d ∈ N be a fixed constant and let H(n, d) = {H ⊂ Kn : ∆(H) ≤ d}
denote the class of (pairwise non-isomorphic) n-vertex graphs with maxi-
mum degree bounded by d and H(n, n; d) = {H ⊂ Kn,n : ∆(H) ≤ d} be
the corresponding class for balanced bipartite graphs.

By counting all unlabelled d-regular graphs on n vertices one can easily
show that every H(n, d)-universal graph must have

(1) M = Ω(n2−2/d)

edges (see [3] for details). This lower bound was almost matched by a
construction from [4], which was subsequently improved in [1] and [2]. Those
constructions were quite special and do not resemble a typical, or random,
graph with the same number of edges. For that reason, in [3], we also studied
the universality of random graphs.

For random graphs, slightly better lower bounds than (1) are known.
Owing to the threshold for the property that every vertex should belong to
a copy of Kd+1 (see [16, Theorem 3.22 (i)]), the expected number of edges

guaranteeingH(n, d)-universality ofGn,p must be at least n2−2/(d+1)(log n)1/(d+1
2 ),
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and, similarly, by [16, Theorem 4.9], it must be at least n2−2/(d+1) for
H(n, d)-universality of G(1+ε)n,p. Similar bounds apply to the random bi-
partite graph Gn,n,p.

In [3], it was proved that Gn,n,p is a.a.s. H(n, n, d)-universal if p =

cn−
1
2d log

1
2d n and c is large enough, and that G(1+ε)n,p is a.a.s. H(n, d)-

universal if p = cn−
1
d log

1
d n if c is large enough.

In this paper we prove two related results. The first one significantly
pushes down the edge density p guaranteeing the universality of Gn,n,p.

Theorem 1. For every d ∈ N there exists C such that if p = p(n) ≥
Cn−1/d log1/d n then the random bipartite graph Gn,n,p is a.a.s. H(n, n, d)-
universal.

The second one, on the cost of increase in p, establishes a tight universality
of Gn,p (and not of G(1+ε)n,p), and provides, as opposed to Theorem 1, a
deterministic embedding.

Theorem 2. For every d ∈ N there exists C such that if p = p(n) ≥
C n−1/(2d) log1/d n then the random graph G = Gn,p is a.a.s. H(n, d)-univer-
sal. Moreover, for any H ∈ H(n, d), the embedding H ↪→ G can be con-
structed in deterministic polynomial time.

Remark 3. Using Pittel’s inequality ([16, p. 17]) one can use Theorem 2
to establish that almost all graphs on n vertices with at least p

(
n
2

)
edges are

H(n, d)-universal.

It would be interesting to establish the actual thresholds for theH(n, n; d)-
universality of Gn,n,p and the H(n, d)-universality of Gn,p.

The proof of Theorem 1 is based on ideas from [21] and [22]. The embed-
ding scheme used to prove Theorem 2 is inspired by the algorithmic version
of the Blow-up Lemma of Komlós, Sárközy, and Szemerédi [19]. In their
setting, they essentially provided an algorithm to embed bounded degree
spanning (bipartite) graphs into super-regular, dense, bipartite graphs. In
our setting, we deal with sparse random graphs.

In Section 2 we establish several typical properties of random graphs
which imply universality. The proofs of Theorems 1 and 2 are presented in
Sections 3 and 4 respectively.

2. Properties of random graphs

In this section we establish properties of random graphs which will be
then shown to guarantee the universality property with respect to bounded
degree subgraphs.

We begin with some definitions.

Definition 4. Given a graph G, a vertex v ∈ V (G), and a subset ∅ 6= S ⊂
V (G), denote by G(v) the neighborhood of v in G and by

G∩(S) =
⋂
v∈S

G(v),
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the joint neighborhood of S in G. Moreover, we let G∩(∅) = V (G).

Lemma 5. For all d ∈ N and ν > 0 there exists C > 0 such that if p ≥
C n−1/d log1/d n then the random bipartite graph G = Gn,n;p, with classes U
and W together with a fixed subset W ′ ⊆ W , where |W ′| = Ωd(n) a.a.s.
satisfies the following properties:

(i) for every A ⊂ U (or A ⊂W ) with |A| ≤ d

(1− ν)p|A|n ≤ |G∩(A)| ≤ (1 + ν)p|A|n;

(ii) for every U ′ ⊂ U with |U ′| ≥ n/2 there are at most 20
p vertices w ∈W

such that |G(w) ∩ U ′| < p
2 |U

′|;
(iii) for every disjoint family F ⊂

(
U
≤d
)

and a subset T ⊂ W ′, with |F| ≤
(1− ν)|W ′|, and |T | = |W ′| − |F| ≥ ν|W ′|, there exists a vertex w ∈ T
and a set A ∈ F such that A ⊂ G(w).

Proof. The first two properties are obtained by standard applications of the
Chernoff inequality. Indeed, in (i), ZA := |G∩(A)| has a binomial distribu-

tion with expectation EZA = np|A| ≥ Cd log n, and so,

d∑
a=1

(
n

a

)
× P(|ZA − EZA| ≥ νEZA) = o(1)

for sufficiently large C. To prove (ii) suppose that for some U ′ there is a
subset S ⊂W of 20/p vertices w ∈W with |G(w)∩U ′| < p

2 |U
′|. Then there

are less than 10|U ′| edges between S and U ′, while the expected number of
such edges is 20|U ′|. Thus,

P
(
|G(w) ∩ U ′| < p

2
|U ′| ≤ exp{−1

820|U ′|} ≤ exp{−5
4n}

)
.

There are no more than 2n choices of U ′ and n20/p choices of S and so, the
probability of the event opposite to that stated in part (ii) is o(1). We will
now prove Property (iii).

Let s, t ≥ 1 be such that t ≥ ν |W ′| and s + t = |W ′|. For some fixed

disjoint family F ⊂
(
U
≤d
)

and T ⊂ W ′, with |F| = s and |T | = t, the

probability that there are no pairs(w,A) ∈ T ×F such that A ⊂ G(w) is

(1− pd)st ≤ exp{−pdst}.
The probability that there is a disjoint family F ⊂

(
U
≤d
)

and T ⊂ W ′

failing (iii) is at most

[∗] :=

|W ′|−1∑
t=ν |W ′|

(
|W ′|
t

)(
|U |
≤ d

)|W ′|−t
exp{−pdt(|W ′| − t)}

≤
∑
t

exp{(|W ′| − t) log n+ (|W ′| − t)d log n− pdt(|W ′| − t)}

≤
∑
t

exp
{

(|W ′| − t)
[
(d+ 1) log n− pdt

]}
.

