
On Preconditioned MHSS Iteration Methods

for Complex Symmetric Linear Systems∗

Zhong-Zhi Bai

State Key Laboratory of Scientific/Engineering Computing
Institute of Computational Mathematics and Scientific/Engineering Computing

Academy of Mathematics and Systems Science
Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, P.R.China

Email: bzz@lsec.cc.ac.cn

Michele Benzi

Department of Mathematics and Computer Science
Emory University, Atlanta, GA 30322, USA

Email: benzi@mathcs.emory.edu

Fang Chen

Department of Mathematics and Physics
Xi’an University of Post and Telecommunications

Xi’an 710121, P.R. China
Email: chenfreesky@gmail.com

November 25, 2010

Abstract

We propose a preconditioned variant of the modified HSS (MHSS) iteration method for
solving a class of complex symmetric systems of linear equations. Under suitable condi-
tions, we prove the convergence of the preconditioned MHSS (PMHSS) iteration method
and discuss the spectral properties of the PMHSS-preconditioned matrix. Numerical imple-
mentations show that the resulting PMHSS preconditioner leads to fast convergence when it
is used to precondition Krylov subspace iteration methods such as GMRES and its restarted
variants. In particular, both the stationary PMHSS iteration and PMHSS-preconditioned
GMRES show meshsize-independent and parameter-insensitive convergence behavior for the
tested numerical examples.

Keywords: complex symmetric linear system, MHSS iteration, preconditioning, con-
vergence theory, spectral properties.

AMS(MOS) Subject Classifications: 65F10, 65F50; CR: G1.3.

∗Supported by The National Natural Science Foundation for Innovative Research Groups (No. 11021101),
by The Hundred Talent Project of Chinese Academy of Sciences, by The National Basic Research Program
(No. 2011CB309703), P.R. China., and by the US National Science Foundation grant DMS-0810862.

1

2 Z.-Z. Bai, M. Benzi and F. Chen

1 Introduction

Consider the iterative solution of the system of linear equations

Ax = b, A ∈ C
n×n and x,b ∈ C

n, (1.1)

where A ∈ C
n×n is a complex symmetric matrix of the form

A = W + ıT, (1.2)

and W,T ∈ R
n×n are real, symmetric, and positive semidefinite matrices with at least one of

them, e.g., W, being positive definite. Here and in the sequel, we use ı =
√
−1 to denote the

imaginary unit. For more details about the practical backgrounds of this class of problems, we
refer to [1, 10, 9, 4] and the references therein.

The Hermitian and skew-Hermitian parts of the complex symmetric matrix A ∈ C
n×n are

given by

H =
1

2
(A + A∗) = W and S =

1

2
(A −A∗) = ıT,

respectively. Hence, when W is symmetric positive definite, A ∈ C
n×n is a non-Hermitian, but

positive definite matrix. Here A∗ is used to denote the conjugate transpose of the matrix A.
Based on the Hermitian and skew-Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ C
n×n, we can straightforwardly employ the HSS iteration method, introduced

in Bai, Golub and Ng [6], to compute an approximate solution for the complex symmetric linear
system (1.1)-(1.2). Recently, by making use of the special structure of the coefficient matrix
A ∈ C

n×n, Bai, Benzi and Chen designed in [4] a modified HSS (MHSS) iteration method, which
is much more efficient than the HSS iteration method for solving the complex symmetric linear
system (1.1)-(1.2). This MHSS iteration method is algorithmically described in the following.

Method 1.1. (The MHSS Iteration Method)
Let x(0) ∈ C

n be an arbitrary initial guess. For k = 0, 1, 2, . . . until the sequence

of iterates {x(k)}∞k=0 ⊂ C
n converges, compute the next iterate x(k+1) according to

the following procedure:

{
(αI + W)x(k+ 1

2
) = (αI − ıT)x(k) + b,

(αI + T)x(k+1) = (αI + ıW)x(k+ 1
2
) − ıb,

where α is a given positive constant and I represents the identity matrix.

As W ∈ R
n×n is symmetric positive definite, T ∈ R

n×n is symmetric positive semidefinite, and
α ∈ R is positive, we see that both matrices αI+W and αI+T are symmetric positive definite.
Hence, the two linear sub-systems involved in each step of the MHSS iteration can be solved
effectively using mostly real arithmetic either exactly by a Cholesky factorization or inexactly by
some conjugate gradient or multigrid scheme. This is different from the HSS iteration method,

On Preconditioned MHSS Iteration Methods 3

in which a shifted skew-Hermitian linear sub-system with coefficient matrix αI + ıT needs to
be solved at every iteration step; see [6, 7]. If sparse triangular factorizations are used to solve
the linear sub-systems involved at each step, the MHSS iteration method is likely to require
considerably less storage than the HSS iteration method since only two triangular factors rather
than three have to be computed and stored. For more details, we refer to [6, 7, 4].