(2)
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Setting C large enough ensures that pdt ≥ pdν |W ′| ≥ (2d + 1) log n. In
particular, [∗] ≤ |W ′| × n−d = o(1). �

Lemma 6. For all d ∈ N and ε > 0 there exists C > 0 such that if p ≥
C n−1/(2d) log1/d n then the random graph Gn,p a.a.s. satisfies the following
properties:

(i) δ(G) ≥ (1− ε)pn;
(ii) for every pair of sets A,B ⊂ V (G) with p|A||B| ≥ 100ε−1n there are

at least (1− ε)|B| vertices v ∈ B such that

(1− ε)p|A| ≤ |G(v) ∩A| ≤ (1 + ε)p|A|;

(iii) for every k ≤ d, T ⊂ |V (G)| with |T | ≥
√
n and every disjoint fam-

ily X ⊂
(V (G)\T

k

)
with |X | ≥

√
n, we have

(3) (1− ε)pk|T | |X | ≤
∣∣∣{(w,X) ∈ T ×X : X ⊂ G(w)

}∣∣∣ ≤ (1 + ε)pk|T | |X |.

Proof. The first two properties are obtained by standard applications of the
Chernoff inequality. We will now prove Property (iii).

Let k ≤ d be fixed. For a choice of set T and family X , the number
of pairs (w,X) being counted is a binomial variable with mean pk|T | |X |.
By the Chernoff inequality, the probability this variable deviates by more
than εpk|T | |X | from the mean is at most

exp{−cpk|T | |X |} ≤ exp{−cpd|T | |X |}

for a constant c = c(ε).
On the other hand, the number of possible choices for T and the family X

with predetermined cardinalities t = |T | and r = |X | (t, r ≥
√
n) is at

most (nd)rnt ≤ exp{d(r + t) log n}.
Since pdtr ≥ max{Cdr log n,Cdt log n}, a large enough C = C(d, ε) im-

plies that

(4) cpdtr ≥ 2d(r + t) log n.

Therefore, we have

q =
d∑

k=1

∑
T : |T |≥

√
n

∑
X : |X |≥

√
n

P[(3) fails for T,X ]

≤
d∑

k=1

∑
t≥
√
n

∑
r≥
√
n

exp{d(r + t) log n− cpktr}

(4)

≤ dn2 exp{−2d
√
n log n} = o(1).

(5)

Property (iii) then follows by the union bound. �
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3. Universality of bipartite graphs

In this section we prove a slight strengthening of Theorem 1. Given d, d′ ∈
N, and a bipartite complete graph Kn,n with vertex classes X and Y , |X| =
|Y | = n, let

H(n, n, d′, d) =
{
H ⊂ Kn,n : degH(x) ≤ d′ for x ∈ X and

degH(y) ≤ d for y ∈ Y
}
.

Theorem 7. For all d, d′ ∈ N, d ≤ d′, there exists C such that if p = p(n) ≥
Cn−1/d log1/d n then the random bipartite graph Gn,n;p is a.a.s. H(n, n, d′, d)-
universal.

Let H(n, n, d′,= d) be defined as H(n, n, d′, d) but with the additional
condition that all vertices y ∈ Y have degree exactly d. Note that, if n
is sufficiently larger than d′, then for every H ′ ∈ H(n, n, d′, d) there is an
H ∈ H(n, n, d′ + 1,= d) such that H ′ ⊆ H. Thus, it suffices to show
that Gn,n;p is a.a.s. H(n, n, d′ + 1,= d)-universal.

Let the two vertex classes of Gn,n;p be U and W , |U | = |W | = n. For
technical reasons we will need a partition of W . A partition in which the
cardinalities of any two parts differ by at most 1 is called an equipartition.
Let W = W1∪W2∪· · ·∪WD be a fixed equipartition of W with D := dd′+1.

Let ν = ν(d) be a constant defined later and let C > 0 be sufficiently
large so that, in particular, Lemma 5 holds. Further, let G be a bipartite
graph that for each i = 1, . . . , D satisfies Properties (i)-(iii) from Lemma 5
with W ′ = Wi. We will show that G contains all H ∈ H(n, n, d′+ 1,= d) as
subgraphs, and consequently that G is H(n, n, d′, d)-universal. Theorem 7
will follow, since Gn,n;p a.a.s. satisfies Properties (i)-(iii) from Lemma 5.

Let us fix H ∈ H(n, n, d′ + 1,= d). In order to avoid certain dependency
issues later in the proof, it would be convenient to assume that the sets
H(y) are pairwise disjoint. This is not true in general, but it is possible
to partition the set Y into finitely many subsets, each satisfying the above
demand. A family of pairwise disjoint sets will be called a disjoint family.

Consider an auxiliary graph

J = (Y, {uv : u, v ∈ Y, distH(u, v) = 2}).

and note that ∆(J) ≤ dd′. By applying the Hajnal–Szemerédi Theorem [15]
to J , one obtains an equipartition of V (J) with D parts:

Y = Y1 ∪ · · · ∪ YD.

Observe that, by construction, for every i = 1, . . . , D, {H(y) : y ∈ Yi} is a
disjoint family of d-element sets. We renumber the setsWi so that |Yi| = |Wi|
for all i = 1, . . . , D.

To show that G ⊇ H, our strategy is to find a bijection π : X → U which
can be extended to an embedding f of H into G by selecting the images of
vertices in Y . More precisely, given π, we will find a map f : X∪Y → U ∪W
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Figure 1. The idea of the proof of Theorem 6.

such that f |X = π, for all i = 1, . . . , D f(Yi) = Wi and, most importantly,
for all y ∈ Y

π(H(y)) ⊆ G(f(y)).

Let π : X → U be a random bijection and let Aπi be an auxiliary bipartite
graph with classes Yi and Wi containing as edges all pairs (y, w) ∈ Yi ×Wi

for which the π-image of the H-neighborhood of y is contained in the G-
neighborhood of w (see Figure 1). Namely,

(6) E(Aπi ) = {(y, w) ∈ Yi ×Wi : π(H(y)) ⊆ G(w)}.

Suppose that each Aπi , i = 1, . . . , D, contains a perfect matching Mi and set

M =
⋃D
i=1Mi. Extend π to an embedding of H into G by letting, for every

y ∈ Y , f(y) = w, where (y, w) is the edge of M incident to y. We claim
that such an extension is an embedding of H into G.

The extension f is clearly a bijection. It remains to show that f is also
edge-preserving. For an edge e = (x, y) ∈ E(H), let ie be such that y ∈ Yie .
By construction, (y, f(y)) ∈ Aπie which implies that π(H(y)) ⊆ G(f(y)) and
thus π(x) ∈ G(f(y)). Consequently, (f(x), f(y)) = (π(x), f(y)) ∈ E(G) and
the map f is edge-preserving.



8 DELLAMONICA, KOHAYAKAWA, RÖDL, AND RUCIŃSKI

Therefore, Theorem 7 immediately follows from Lemma 5 and Lemma 8
below. (Notice that G is fixed and the probability space in consideration
refers to the bijection π.)

Lemma 8. For all i = 1, . . . , D, the graph Aπi a.a.s. contains a perfect
matching.

Proof. Let us fix an index i throughout this proof and set m = |Yi|. We will
verify Hall’s condition in order to establish the result. To simplify notation,
for every V ⊆ V (Aπi ) = Yi ∪Wi we set

(7) N(V ) =
⋃
v∈V

Aπi (v).

It is well known that it suffices to show, for some integer m′ ≥ 0, that

• |N(S)| ≥ |S| for all S ⊆ Yi with |S| ≤ m′ and
• |N(T )| ≥ |T | for all T ⊆Wi with |T | ≤ m−m′.

Set m′ = (1 − ν)m and fix and arbitrary bijection π : X → U . Observe
that {π(H(y)) : y ∈ Wi} is a disjoint family. For all S ⊂ Yi and T ⊂ Wi

such that with |S| ≤ n′ and |T | = m − |S|, Property (iii) from Lemma 5

yields that, setting FS = {π(H(y)) : y ∈ S} ⊂
(
U
d

)
, there is (w,A) ∈

T × FS satisfying A ⊆ G(w). In particular, it follows that for every π we
have |N(S)| ≥ |S| for all sets S ⊂ Yi with |S| ≤ m′.

In remains to verify that Hall’s condition holds a.a.s. for all sets T ⊆Wi

with |T | ≤ m − m′ = νm. We will divide this range of t := |T | into two
parts and prove the following two statements.

(I) a.a.s. every T ⊂Wi,
100
p ≤ t ≤ ν |Wi|, satisfies |N(T )| ≥ t;

(II) a.a.s. every T ⊂Wi, t ≤ 100
p , satisfies |N(T )| ≥ t.

Proof of (I). Let Yi = {y1, y2, . . . , ym}. We will partially reveal π by
exposing π(H(yk)) one step at a time for k = 1, 2, . . . ,m. For conve-
nience, set Hk := H(yk). Notice that if π(Hk) ⊆ G(w) for some w ∈ Wi

then (yk, w) ∈ Aπi and thus yk ∈ N(T ).
Suppose that π(Hj) has been exposed for all j < k. The set π(Hk) is

then a uniformly chosen d-subset of Uk = U \
⋃
j<k π(Hj) (see Figure 2).

We have |Uk| ≥ n−md ≥ n/2. Therefore, by Property (ii) from Lemma 5,

(8)
∣∣∣ {w ∈ T : |G(w) ∩ Uk| ≥

1

2
p |Uk| >

pn

4

} ∣∣∣ ≥ t− 10

p
≥ 0.8t.

Let

Ak =
⋃
w∈T

(
G(w) ∩ Uk

d

)
.

Note that yk ∈ N(T ) iff π(Hk) ∈ Ak. We are going to subdivide the range
of t even further and assume first that t ≤ 1

2(12p)d
.
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Figure 2. Illustration to the proof of Lemma 7 – Case (I).

Claim 9. For all k = 1, 2, . . . ,m and t ≤ 1
2(12p)d

, we have

|Ak| ≥ Q
def.
=

t

2

(
pn/4

d

)
.

Proof. By the inclusion-exclusion principle, we have∣∣Ak∣∣ ≥∑
w∈T

(
|G(w) ∩ Uk|

d

)
−

∑
w 6=w′∈T

(
|G(w) ∩G(w′) ∩ Uk|

d

)
.

From (8) we conclude that∑
w∈T

(
|G(w) ∩ Uk|

d

)
≥ 0.8t

(
pn/4

d

)
.

On the other hand, using Property (i) from Lemma 5 applied to sets with
two elements, we have |G(w)∩G(w′)| ≤ (1+ν)p2n < (3/e)p2n for every w 6=
w′. Therefore, using the standard estimates (M/l)l ≤

(
M
l

)
≤ (eM/l)l,∑

w 6=w′∈T

(
|G(w) ∩G(w′) ∩ Uk|

d

)
≤
(
t

2

)(
(3/e)p2n

d

)

≤ 1

2
t2
(

3p2n

d

)d
≤ 1

2
t2(12p)d

(
pn/4

d

)
.
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Under the assumption that t ≤ 1
2(12p)d

, the above inequalities imply the

claim. �

For every k = 1, 2, . . . ,m, let Bk ⊆ Ak be a fixed set with exactly Q
elements (for concreteness, take the lexicographically first Q sets of Ak).
Further, define

Ik = I[π(Hk) ∈ Ak] and Jk = I[π(Hk) ∈ Bk].
Let

ZT =
m∑
k=1

Ik and Z ′T =
m∑
k=1

Jk.

Observe that, since Ik ≥ Jk for all k,

ZT = |N(T )| ≥ Z ′T .
It is easy to see that the variables Jk are independent and hence Z ′T is a

generalized binomial random variable with mean

µ′T = E[Z ′T ] =
m∑
k=1

Q(|Uk|
d

) .
By Claim 9 we bound

(9) µ′T ≥ mQ
(
n

d

)−1

≥ pdmt

2(4e)d
≥ Cdt log n

2d2(4e)d
≥ 16t log n,

for C sufficiently large.
Applying Chernoff’s bound [16, Theorem 2.8] to Z ′T yields

P
[
Z ′T ≤ µ′T /2

]
≤ exp{−µT /8} ≤ n−2t.

Therefore, by the union bound

P
[
there exists T,

100

p
≤ t ≤ 1

2(12p)d
: Z ′T ≤

µ′T
2

]
≤

1/[3(12p)d]∑
t=100/p

(
m

t

)
n−2t ≤

m∑
t=1

n−t = o(1).

(10)

Hence, a.a.s. every T with 100
p ≤ t ≤

1
2(12p)d

satisfies

|N(T )| ≥ Z ′t ≥
1

2
µ′T ≥ 8t log n ≥ t.

Consider now a set T with 1
2(12p)d

≤ t ≤ νm. Let T0 ⊂ T be an arbitrary

set with cardinality 1
2(12p)d

. We have

|N(T )| ≥ |N(T0)| = ZT0 ≥ Z ′T0 ≥
µ′T0
2

(9)

≥ pdm

4(4e)d
|T0| ≥

m

12(48e)d
≥ νm,

if we set ν = ν(d) sufficiently small. It follows that a.a.s. every T with 100
p ≤

t ≤ νm satisfies |N(T )| ≥ t and thus (I) is proved. �
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Proof of (II). Since in this case the sets T are small, we will change our
strategy and consider the inverse of the random mapping π. Recall that
N(T ) has been defined in (7). Our aim will be to prove that a.a.s.

(11) |N(T )| ≥ pd n

4d+1d2
· t for all T ⊂Wi , t = |T | ≤ 1

3d3p
.

This will imply that also a.a.s. all sets T with 1
3d3p

< t ≤ 100
p satisfy

|N(T )| ≥ pd n

4d+1d2
· 1

3d3p
≥ 100

p
≥ t.