Theoretical analysis in [4] has indicated that the MHSS iteration converges to the unique solu-
tion of the complex symmetric linear system (1.1)-(1.2) for any initial guess, and its asymptotic
convergence rate is bounded by

σ(α) ≡ max
λj∈sp(W)

√
α2 + λ2

j

α + λj
· max

µj∈sp(T)

√
α2 + µ2

j

α + µj
≤ max

λj∈sp(W)

√
α2 + λ2

j

α + λj
< 1, ∀α > 0,

where sp(W) and sp(T) denote the spectra of the matrices W and T, respectively. Note that
this bound only depends on the eigenvalues of the symmetric positive definite matrix W and/or
the symmetric positive semidefinite matrix T. In particular, for the choice α⋆ =

√
γminγmax,

with γmin and γmax being the smallest and the largest eigenvalues of the matrix W, it holds that

σ(α⋆) ≤
√

κ2(W) + 1√
κ2(W) + 1

.

Here and in the sequel, κ2(·) is used to represent the spectral condition number of the corre-
sponding matrix.

To further generalize the MHSS iteration method and accelerate its convergence rate, in this
paper we propose a preconditioned MHSS (PMHSS) iteration method for solving the complex
symmetric linear system (1.1)-(1.2). This iteration scheme is, in spirit, analogous to the precon-
ditioned HSS iteration methods discussed in [8, 5] for solving the non-Hermitian positive definite
linear systems. We establish the convergence theory for the PMHSS iteration method under the
condition that both W and T are symmetric positive semidefinite and, at least, one of them
is positive definite. The PMHSS iteration method naturally leads to a preconditioning matrix
for the complex symmetric matrix A. For some special cases of the PMHSS iteration method,
we prove their convergence theorems under the weaker condition that both matrices W and T
are symmetric positive semidefinite satisfying null(W)∩ null(T) = {0}, where null(·) represents
the null space of the corresponding matrix. Moreover, for these special PMHSS preconditioners,
we investigate the spectral properties of the preconditioned matrices in detail, which show that
the eigenvalues of the preconditioned matrices are clustered within complex disks centered at

1 with radii
√

α2+1
α+1 , and the condition numbers of the corresponding eigenvectors are equal to√

κ2(αW + T), where α > 0 is the iteration parameter 1. Numerical results show that the
PMHSS iteration methods, when used to precondition the Krylov subspace methods such as
GMRES and its restarted variants, say, GMRES(#), can lead to satisfactory experimental re-
sults, and they have higher computing efficiency than the MHSS preconditioner proposed in
[4]. Moreover, as both solver and preconditioner, the PMHSS iteration method shows mesh-
independent and parameter-insensitive convergence behavior for the tested numerical examples.

The organization of the paper is as follows. In Section 2 we describe the PMHSS iteration
method. In Section 3, we establish the convergence theory of the PMHSS iteration method and

1See Remark 3.1 for a discussion of the condition number of the eigenvector matrix.

4 Z.-Z. Bai, M. Benzi and F. Chen

discuss the spectral properties of the PMHSS preconditioning matrix under suitable conditions.
Numerical results are given in Section 4 to show the effectiveness of this PMHSS iteration
method as well as the corresponding PMHSS preconditioner. Finally, in Section 5 we put forth
some conclusions and remarks to end the paper.

2 The PMHSS Iteration Method

In order to further accelerate the convergence rate of Method 1.1, we may precondition the
complex symmetric linear system (1.1)-(1.2) by choosing a symmetric positive definite matrix,
say, V ∈ R

n×n. More concretely, with the notations

W̃ = V− 1
2 WV− 1

2 , T̃ = V− 1
2 TV− 1

2 , Ã = V− 1
2 AV− 1

2 (2.1)

and

x̃ = V
1
2 x, b̃ = V− 1

2 b, (2.2)

the system of linear equations (1.1)-(1.2) can be equivalently transformed into the preconditioned
variant

Ãx̃ = b̃, (2.3)

where Ã ∈ C
n×n is a complex symmetric matrix of the form

Ã = W̃ + ı T̃, (2.4)

and W̃, T̃ ∈ R
n×n are real, symmetric, and positive semidefinite matrices, with W̃ being positive

definite.

Now, we can first apply Method 1.1 directly to the preconditioned linear system (2.3)-(2.4) de-
fined through (2.1)-(2.2), and then recover the resulting iteration scheme to the original variable,
obtaining the preconditioned MHSS (PMHSS) iteration method described as follows:

Method 2.1. (The PMHSS Iteration Method)
Let x(0) ∈ C

n be an arbitrary initial guess. For k = 0, 1, 2, . . . until the sequence

of iterates {x(k)}∞k=0 ⊂ C
n converges, compute the next iterate x(k+1) according to

the following procedure:

{
(αV + W)x(k+ 1

2
) = (αV − ıT)x(k) + b,

(αV + T)x(k+1) = (αV + ıW)x(k+ 1
2
) − ıb,

where α is a given positive constant and V ∈ R
n×n is a prescribed symmetric positive

definite matrix.

Note that Method 1.1 is a special case of Method 2.1 when V = I.

As V,W ∈ R
n×n are symmetric positive definite, T ∈ R

n×n is symmetric positive semidefinite,
and α ∈ R is positive, we see that both matrices αV + W and αV + T are symmetric positive

On Preconditioned MHSS Iteration Methods 5

definite. Hence, the two linear sub-systems involved in each step of the PMHSS iteration can
also be solved effectively using mostly real arithmetic either exactly by a Cholesky factorization
or inexactly by some conjugate gradient or multigrid scheme.