To prove (11), we fix a set T = {w1, . . . , wt} ⊂ Wi , t ≤ 1
3d3p

, and begin

by constructing a disjoint family N = {Nk ⊆ G(wk) : k = 1, . . . , t} such
that |Nk| = pn/2 for every w ∈ T .

Claim 10. There is a disjoint family N = {Nk ⊆ G(wk) : k = 1, . . . , t}
such that |Nk| = pn/2 for every k = 1, . . . , t.

Proof. We will construct the desired family using a simple matching argu-
ment. A folklore corollary of Hall’s theorem states that if for some integer
s ∣∣∣ ⋃

w∈T ′
G(w)

∣∣∣ ≥ s |T ′|
for every T ′ ⊆ T then there exists in G a star-matching saturating T , that is,
a forest whose components are stars with s arms and centers at every w ∈ T .

For any T ′ ⊆ T , Property (i) from Lemma 5 and the inclusion-exclusion
principle yield that∣∣∣ ⋃

w∈T ′
G(w)

∣∣∣ ≥ ∑
w∈T ′

|G(w)| −
∑

w 6=w′∈T ′
|G(w) ∩G(w′)|

≥ |T ′|(1− ν)pn− |T ′|2(1 + ν)p2n

≥ 1

2
pn |T ′|,

(12)

where the third inequality holds by our assumption on t. The existence
of family N follows from (12) and the above mentioned corollary of Hall’s
theorem. �

We will estimate |N(T )| from below by counting how many elements y ∈
Yi are such that, for some k = 1, . . . , t we have H(y) ⊆ π−1(Nwk

). Indeed,
this containment implies that

π(H(y)) ⊆ Nwk
⊆ G(wk)

which, by (6), means that (y, wk) ∈ E(Aπi ) and thus y ∈ N(T ).
For k = 1, . . . , t set

Rk = |{y ∈ Yk : H(y) ⊆ π−1(Nk)}|.

Further, let RT = R =
∑t

k=1Rk. Since the familyN is disjoint, |N(T )| ≥ R.
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Claim 11. For a sufficiently large constant C, we have

(13) P
[
RT <

t

2

(p
4

)d
m
]
≤ n−2t.

Observe that (11) follows directly from Claim 11 and the union bound.
Indeed,

P
[
∃ T : t ≤ 1/(3d3p) and RT <

t

2

(p
4

)d
m
]

≤
1/(3d3p)∑
t=1

(
m

t

)
n−2t <

∑
t

n−t = o(1).

Proof of Claim 11. Let Ik = I
[
Rk ≥

(p
4

)d
m
]

for every k, and Z =
∑t

k=1 Ik.
Clearly,

P
[
R <

t

2

(p
4

)d
m
]
≤ P[Z < t/2].

For any a ∈ {0, 1}t we have

(14) P[Ik = ak for all k] =
∏
k=1

P
[
Ik = ak

∣∣ I1 = a1, . . . , Ik−1 = ak−1

]
.

We will show that

(15) P
[
Ik = 0

∣∣ I1 = a1, . . . , Ik−1 = ak−1

]
≤ n−6

regardless of the values a1, a2, . . . , ak−1. Let |a| =
∑t

k=1 ak. In view of (14)
and (15),

P[Z < t/2] =
∑

a : |a|<t/2

P[Ik = ak for all k]

≤
∑

a : |a|<t/2

n−6 (t−|a|) ≤ 2tn−3t < n−2t.
(16)

This proves that (15) implies (13). It remains to show (15).
To this end, the inverse of the random map π will be exposed in steps by

revealing π−1(Nk) one at a time. For 1 ≤ k ≤ t, let

(17) Xk = X \
k−1⋃
j=1

π−1(Nj) and Fk = {y ∈ Yi : H(y) ⊂ Xk}.

The family {H(y) : y ∈ Yi} is disjoint by construction. On the other
hand, every vertex in Yi\Fk must have some H-neighbor contained in X\Xk,
which means that

|Yi \ Fk| ≤ |X \Xk| ≤ (k − 1)
pn

2
< t

pn

2
<
m

2
,

and thus, |Fk| ≥ m/2 (see Figure 3).
Suppose that π−1(Nj) has been exposed for all 1 ≤ j ≤ k − 1. In partic-

ular, I1, I2, . . . , Ik−1 are determined. We need to compute the probability
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Figure 3. Illustration to the proof of Lemma 7 – Case (II).

that Ik = 0 conditional on the exposed part of π. In this conditional space,
the set π−1(Nk) is uniformly chosen among all pn

2 -subsets of Xk.
It will be convenient to switch to a different model where independent

choices are made for each vertex of Xk. Formally, consider a process which
selects vertices of Xk independently with probability q = pn

2 |Xk| to form a

random subset of Xk denoted by (Xk)q.
To link the two random models, we use Pittel’s inequality [16, p. 17]. Let

Q =
{
S ⊆ Xk : |{y ∈ Yk : H(y) ⊆ S}| ≥

(p
4

)d
m
}

and notice that Rk <
(p

4

)d
m is equivalent to π−1(Nk) /∈ Q. Pittel’s inequal-

ity then yields

P
[
Ik = 0

]
= P

[
π−1(Nk) /∈ Q

]
≤ 3

√
pn

2
· P
[
(Xk)q /∈ Q

]
.

where all probabilities are conditional upon π−1(N1), . . . , π−1(Nk−1).
Let Qk = |{y ∈ Yk : H(y) ⊆ (Xk)q}|. Observe that Qk has a binomial

distribution with parameters |Fk| and qd and thus, with mean

µk := |Fk| qd ≥
m

2

(p
2

)d
.
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Indeed, Qk is the sum of indicator random variables I[H(y) ⊆ (Xk)q],
where y ∈ Fk. The independence of the variables stems from the fact
that {H(y) : y ∈ Yi} is a disjoint family.

Finally, Chernoff’s inequality [16, Theorem 2.1] yields

P
[
(Xk)q /∈ Q

]
= P

[
Qk <

(p
4

)d
m
]
≤ P

[
Qk <

1

2
µk

]
≤ exp

{
− npd

16d22d

}
≤ n−7

for sufficiently large C. Therefore, (15) holds and the claim is proved. �

This finishes the proof of (II). �

We have proved that both (I) and (II) hold and therefore Lemma 8, and
consequently, Theorem 7 follows. �

4. An embedding scheme for bounded degree graphs

In this section we prove Theorem 2 by providing a scheme that embeds
any graph H with ∆(H) ≤ d and |V (H)| = n into any given graph G
satisfying Properties (i)-(iii) from Lemma 6.

The embedding is done in two phases. It starts by embedding one vertex
at a time until almost all of the vertices of the graph are embedded. The rest
of the graph is embedded by finding a perfect matching in some auxiliary
graph. The first phase is greedy (it never regrets a decision) but takes into
consideration a few invariants that guarantee that the embedding of the
whole graph can be done. This structure is quite similar to [19]. However,
several differences and subtleties are inherent to the sparse random graph
case.

In the first phase we construct a sequence of partial embeddings f0, f1, f2, . . . , fk,
for some k ≥ n− n

d2+1
, where each embedding extends the previous by one

vertex. In the second phase all the remaining vertices are embedded in a
single step.

LetG be a fixed graph satisfying Properties (i)-(iii) from Lemma 6 with ε =
ε(d) sufficiently small. Fix a graph H with ∆(H) ≤ d and n vertices. La-
bel the vertices of H using the elements in [n] = {1, 2, . . . , n} in such a
way that for m = n − n/(d2 + 1), the labels {m + 1,m + 2 . . . , n} are
assigned to 2-independent vertices, that is, every two vertices are at dis-
tance at least 3 from each other. This labeling is indeed possible since the
graph J = H ∪H2 has degrees bounded by d2. By Brook’s Theorem, there
is a proper (d2 + 1)-coloring of J . Label some elements in the largest color
class with m+1,m+2, . . . , n. By construction, vertices with the same color
are at distance at least 3 from each other.

Before we describe the embedding, we introduce some notation. Denote
by Uj the set of vertices of H which are not embedded by fj . Similarly, let Vj
be the set of vertices in G which are not in the image of fj . Define Ij to be a
bipartite graph with classes (Uj , Vj) where for each x ∈ Uj the neighborhood
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Figure 4. An illustration of the definition given by (18).

of x,

(18) Ij(x) = G∩
(
fj
(
H(x) \ Uj

))
∩ Vj ,

consists of all “candidates” for fj+1(x). More precisely, the set Ij(x) consists
of all elements v ∈ Vj such that mapping x to v produces a valid extension
of fj . Indeed, in order for the edges incident to x in H to be preserved
under the extension, the image of x must be adjacent (in G) to all vertices
in fj(H(x) \ Uj). See Figure 4 for an illustration of the candidate set’s
definition.

In view of (18), the neighborhood of a vertex v ∈ Vj is completely deter-
mined. Indeed, x ∈ Ij(v) iff v ∈ Ij(x), which means that v ∈ G∩

(
fj(H(x) \

Uj)
)
. Consequently, one must have fj(H(x) \Uj) ⊂ G(v). In particular, for

every v ∈ Vj ,
(19) Ij(v) = {x ∈ Uj : fj(H(x) \ Uj) ⊂ G(v)}.

The aim of the first phase is to produce an embedding fk which embeds
enough vertices of H so that Uk ⊂ {m+1, . . . , n} is 2-independent. The fact
that the vertices in Uk are independent in H implies that their images may
be chosen independently (they just need to be distinct for each vertex).

In the second phase we will find a perfect matching in Ik which will define
the extension of fk into a complete embedding of H into G.

4.1. Phase 1. In this section we introduce an induction hypothesis which
is maintained for each fj , j = 0, 1, . . . , k. The induction step (embedding
extension) is introduced in Section 4.1.1. The induction is formally proved
in Section 4.1.3.

Induction Hypothesis. For every x ∈ Uj we have

(20) |Ij(x)| ≥ cj(x)
def.
=
(p

4

)|H(x)\Uj | n

4d2
.

Moreover, for every v ∈ Vj, we have

(21) |Ij(v)| ≥ pd n

8d5
and |G(v) ∩ Vj | ≥

pn

4d2
.
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The embedding f0 is an empty map and, since G∩(∅) = V (G), it follows
that I0 = K(U0, V0), the complete bipartite graph with classes U0 = V (H)
and V0 = V (G). It is clear that (20) and the first part of (21) are satisfied
for j = 0. Moreover, since G(v) ∩ V0 = G(v), Property (i) from Lemma 6
implies that the second condition of (21) holds as well. In particular, the
induction hypothesis is true for the base case j = 0.

Let us now consider how the auxiliary graph Ij+1 evolves from Ij . Suppose
that fj+1 extends fj by mapping xj+1 7→ vj+1. For any x ∈ Uj+1, the
candidate set Ij+1(x) satisfies

(22) Ij+1(x) =

{
Ij(x) \ {vj+1}, if x /∈ H(xj+1)

Ij(x) ∩G(vj+1), if x ∈ H(xj+1).

Indeed, when x /∈ H(xj+1) we have fj+1(H(x) \ Uj+1) = fj(H(x) \ Uj) and
since Vj+1 = Vj \ {vj+1}, we infer by (18) that Ij+1(x) = Ij(x) \ {vj+1}. On
the other hand, if x ∈ H(xj+1) then fj+1(H(x) \ Uj+1) = fj(H(x) \ Uj) ∪
{vj+1} and consequently Ij+1(x) = Ij(x) ∩G(vj+1).

Observe that every vertex v ∈ Vj+1 satisfies

(23) Ij+1(v) =

{
Ij(v) \ {xj+1}, if v ∈ G(vj+1)

Ij(v) \
(
{xj+1} ∪H(xj+1)

)
, if v /∈ G(vj+1).

Indeed, for every x ∈ Ij(v) with x ∈ H(xj+1) we infer by (22) that x ∈
Ij+1(v) if and only if v ∈ G(vj+1). In case x ∈ Ij(v) with x /∈ H(xj+1),
x 6= xj+1, we have x ∈ Ij+1(v).

Notice that a vertex v may lose at most d+1 neighbors after a single vertex
extension. Therefore, the only neighborhoods that ever shrink considerably
are the neighborhoods of vertices in H(xj+1) ∩ Uj+1.

4.1.1. Induction step: extending the embedding. Here we describe how the
embeddings are extended. We postpone the proof of the induction step to
Section 4.1.3. A succinct description of the embedding scheme is stated as
Algorithm 1.

Suppose that the partial embedding fj has been constructed (recall that f0

is an empty embedding) and satisfies the induction hypothesis. If the set Uj
is 2-independent, we immediately end the first phase and execute Phase 2.

In each extension, we will look for vertices which are dangerously close
to failing the induction hypothesis. For this, we distinguish between three
cases in the extension. We say that an extension is

H-critical : if there exists a vertex x ∈ Uj such that |Ij(x)| < 2cj(x);
G-critical : if there exists a vertex v ∈ Vj for which either |Ij(v)| <
pdn/(4d5) or |G(v) ∩ Vj | < pn/(2d2) and

normal : otherwise.

In our analysis we will show that few extensions are critical (see Lemma 14).
(If the conditions for both H- and G-critical extensions hold, we use the
convention that the extension is H-critical.)
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In anH-critical extension, we choose the vertex x ∈ Uj satisfying |Ij(x)| <
2cj(x) with the smallest label to be embedded. We apply Lemma 12 to
such x in order to obtain v ∈ Ij(x) and extend fj by setting x 7→ v. In
case the extension is normal, take x ∈ Uj with the smallest label and use
Lemma 12 to define the image of x.