After straightforward derivations we can reformulate the PMHSS iteration scheme into the
standard form

x(k+1) = L(V;α)x(k) + R(V;α)b, k = 0, 1, 2, . . . ,

where

L(V;α) = (αV + T)−1(αV + ıW)(αV + W)−1(αV − ıT)

and

R(V;α) = (1 − ı)α(αV + T)−1V(αV + W)−1.

Note that L(V;α) is the iteration matrix of the PMHSS iteration method.

In addition, if we introduce matrices

F(V;α) =
1 + ı

2α
(αV + W)V−1(αV + T) (2.5)

and

G(V;α) =
1 + ı

2α
(αV + ıW)V−1(αV − ıT),

then it holds that

A = F(V;α) − G(V;α) and L(V;α) = F(V;α)−1G(V;α). (2.6)

Therefore, the PMHSS iteration scheme is induced by the matrix splitting A = F(V;α) −
G(V;α) defined in (2.6). It follows that the splitting matrix F(V;α) can be used as a pre-
conditioner for the complex symmetric matrix A ∈ C

n×n, which is referred as the PMHSS
preconditioner.

In particular, when V = W, we have

L(α) := L(W;α) =
α + ı

α + 1
(αW + T)−1(αW − ıT)

and

R(α) := R(W;α) =
α(1 − ı)

α + 1
(αW + T)−1;

and the PMHSS iteration scheme is now induced by the matrix splitting

A = F(α) − G(α),

with

F(α) := F(W;α) =
(α + 1)(1 + ı)

2α
(αW + T) (2.7)

and

G(α) := G(W;α) =
(α + ı)(1 + ı)

2α
(αW − ıT).

6 Z.-Z. Bai, M. Benzi and F. Chen

3 Theoretical Results

Because W̃ and T̃ defined in (2.1) are similar to V−1W and V−1T, respectively, analogously to
Theorem 2.1 in [4] we can prove that the PMHSS iteration converges to the unique solution of
the complex symmetric linear system (1.1)-(1.2) for any initial guess, and its convergence rate
is bounded by

σ(α) ≡ max
eλj∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃j

· max
eµj∈sp(V−1T)

√
α2 + µ̃2

j

α + µ̃j

≤ max
eλj∈sp(V−1W)

√
α2 + λ̃2

j

α + λ̃j

< 1, ∀α > 0. (3.1)

In particular, for the choice α⋆ =
√

γ̃minγ̃max, with γ̃min and γ̃max being the smallest and the
largest eigenvalues of the matrix V−1W, it holds that

σ(α⋆) ≤
√

κ2(V−1W) + 1√
κ2(V−1W) + 1

.

Evidently, the smaller the condition number of the matrix V−1W is, the faster the asymptotic
convergence rate of the PMHSS iteration will be.

Moreover, when V = W it holds that

ρ(L(α)) ≤
√

α2 + 1

α + 1
< 1, ∀α > 0.

Here and in the sequel, we use ρ(·) to denote the spectral radius of the corresponding matrix.
Note that this upper bound is a constant independent of both data and size of the problem.
It implies that when F(α) defined in (2.7) is used to precondition the matrix A ∈ C

n×n, the
eigenvalues of the preconditioned matrix F(α)−1A are clustered within the complex disk centered

at 1 with radius
√

α2+1
α+1 due to F(α)−1A = I−L(α); see [2, 3]. When α = 1, this radius becomes

√
2

2 .

For the above-mentioned special case, we can further prove the convergence of the PMHSS
iteration method under weaker conditions without imposing the restriction that the matrix
W ∈ R

n×n is positive definite. This result is stated in the following theorem.

Theorem 3.1. Let A = W + ıT ∈ C
n×n, with W ∈ R

n×n and T ∈ R
n×n being symmetric

positive semidefinite matrices, and let α be a positive constant. Then the following statements
hold true:

(i) A is nonsingular if and only if null(W) ∩ null(T) = {0};

(ii) if null(W)∩null(T) = {0}, the spectral radius of the PMHSS iteration matrix L(α) satisfies
ρ(L(α)) ≤ σ(α), with

σ(α) =

√
α2 + 1

α + 1
· max

µ(α)∈sp(eZ(α))

√
1 + |µ(α)|2

2
,

On Preconditioned MHSS Iteration Methods 7

where Z̃(α) = (αW + T)−1(αW − T). Therefore, it holds that

ρ(L(α)) ≤ σ(α) ≤
√

α2 + 1

α + 1
< 1, ∀α > 0,

i.e., the PMHSS iteration converges unconditionally to the unique solution of the complex
symmetric linear system (1.1)-(1.2) for any initial guess.

Proof. Note that the matrix A is nonsingular if and only if the matrix Â = (1 − ı)A is
nonsingular. Evidently, Â = (W + T) − ı(W − T), with its Hermitian part being given by
W + T. Hence, when both matrices W and T are symmetric positive semidefinite, we know
that Â is nonsingular if and only if null(W) ∩ null(T) = {0}. This shows the validity of (i).

We now turn to the proof of (ii). For all α > 0, W and T being symmetric positive semidefinite
matrices and null(W) ∩ null(T) = {0} readily imply that the matrix αW + T is symmetric
positive definite. Therefore, by straightforward computations we have

ρ(L(α)) =

√
α2 + 1

α + 1
· ρ((αW + T)−1(αW − ıT))

=

√
α2 + 1

2(α + 1)
· ρ((1 − ı)(αW + T)−1(αW − ıT)(1 + ı))

=

√
α2 + 1

2(α + 1)
· ρ((1 − ı)(αW + T)−1[(αW + T) + ı(αW − T)])

=

√
α2 + 1

2(α + 1)
· ρ((1 − ı)[I + ı(αW + T)−1(αW −T)])

=

√
α2 + 1

α + 1
· max

µ(α)∈sp(eZ(α))

∣∣∣∣∣
1 + ıµ(α)

1 + ı

∣∣∣∣∣

=

√
α2 + 1

α + 1
· max

µ(α)∈sp(eZ(α))

√
1 + |µ(α)|2

2

= σ(α).

It easily follows from µ(α) ∈ [−1, 1] that 1
2(1 + |µ(α)|2) ≤ 1 and, therefore,

σ(α) ≤
√

α2 + 1

α + 1
< 1.

2

The spectral properties of the preconditioning matrix F(α) are established in the following
theorem.

Theorem 3.2. Let A = W + ıT ∈ C
n×n, with W ∈ R

n×n and T ∈ R
n×n being symmetric

positive semidefinite matrices satisfying null(W)∩null(T) = {0}, and let α be a positive constant.

Define Z(α) = (αW+T)−
1
2 (W−αT)(αW+T)−

1
2 . Denote by µ

(α)
1 , µ

(α)
2 , . . . , µ

(α)
n the eigenvalues

of the symmetric matrix Z(α) ∈ R
n×n, and by q

(α)
1 ,q

(α)
2 , . . . ,q

(α)
n the corresponding orthogonal

eigenvectors. Then the eigenvalues of the matrix F(α)−1A are given by

λ
(α)
j =

α[(α + 1) − ı(α − 1)](1 − ıµ
(α)
j)

(α + 1)(α2 + 1)
, j = 1, 2, . . . , n,

8 Z.-Z. Bai, M. Benzi and F. Chen

and the corresponding eigenvectors are given by

x
(α)
j = (αW + T)−

1
2 q

(α)
j , j = 1, 2, . . . , n.

Therefore, it holds that F(α)−1A = X(α)Λ(α)X(α)−1
, where X(α) = (x

(α)
1 ,x

(α)
2 , . . . ,x

(α)
n) ∈ R

n×n

and Λ(α) = diag(λ
(α)
1 , λ

(α)
2 , . . . , λ

(α)
n) ∈ C

n×n, with κ2(X
(α)) =

√
κ2(αW + T).

Proof. Define matrices

Q(α) = (q
(α)
1 ,q

(α)
2 , . . . ,q(α)

n) ∈ R
n×n

and

Ξ(α) = diag(µ
(α)
1 , µ

(α)
2 , . . . , µ(α)

n) ∈ R
n×n.

Then it holds that

Z(α) = Q(α)Ξ(α)Q(α)T

.

Here and in the sequel, (·)T denotes the transpose of a real matrix. By straightforward compu-
tations we have

F(α)−1A =
2α

(α + 1)(1 + ı)
· (αW + T)−1(W + ıT)

=
2α

(α + 1)(1 + ı)(α − ı)
· (αW + T)−1[(αW + T) − ı(W − αT)]

=
2α

(α + 1)[(α + 1) + ı(α − 1)]
· [I − ı(αW + T)−1(W − αT)]

=
2α

(α + 1)[(α + 1) + ı(α − 1)]
· (αW + T)−

1
2 (I − ıZ(α))(αW + T)

1
2

=
2α

(α + 1)[(α + 1) + ı(α − 1)]
· (αW + T)−

1
2 Q(α)(I − ıΞ(α))Q(α)T

(αW + T)
1
2

= X(α)Λ(α)X(α)−1
.

Hence, the eigenvalues of the matrix F(α)−1A are given by

λ
(α)
j =

α[(α + 1) − ı(α − 1)](1 − ıµ
(α)
j)

(α + 1)(α2 + 1)
, j = 1, 2, . . . , n,

and the corresponding eigenvectors are given by x
(α)
j = (αW + T)−

1
2q

(α)
j , j = 1, 2, . . . , n.

Besides, as X(α) = (αW + T)−
1
2Q(α) and Q(α) ∈ R

n×n is orthogonal, we can obtain

‖X(α)‖2 = ‖(αW + T)−
1
2 Q(α)‖2 = ‖(αW + T)−

1
2 ‖2 = ‖(αW + T)−1‖

1
2
2

and

‖X(α)−1‖2 = ‖Q(α)T

(αW + T)
1
2 ‖2 = ‖(αW + T)

1
2 ‖2 = ‖αW + T‖

1
2
2 .

It then follows that

κ2(X
(α)) = ‖X(α)‖2‖X(α)−1‖2 = ‖(αW + T)−1‖

1
2
2 ‖αW + T‖

1
2
2 =

√
κ2(αW + T).