If the extension is G-critical, we choose v ∈ Vj to be any of the vertices

satisfying either |Ij(v)| < pdn/(2d2) or |G(v) ∩ Vj | < pn/(2d2). We apply
Lemma 13 to the chosen vertex v in order to find x ∈ Ij(v) and extend the
embedding fj by setting x 7→ v.

Lemma 12 asserts that for any vertex x ∈ Uj there is a candidate v ∈ Ij(x)
which ensures that no candidate set shrinks too much (see (22)).

Lemma 12. For any x ∈ Uj there exists v ∈ Ij(x) such that

|Ij(x′) ∩G(v)| ≥ p

2
|Ij(x′)| ≥

p

2
cj(x

′)

for all x′ ∈ H(x) ∩ Uj.

Proof. We may assume that H(x)∩Uj 6= ∅ since otherwise the lemma holds
trivially. Let x′ ∈ H(x) ∩ Uj and consider the sets A = Ij(x

′), B = Ij(x) ⊂
V (G). Notice that |H(x) \ Uj |, |H(x′) \ Uj | ≤ d − 1 (since x, x′ ∈ Uj are
neighbors). It follows by the induction assumption over fj that

p |A| |B| ≥ p
(p

4

)2d−2( n

4d2

)2
> 100ε−1n.

Applying Property (ii) from Lemma 6 to the sets A, B we conclude that
all but at most ε |B| vertices v ∈ B = Ij(x) fail to satisfy |Ij(x′) ∩G(v)| ≥
p |Ij(x′)|/2.

Repeating the same argument for every element in H(x)∩Uj shows that
there are at most ε |Ij(x)| |H(x) ∩ Uj | ≤ εd |Ij(x)| vertices in Ij(x) that fail
to satisfy the conditions of the lemma. Because of our choice of ε � 1/d
the lemma is proved. �

Lemma 13 asserts that for any v ∈ Vj there is some x ∈ Ij(v) such that
extending the embedding by x 7→ v does not shrink any candidate set too
much.

Lemma 13. For any v ∈ Vj there exists x ∈ Ij(v) ⊂ Uj such that |Ij(x′) ∩
G(v)| ≥ p cj(x′) for all x′ ∈ H(x) ∩ Uj.

Proof. Suppose that the statement fails for some v ∈ Vj . In particular, for
each vertex x ∈ Ij(v) there is some witness

(24) x′ ∈ H(x) ∩ Uj for which |Ij(x′) ∩G(v)| < p cj(x
′).

We assume that the induction hypothesis holds for fj and thus

(25) |G(v) ∩ Vj | ≥ pn/(4d2) and |Ij(v)| ≥ pdn/(8d5).
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Let W be the set of all witnesses for v. Since a vertex x′ ∈ W can only
be a witness to a neighbor x ∈ H(x′), and there are |Ij(v)| choices for x, we
must have |W | ≥ |Ij(v)|/d. Let

W =
{
fj
(
H(x′) \ Uj

)
: x′ ∈W

}
.

Observe that each witness x′ has a neighbor in Ij(v) ⊂ Uj and thus the
sets in W have at most d − 1 elements each. We claim that every wit-
ness x′ must have a neighbor which was already embedded. Indeed, other-
wiseH(x′)\Uj = ∅ and, in view of (18) and (20), this implies that Ij(x

′) = Vj
and cj(x

′) = n/4d2, which, by the induction assumption, then implies

|Ij(x′) ∩G(v)| = |G(v) ∩ Vj |
(25)

≥ pn/(4d2) = p cj(x
′),

contradicting (24). We have thus showed that ∅ /∈ W. We will now find a
disjoint subfamily X ⊂ W with

|X | > |W |
d3
≥ |Ij(v)|

d4

(25)

≥ pdn

8d9
�
√
n

in which every set has the same cardinality 1 ≤ ` ≤ d−1. For this, takeW ∗ ⊂
W ⊂ V (H) to be a maximal 2-independent set (with respect to H). The
family W∗ =

{
fj
(
H(x′) \ Uj

)
: x′ ∈ W ∗

}
is disjoint by construction and,

moreover, |W∗| = |W ∗| ≥ |W |
d2+1

. By the pigeonhole principle, there is 1 ≤
` ≤ d− 1 such that at least |W

∗|
d−1 sets of W∗ have cardinality `. Let X ⊂ W∗

be the family of all `-sets of W∗. Clearly, |X | ≥ |W
∗|

d−1 ≥
|W |

(d−1)(d2+1)
> |W |

d3
.

Apply Property (iii) from Lemma 6 to T = G(v)∩Vj and X . By averaging,

there exists some X ∈ X for which #{w ∈ T : X ⊂ G(w)} ≥ (1− ε)p`|T |.
This is equivalent to |G∩(X) ∩ T | ≥ (1 − ε)p`|T |. Let x′ ∈ W be such
that X = fj(H(x′) \ Uj). Notice that, by (18), Ij(x

′) = G∩(X) ∩ Vj and
hence Ij(x

′) ∩ G(v) = G∩(X) ∩ Vj ∩ G(v) = G∩(X) ∩ T . Since by (25),
|T | ≥ pn

4d2
, it follows that

|Ij(x′) ∩G(v)| ≥ (1− ε)p` pn
4d2
≥ (1− ε)4p

(p
4

)` n
4d2

> p cj(x
′).

However this contradicts the fact that x′ is a witness. �

4.1.2. Bounding the number of critical extensions. We now prove that most
of the extensions are normal. An extension that is either G-critical or H-
critical will be simply called critical. For the proof we do not need to assume
that the induction hypothesis holds.

Lemma 14. There are less than 2d3√n critical extensions during Phase 1.

Proof. Suppose for the sake of a contradiction that the Cth critical exten-
sion, where C = 2d3√n, occurs when extending fJ−1 to fJ . At each normal
extension, the embedded vertex is the one with the smallest label among all
the vertices which have not been embedded so far. In particular, all ver-
tices with labels {1, 2, . . . , J −C − 1} must have been embedded after fJ−1
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was constructed and thus UJ−1 ⊂ [J − C, n]. Observe that UJ−1 is not
2-independent as otherwise Phase 1 would have ended before fJ was con-
structed. On the other hand, the set

[
n− n

d2+1
+ 1, n

]
is 2-independent by

our particular choice of labels for V (H). Consequently,

(26) J ≤ n− n

d2 + 1
+ C.

Since |UJ | = |VJ | = n− J , (26) implies that |UJ | = |VJ | ≥ n
d2+1

− C.
The lemma follows immediately from Claim 15 and Claim 16 which bound

the number of H- and G-critical extensions respectively.

Claim 15. The number of H-critical extensions before fJ is at most d(d2 +
1)
√
n.