2

On Preconditioned MHSS Iteration Methods 9

Remark 3.1. The previous result requires some comments. Because of the non-uniqueness of
the eigenvectors, the condition number κ2(X

(α)) of the eigenvector matrix is also not uniquely
defined. One possibility is to replace it with the infimum over all possible choices of the eigenvec-
tor matrix X(α). However, this quantity is not easily computable. As an approximation, we will
use instead the condition number of the matrix formed with the normalized eigenvectors returned
by the eig function in Matlab. When the eigenvectors are normalized in the 2-norm, X(α) is
replaced by

X̃(α) = X(α)D(α)−1
,

with
D(α) = diag

(
‖x(α)

1 ‖2, ‖x(α)
2 ‖2, . . . , ‖x(α)

n ‖2

)
,

leading to

D(α) =
(
diag(q

(α)T

1 (αW + T)−1q
(α)
1 ,q

(α)T

2 (αW + T)−1q
(α)
2 , . . . ,q(α)T

n (αW + T)−1q(α)
n)
) 1

2

and
κ2(X̃

(α)) = κ2(D
(α)Q(α)T

(αW + T)1/2).

In the special case when the coefficient matrix A = W + ıT ∈ C
n×n is normal, we can

easily see that the PMHSS-preconditioned matrix F(α)−1A is also normal. In this case the
condition number of the normalized eigenvector matrix X̃(α) is of course exactly equal to one.
This property is formally stated in the following theorem.

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied, and the eigenvector matrix X(α)

be normalized as in Remark 3.1 with X̃(α) being the normalized matrix. Assume that the matrix
A = W + ıT ∈ C

n×n is normal. Then it holds that κ2(X̃
(α)) = 1. Moreover, the orthogo-

nal eigenvectors q
(α)
1 ,q

(α)
2 , . . . ,q

(α)
n of the matrix Z(α) ∈ R

n×n are independent of the positive
parameter α.

Proof. Because A = W + ıT ∈ C
n×n is normal, the matrices W,T ∈ R

n×n commute, i.e., it
holds that WT = TW. Hence, there exists an orthogonal matrix Q ∈ R

n×n such that

W = QΩQT and T = QΓQT ,

where

Ω = diag(ω1, ω2, . . . , ωn) and Γ = diag(γ1, γ2, . . . , γn)

are diagonal matrices with ωj, γj ≥ 0, j = 1, 2, . . . , n. It follows that

αW + T = Q(αΩ + Γ)QT and W − αT = Q(Ω − αΓ)QT .

As

(αW + T)
1
2 = Q(αΩ + Γ)

1
2QT ,

we obtain

Z(α) = (αW + T)−
1
2 (W − αT)(αW + T)−

1
2 = QΞ(α)QT ,

10 Z.-Z. Bai, M. Benzi and F. Chen

with

Ξ(α) = (αΩ + Γ)−1(Ω − αΓ).

Therefore, the eigenvectors of the matrix Z(α) are given by the columns of the orthogonal matrix
Q ∈ R

n×n, say, q1,q2, . . . ,qn, which are independent of the positive parameter α.

In addition, by straightforward computations we find

qT
j (αW + T)−1qj = qT

j Q(αΩ + Γ)−1QTqj = eT
j (αΩ + Γ)−1ej = (αωj + γj)

−1,

where ej denotes the j-th unit vector in R
n. Therefore, it holds that D(α) = (αΩ + Γ)−

1
2 and

(D(α)QT (αW + T)
1
2)(D(α)QT (αW + T)

1
2)T = D(α)QT (αW + T)QD(α) = I,

which immediately results in κ2(X̃
(α)) = 1. 2

Remark 3.2. If α = 1, then Theorem 3.1(ii) leads to σ(1) ≤
√

2
2 . This shows that when

F := (1 + ı)(W + T)

is used to precondition the matrix A ∈ C
n×n, the eigenvalues of the preconditioned matrix F−1A

are clustered within the complex disk centered at 1 with radius
√

2
2 . Moreover, Theorem 3.2 indi-

cates that the matrix F−1A is diagonalizable, with the matrix X(1), formed by its eigenvectors,
satisfying κ2(X

(1)) =
√

κ2(W + T). Hence, the preconditioned Krylov subspace iteration meth-
ods, when employed to solve the complex symmetric linear system (1.1)-(1.2), can be expected to
converge rapidly, at least when

√
κ2(W + T) is not too large. As the previous theorem shows,

this is guaranteed in the normal case.

4 Numerical Results

In this section we use three test problems from [1, 9, 4] to assess the feasibility and effectiveness
of the PMHSS iteration method in terms of both iteration count (denoted as IT) and computing
time (in seconds, denoted as CPU), when it is employed either as a solver or as a precondi-
tioner for solving the system of linear equations (1.1)-(1.2). Besides comparing the efficiency
of the PMHSS and the MHSS iteration methods, we also examine their numerical behavior as
preconditioners for the (full) GMRES method and its restarted variants, say, GMRES(#); see
[11].

In our implementations, the initial guess is chosen to be x(0) = 0 and the iteration is termi-
nated once the current iterate x(k) satisfies

‖b − Ax(k)‖2

‖b‖2
≤ 10−6.

To accelerate the convergence rates of GMRES(#) and GMRES, we adopt the MHSS precon-
ditioner defined by

F(I;α) =
1 + ı

2α
(αI + W)(αI + T)

On Preconditioned MHSS Iteration Methods 11

and the PMHSS preconditioner defined by

F(α) =
(α + 1)(1 + ı)

2α
(αW + T),

respectively; see (2.5) and (2.7).

In both MHSS and PMHSS iteration methods, the two half-steps comprising each iteration
are computed exactly by the sparse Cholesky factorization incorporated with the symamd.m

ordering algorithm. This technique is equally applied to the actions of the MHSS and the
PMHSS preconditioners F(I;α) and F(α), respectively.

The iteration parameters used in both MHSS and PMHSS iteration methods as well as the
corresponding MHSS and PMHSS preconditioners are the experimentally found ones, which
minimize the numbers of iteration steps; see Tables 7 and 8. Moreover, if these optimal iteration
parameters form intervals, then they are further optimized according to the lest computing
times; see Tables 1-6. We remark that when the right endpoints of the optimal parameter
intervals obtained from minimizing the iteration steps are larger than 1000.0, we just cut off and
set them as 1000.0 and, by noticing that all left endpoints of such intervals are less than 3.65,
we then search the optimal iteration parameters by minimizing the computing times from the
left endpoints of the intervals to 10.0. The optimal iteration parameters determined in such a
manner are denoted as αexp.

In addition, all codes were run in MATLAB (version R2009a) in double precision and all
experiments were performed on a personal computer with 2.96GHz central processing unit (In-
tel(R) Core(TM)2 Duo CPU L9400), 1.86G memory and Windows operating system.

Example 4.1. (See [1, 4]) The system of linear equations (1.1)-(1.2) is of the form
[(

K +
3 −

√
3

τ
I

)
+ ı

(
K +

3 +
√

3

τ
I

)]
x = b, (4.1)

where τ is the time step-size and K is the five-point centered difference matrix approximating
the negative Laplacian operator L = −∆ with homogeneous Dirichlet boundary conditions, on a
uniform mesh in the unit square [0, 1]× [0, 1] with the mesh-size h = 1

m+1 . The matrix K ∈ R
n×n

possesses the tensor-product form K = I ⊗ Bm + Bm ⊗ I, with Bm = h−2 · tridiag(−1, 2,−1) ∈
R

m×m. Hence, K is an n × n block-tridiagonal matrix, with n = m2. We take

W = K +
3 −

√
3

τ
I and T = K +

3 +
√

3

τ
I,

and the right-hand side vector b with its jth entry [b]j being given by

[b]j =
(1 − ı)j

τ(j + 1)2
, j = 1, 2, . . . , n.

Furthermore, we normalize coefficient matrix and right-hand side by multiplying both by h2.

In our tests we take τ = h. Numerical results for Example 4.1 are listed in Tables 1 and 2.
In Table 1 we show IT and CPU for MHSS, PMHSS, GMRES and GMRES(#) methods, while
in Table 2 we show results for MHSS- and PMHSS-preconditioned GMRES and GMRES(#)
methods, respectively.

12 Z.-Z. Bai, M. Benzi and F. Chen

From Table 1 we see that the iteration counts with the MHSS, GMRES and GMRES(#)
methods grow rapidly with problem size, while that of PMHSS method remains constant. In
other words the PMHSS iteration method shows h-independent convergence, unlike the other
schemes. Moreover, PMHSS considerably outperforms MHSS, GMRES and GMRES(#), both
in terms of iteration counts and in terms of CPU time.

In Table 2 we report results for GMRES and GMRES(#) preconditioned with MHSS and
PMHSS. From these results we observe that when used as a preconditioner, PMHSS performs
much better than MHSS in both iteration steps and CPU times, especially when the mesh-
size h becomes small. While the number of iterations with the MHSS preconditioner increases
with problem size, those for the PMHSS preconditioner is almost constant. Thus, the PMHSS-
preconditioned GMRES and GMRES(#) methods show h-independent convergence property,
whereas the MHSS-preconditioned GMRES and GMRES(#) methods do not; see Figure 1 (left).
In particular, when we set the iteration parameter α to be 1, we see that the iteration counts
for the PMHSS-preconditioned GMRES and GMRES(#) methods are almost identical to those
obtained with the experimentally found optimal parameters αexp. This shows that in actual
implementations of the PMHSS preconditioning matrix one should simply take the iteration
parameter α to be 1, resulting in a parameter-free method.

Table 1: IT and CPU for HSS, MHSS, GMRES and GMRES(20) Methods for Example 4.1

Method m × m 16× 16 32× 32 64× 64 128×128 256×256

αexp 1.16 0.78 0.55 0.40 0.30
MHSS IT 39 53 72 98 133

CPU 0.012 0.067 0.577 4.327 34.022

αexp 1.09 1.36 1.35 1.05 1.44
PMHSS IT 21 21 21 21 21

CPU 0.008 0.035 0.240 1.099 6.188

GMRES IT 34 53 81 112 155
CPU 0.027 0.148 1.397 10.625 94.164

GMRES(20) IT 39 62 91 136 214
CPU 0.022 0.083 0.505 2.723 22.469

Example 4.2. (See [9, 4]) The system of linear equations (1.1)-(1.2) is of the form

[(−ω2M + K) + ı (ωCV + CH)]x = b, (4.2)