Let x1, . . . , xh ∈ V (H) be the vertices which were embedded in H-critical
extensions before fJ was constructed. Let ji < J be such that xi was (first)
embedded by fji . By the definition of an H-critical extension, |Iji−1(xi)| <
2cji−1(xi). LetXi = fji−1

(
H(xi)\Uji−1

)
and notice that, by (18), Iji−1(xi) =

G∩(Xi) ∩ Vji−1 ⊇ G∩(Xi) ∩ VJ . In particular

|G∩(Xi) ∩ VJ | ≤ |Iji−1(xi)| < 2cji−1(xi)
(20)
= 2

(p
4

)|Xi| n

4d2
.

Notice that Xi 6= ∅ since otherwise the above inequality implies that |VJ | <
n

2d2
and this contradicts the fact that |VJ | ≥ n

d2+1
− C.

Now we will construct a disjoint family X ⊂ {Xi : i = 1, . . . , h} where all
sets have the same cardinality `, 1 ≤ ` ≤ d, and |X | ≥ h

d(d2+1)
. To this end,

we first select a maximal set I ⊂ [h] for which {xi : i ∈ I} is 2-independent.
Then we take X ⊂ XI = {Xi : i ∈ I} to be a subfamily containing only the
sets with the most frequent cardinality in XI . Since XI is a disjoint family
with |I| non-empty sets, it is clear that

(27) |X | ≥ |I|
d
≥ h

d(d2 + 1)
.

We thus have a disjoint family X of `-sets in V (G) \ VJ such that for
every X ∈ X ,

|G∩(X) ∩ VJ | < 2
(p

4

)` n
4d2

<
(p

4

)`
|VJ |.

Since w ∈ G∩(X) if and only if X ⊂ G(w), we obtain

#{(w,X) ∈ VJ ×X : X ⊂ G(w)} =
∑
X∈X

|G∩(X) ∩ VJ | < (p/4)`|VJ | |X |.

Because |VJ | ≥ n
d2+1

− C �
√
n, in view of Property (iii) from Lemma 6,

we conclude that |X | <
√
n. Therefore, by (27), we have showed that h ≤

d(d2 + 1)
√
n which establishes Claim 15.

Claim 16. The number of G-critical extensions before fJ is at most 2
√
n.
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By the definition of G-critical extensions, if a vertex v ∈ V (G) is the cause
of the G-critical extension from, say, f` to f`+1 (` < J), then either:

(I) pn/(2d2) > |G(v) ∩ V`| > |G(v) ∩ VJ |;
(II) |I`(v)| < pdn/(4d5).

Let B be the set of all vertices v ∈ V (G) which caused G-critical exten-
sions before fJ because they satisfy (I). Since

(1− ε)p |VJ | ≥ (1− ε)p
( n

d2 + 1
− C

)
>

pn

2d2
,

every vertex v ∈ B satisfies |G(v) ∩ VJ | < (1 − ε)p |VJ |. By Property (ii)
from Lemma 6 applied to A = VJ and B, we must have

|B| < 100ε−1n

p |VJ |
= O(p−1) = o(

√
n).

Now consider the set T = {v1, . . . , vt} ⊂ V (G), t ≤ C, of all vertices that
cause a G-critical extension before fJ because (II) holds. We will construct
a disjoint family X and use Property (iii) from Lemma 6 to show that T
must have fewer than

√
n elements. Together with the upper bound on the

size of |B|, the claim follows.
For every 1 ≤ i ≤ t, let ji < J be such that fji is the first embedding in

which vi appears in the image. For such vertices, we have

pdn/(4d5) > |Iji−1(vi)|
(19)
= #{x ∈ Uji−1 : fji−1(H(x) \ Uji−1) ⊂ G(vi)}
≥ #{x ∈ UJ : fJ(H(x) \ UJ) ⊂ G(vi)},

(28)

where the last inequality follows since UJ ⊂ Uji−1 and therefore H(x) \
Uji−1 ⊂ H(x) \ UJ . Moreover, we also conclude by (19) that every x ∈ UJ
with H(x) \ UJ = ∅ must be in Iji−1(vi). In other words, for every i,

{x ∈ UJ : H(x) \ UJ = ∅} ⊂ Iji−1(vi).

It follows that all but at most pdn/(4d5) vertices x ∈ UJ are such that H(x)\
UJ 6= ∅.

Next we are going to construct a disjoint family X ⊂ {fJ(H(x) \ UJ) :
x ∈ UJ} where:

(a) each set has the same cardinality `, 1 ≤ ` ≤ d;
(b) no set in X contains an element of T and
(c) |X | ≥ (|UJ | − pdn− td)/(2d3) > n

3d5
.

Let U ′J ⊂ UJ be the set of all vertices x ∈ UJ for which H(x) \ UJ 6= ∅
and fJ(H(x) \ UJ) ∩ T = ∅—equivalently, x /∈ H(f−1

J (T )). There are at

most pdn/(4d5) + |H(f−1
J (T ))| < pdn+ dt vertices in UJ \U ′J . Let U∗J ⊂ U ′J

be a maximal 2-independent subset of U ′J . Take X ⊂ X ∗ = {fJ(H(x)\UJ) :
x ∈ U∗J} to be a family containing all the sets having the most frequent
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cardinality in X ∗. Since t ≤ C = 2d3√n, it is simple to check that such X
is a disjoint family satisfying (a)-(c). By construction,

#{(vi, X) ∈ T ×X : X ⊂ G(vi)} ≤
t∑
i=1

#{x ∈ U∗J : fJ(H(x) \ UJ) ⊂ G(vi)}

(28)
< pd

n

4d5
|T |

(c)

≤ 3

4
p`|T | |X |.

(29)

Since |X | �
√
n, in view of Property (iii) from Lemma 6, we conclude

that t = |T | <
√
n. Since the number of G-critical extensions before fJ is

at most |B|+ |T |, the claim is proved.
Claim 15 and Claim 16 contradict our assumption that there were C

critical extensions before fJ thus proving the lemma. �

4.1.3. Proof of the induction step. Since f0 is an empty embedding, by (18),
the graph I0 is a complete bipartite graph with classes

(
U0 = V (H), V0 =

V (G)
)
. Moreover, Property (i) from Lemma 6 ensures that every ver-

tex v ∈ V0 satisfies |G(v)∩V0| = |G(v)| > pn/2. Consequently, the induction
hypothesis holds for f0.

Suppose that the induction hypothesis holds for f0, f1, . . . , fj−1, j ≥ 1.
The hypothesis could fail for fj either because (20) fails for some x ∈ Uj
or because (21) fails for some v ∈ Vj . Claim 17 and Claim 18 imply that
neither (20) nor (21) fail thus verifying the induction step.

Claim 17. There is no vertex x ∈ Uj for which (20) fails.