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous and
the hysteretic damping matrices, respectively, and ω is the driving circular frequency. We take
CH = µK with µ a damping coefficient, M = I, CV = 10I, and K the five-point centered
difference matrix approximating the negative Laplacian operator with homogeneous Dirichlet
boundary conditions, on a uniform mesh in the unit square [0, 1] × [0, 1] with the mesh-size
h = 1

m+1 . The matrix K ∈ R
n×n possesses the tensor-product form K = I ⊗ Bm + Bm ⊗ I,

with Bm = h−2 · tridiag(−1, 2,−1) ∈ R
m×m. Hence, K is an n × n block-tridiagonal matrix,

with n = m2. In addition, we set ω = π, µ = 0.02, and the right-hand side vector b to be

On Preconditioned MHSS Iteration Methods 13

Table 2: IT and CPU for Preconditioned GMRES and GMRES(10) for Example 4.1

Method Prec m × m 16× 16 32× 32 64× 64 128×128 256×256

αexp 1.65 1.06 0.74 0.57 0.40
MHSS IT 9 12 15 19 22

CPU 0.006 0.029 0.206 1.586 10.446
αexp 0.52 1.82 1.48 1.20 1.60

GMRES PMHSS IT 6 7 8 8 8
CPU 0.003 0.010 0.062 0.354 2.045

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 6 7 8 8 8

CPU 0.003 0.013 0.075 0.372 2.114

αexp 2.03 0.94 0.79 0.49 0.36
MHSS IT 9 12 15 19 22

CPU 0.006 0.029 0.212 1.537 10.148
αexp 0.56 1.64 3.67 0.86 1.19

GMRES(10) PMHSS IT 6 7 8 8 8
CPU 0.003 0.010 0.060 0.347 2.019

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 6 7 8 8 8

CPU 0.003 0.012 0.074 0.377 2.149

b = (1 + ı)A1, with 1 being the vector of all entries equal to 1. As before, we normalize the
system by multiplying both sides through by h2.

Numerical results for Example 4.2 are listed in Tables 3 and 4. In Table 3 we show IT and
CPU for MHSS, PMHSS, GMRES and GMRES(#) methods, while in Table 4 we show results
for MHSS- and PMHSS-preconditioned GMRES and GMRES(#) methods, respectively.

From Table 3 we see that the iteration counts for MHSS, GMRES and GMRES(#) increase
rapidly with problem size, while those for PMHSS method are essentially constant after a slight
increases when going from m = 16 to m = 64. Therefore, the PMHSS iteration method shows
h-independent convergence, whereas the other iteration methods do not. Moreover, PMHSS
considerably outperforms MHSS, GMRES and GMRES(#) both in terms of iteration counts
and in terms of CPU times.

In Table 4 we report results for GMRES and GMRES(#) preconditioned with MHSS and
PMHSS. From these results we observe that when used as a preconditioner, PMHSS per-
forms much better than MHSS in both iteration counts and CPU times, especially when the
mesh-size h becomes small. While the iteration counts for the MHSS preconditioner grow
with problem size, those for the PMHSS preconditioner remain nearly constants. Again, the
PMHSS-preconditioned GMRES and GMRES(#) methods show h-independent convergence
property, whereas the convergence rates for MHSS-preconditioned GMRES and GMRES(#) are
h-dependent; see Figure 1 (middle). As before, using α = 1 gives nearly optimal results and this
value should be used in practice.

14 Z.-Z. Bai, M. Benzi and F. Chen

Table 3: IT and CPU for HSS, MHSS, GMRES and GMRES(20) Methods for Example 4.2

Method m × m 16× 16 32× 32 64× 64 128× 128 256× 256

αexp 0.21 0.09 0.04 0.02 0.01
MHSS IT 34 37 50 81 139

CPU 0.011 0.050 0.434 3.903 35.421

αexp 0.68 0.98 0.93 1.10 0.97
PMHSS IT 34 37 38 38 38

CPU 0.013 0.052 0.449 1.755 10.451

GMRES IT 26 52 102 196 379
CPU 0.018 0.144 2.290 31.617 932.419

GMRES(20) IT 39 128 412 1297 4369
CPU 0.032 0.149 1.950 27.477 467.754

Table 4: IT and CPU for Preconditioned GMRES and GMRES(10) for Example 4.2

Method Prec m × m 16× 16 32× 32 64× 64 128×128 256×256

αexp 0.28 0.17 0.05 0.03 0.03
MHSS IT 8 10 13 18 25

CPU 0.006 0.028 0.217 1.553 14.831
αexp 12.09 8.90 1.46 6.95 7.23

GMRES PMHSS IT 6 7 7 7 7
CPU 0.003 0.011 0.057 0.322 1.818

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 7 7 7 7 7

CPU 0.004 0.013 0.059 0.336 1.796

αexp 0.29 0.19 0.08 0.02 0.01
MHSS IT 8 10 13 21 35

CPU 0.006 0.028 0.219 1.845 19.147
αexp 8.90 4.65 2.45 7.15 6.23

GMRES(10) PMHSS IT 6 7 7 7 7
CPU 0.003 0.011 0.058 0.323 1.771

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 7 7 7 7 7

CPU 0.004 0.012 0.067 0.355 1.813

On Preconditioned MHSS Iteration Methods 15

Example 4.3. (See [4]) The system of linear equations (1.1)-(1.2) is of the form (W+ ıT)x =
b, with

T = I ⊗B + B⊗ I and W = 10(I ⊗ Bc + Bc ⊗ I) + 9(e1e
T
m + emeT

1) ⊗ I,

where B = tridiag(−1, 2,−1) ∈ R
m×m, Bc = B− e1e

T
m − emeT

1 ∈ R
m×m, and e1 and em are the

first and the mth unit basis vectors in R
m, respectively. We take the right-hand side vector b to

be of the form b = (1 + ı)A1, with 1 being the vector of all entries equal to 1.