Suppose that there is x ∈ Uj for which (20) fails; namely |Ij(x)| < cj(x).
Let `, 1 ≤ ` ≤ j, be the largest index such that f` extends f`−1 by

embedding a neighbor x∗ of x. Such index exists as otherwise x would have
no embedded neighbors and this would imply that |Ij(x)| = |Vj | > cj(x).
By construction, either

(a) the image of x∗ under f` was chosen using Lemma 12 or
(b) x∗ was selected as the pre-image f−1

` (v) of a vertex v ∈ V (G) using
Lemma 13.

In the case (a), Lemma 12 (applied with x ← x∗, j ← ` − 1) provides v ∈
I`−1(x∗) for which f` : x

∗ 7→ v. Lemma 12 together with (22) ensure that

|I`(x′)| = |I`−1(x′) ∩G(v)| ≥ (p/2)c`−1(x′)

for all x′ ∈ H(x∗) ∩ U`−1.
In the case (b), similarly to (a), we use Lemma 13 and (22) to ensure

that |I`(x′)| = |I`−1(x′) ∩ G(v)| ≥ p c`−1(x′) for all x′ ∈ H(x∗) ∩ U`−1. In
particular, because x ∈ H(x∗) ∩ U`−1, the conclusions hold for x′ = x and
thus in either case (a) or (b), we have

|I`(x)| ≥ p

2
c`−1(x)

(20)

≥ 2c`(x).
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Moreover, since no neighbor of x was embedded after f`, by (20), we have c`(x) =
c`+1(x) = · · · = cj(x).

In view of (22), we conclude that |Ir(x)\Ir+1(x)| ≤ 1 for all ` ≤ r ≤ j−1.
Since |I`(x)| ≥ 2cj(x) and |Ij(x)| < cj(x), for some ` < r ≤ j − 1 we
have 2cj(x) − 1 ≤ |Ir(x)| < 2cj(x). Consequently, |Ir(x)|, . . . , |Ij(x)| <
2cj(x). The vertex x is a witness that every extension between the embed-
dings fr, fr+1, . . . , fj is H-critical. Indeed, during each such extension, some
vertex with label smaller than x satisfied the conditions for an H-critical ex-
tension.

Observe that

j − r ≥ |Ir(x) \ Ij(x)| = |Ir(x)| − |Ij(x)| ≥ (2cj(x)− 1)− cj(x) = cj(x)− 1.

Consequently, our assumption that x fails (20) implies that at least j − r ≥
cj(x) − 1 � 2d3√n critical extensions occurred after fr. This contradicts
Lemma 14. Hence, no such x ∈ Uj exists and the claim is proved.

Claim 18. There is no v ∈ Vj for which (21) fails.

Suppose that (21) fails to hold for fj because there is v ∈ Vj which satisfies

either |Ij(v)| < pdn/(8d5) or |G(v) ∩ Vj | < pn/(4d2).
It is clear from (23) that for every ` ≤ j,

|I`−1(v)| ≥ |I`(v)| ≥ |I`−1(v)| − (d+ 1).

Moreover, |V`−1 \ V`| = 1 for all `. It follows that, for ` ≤ j, we have

(30) |I`(v)| ≤ |Ij(v)|+ (d+ 1)(j − `)

and

(31) |G(v) ∩ V`| ≤ |G(v) ∩ Vj |+ (j − `).

Let ` < j be the largest index for which the extension from f` to f`+1

was normal. By the conditions for a G-critical extension, we have |I`(v)| ≥
pdn/(4d5) and |G(v) ∩ V`| ≥ pn/(2d2). From (30) and (31), we have

j − ` ≥ max
{ |I`(v)| − |Ij(v)|

d+ 1
, |G(v) ∩ V`| − |G(v) ∩ Vj |

}
≥ max

{pdn/(4d5)− |Ij(v)|
d+ 1

,
pn

2d2
− |G(v) ∩ Vj |

}
.

(32)

If |Ij(v)| < pdn/(8d5) we obtain j− ` ≥ pdn/[8d5(d+1)] and if |G(v)∩Vj | <
pn/(4d2) we obtain j − ` ≥ pn/(4d2). Either way, the fact that v fails (21)
and the definition of p imply that j − ` > pdn/(16d6) � 2d3√n. By the
definition of `, at least j−` critical extensions occurred during the embedding
process, which contradicts Lemma 14. Therefore no such v ∈ Vj exists and
the claim is established.

We have showed that the induction hypothesis must hold for fj and there-
fore the proof of the induction is complete.
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4.2. Phase 2. Suppose that fk is the partial embedding constructed in
Phase 1. The induction hypothesis ensures that

(33) |Ik(x)| ≥ ck(x) ≥
(p

4

)d n

4d2
> d
√
n

for all x ∈ Uj and

(34) |Ik(v)| ≥ pd n

8d5
> d
√
n

for all v ∈ Vj .
Moreover, by construction, the set Uk is 2-independent in H. Conse-

quently, the family F = {H(x) : x ∈ Uk} is disjoint and each set H(x) is
contained in V (H) \Uk. We claim that if there exists a perfect matching M
in Ik, the extension f of fk produced by mapping x ∈ Uk to v ∈ Ik(v) for
all (x, v) ∈M is a valid embedding of H into G. The mapping f is clearly a
bijection. Moreover, for every e = xy ∈ E(H), with both x, y /∈ Uk, the map-
ping fk is such that {fk(x), fk(y)}) ∈ E(G). For e = xy ∈ E(H) with x ∈ Uk
and y /∈ Uk, we have f(x) ∈ Ik(x) = G∩(fk(H(x))) ∩ Vk ⊂ G(f(y)) and
thus {f(x), f(y)} ∈ E(G).

It remains to show that Ik contains a perfect matching. Set m = |Uk| =
|Vk| and assume that no perfect matching exists. Hall’s theorem implies that
there are sets A ⊂ Uk and B = Vk \Ik(A) such that |A| > |Ik(A)| = m−|B|.
This condition also implies that Ik(B) ⊂ Uk \ A and thus |Ik(B)| ≤ m −
|A| < |B|. Moreover, (33) and (34) imply that |Ik(A)|, |Ik(B)| > d

√
n and

thus |A|, |B| > d
√
n.

Consider a (disjoint) sub-family X ⊂ {fk(H(x)) : x ∈ A} in which ev-
ery set has the same cardinality and |X | ≥ |A|/d >

√
n. Given the fact

that |X | >
√
n and |B| >

√
n, after applying Property (iii) from Lemma 6

to X and B ⊂ Vk we infer that there must exist a pair (w,X) ∈ B × X
with X ⊂ G(w)—equivalently, w ∈ G∩(fk(H(x))) for x ∈ A such that X =
fk(H(x)). In view of (18), this means that there is an edge in Ik connect-
ing w ∈ B to x ∈ A. This contradicts the definition of B and therefore Ik
must contain a perfect matching.
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[17] Y. Kohayakawa and V. Rödl. Regular pairs in sparse random graphs. I. Random
Structures Algorithms, 22(4):359–434, 2003.
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