Numerical results for Example 4.3 are listed in Tables 5 and 6. In Table 5 we show IT and
CPU for MHSS, PMHSS, GMRES and GMRES(#) methods, while in Table 6 we show results
for MHSS- and PMHSS-preconditioned GMRES and GMRES(#) methods, respectively.

From Table 5 we see that the iteration counts for MHSS, GMRES and GMRES(#) increase
rapidly with problem size, while the rate of convergence with PMHSS is essentially constant.
PMHSS vastly outperforms MHSS, GMRES and GMRES(#) in terms of both iteration counts
and CPU times.

In Table 6 we report results for GMRES and GMRES(#) preconditioned with MHSS and
PMHSS. From these results we observe that when used as a preconditioner, PMHSS performs
considerably better than MHSS in both iteration counts and CPU times, especially when the
mesh-size h becomes small. Similar observations to the ones made for the other two examples
apply.

Table 5: IT and CPU for HSS, MHSS, GMRES and GMRES(20) Methods for Example 4.3

Method m × m 16× 16 32× 32 64× 64 128× 128 256× 256

αexp 1.79 1.05 0.55 0.27 0.14
MHSS IT 51 75 128 241 458

CPU 0.026 0.182 1.965 22.959 221.55

αexp 0.61 0.42 0.57 0.78 0.73
PMHSS IT 30 30 30 30 30

CPU 0.018 0.095 0.623 3.519 19.568

GMRES IT 35 70 138 263 –
CPU 0.039 0.272 4.308 59.031 –

GMRES(20) IT 65 184 414 1295 2840
CPU 0.045 0.239 2.094 27.761 305.224

In Table 7 we list the experimentally found optimal parameters αexp for the MHSS and PMHSS
iterations, and in Table 8 we list those for the MHSS- and PMHSS-preconditioned GMRES and
GMRES(#) methods. These optimal parameters are obtained by minimizing the numbers of
iterations with respect to each test example and each spatial mesh-size.

From Table 7 we observe that for both Examples 4.1 and 4.2 the optimal parameters of the
PMHSS iteration method forms intervals including 1.0 as an interior point, and for Example 4.3
they form intervals of large widths. This implies that the PMHSS iteration method is insensitive
to the iteration parameter α and, in actual implementations, for Examples 4.1 and 4.2 we can
always take α = 1.0 to obtain essentially optimal convergence rates. The situation for the MHSS

16 Z.-Z. Bai, M. Benzi and F. Chen

Table 6: IT and CPU for Preconditioned GMRES and GMRES(10) for Example 4.3

Method Prec m × m 16× 16 32× 32 64× 64 128×128 256×256

αexp 4.16 2.52 1.25 0.61 0.34
MHSS IT 10 14 19 27 38

CPU 0.008 0.045 0.361 3.304 28.250
αexp 4.37 7.06 2.71 4.84 7.22

GMRES PMHSS IT 5 6 7 9 11
CPU 0.003 0.012 0.078 0.657 4.024

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 5 6 8 9 11

CPU 0.003 0.018 0.097 0.738 4.151

αexp 6.13 1.93 1.05 0.79 0.28
MHSS IT 10 14 24 39 51

CPU 0.008 0.045 0.483 4.780 33.806
αexp 6.62 6.82 8.67 1.34 2.06

GMRES(10) PMHSS IT 5 6 7 9 11
CPU 0.003 0.012 0.079 0.638 4.241

α 1.00 1.00 1.00 1.00 1.00
PMHSS IT 5 6 8 9 11

CPU 0.003 0.016 0.100 0.759 4.300

iteration method is quite different. Its optimal parameter forms very narrow intervals with
respect to different spatial mesh-sizes for Examples 4.1 and 4.3 with the exception m = 256 for
Examples 4.3, and it is a single point with respect to almost all spatial mesh-sizes for Example 4.2
except for m = 16. This shows that the MHSS iteration method is quite sensitive to the iteration
parameter α. Note that the optimal parameters of the MHSS iteration method are always either
less than or larger than 1.0, and just setting α = 1.0 in the MHSS iteration method will not
produce optimal results; see Figure 2.

From Table 8 we see that similar conclusions hold relative to the optimal parameters for the
PMHSS-preconditioned GMRES and GMRES(#) iteration methods. Note that for Examples 4.2
and 4.3 the intervals containing optimal values of α are very wide. This implies that the PMHSS
preconditioner is not sensitive to the iteration parameter α and PMHSS-preconditioned GMRES
and GMRES(#) are, roughly speaking, α-independent iteration methods for almost all cases of
the spatial mesh-sizes and, in actual implementations, we can always take α = 1.0 to obtain
essentially optimal results. On the other hand, the MHSS preconditioner is relatively sensitive
to the choice of α, and just setting α = 1 will not perform well in practice.

Note that in the three examples the matrices W,T ∈ R
n×n are symmetric positive definite.

Moreover, for Examples 4.1 and 4.2 they are simultaneously orthogonally similar to diagonal
matrices and therefore the coefficient matrices A ∈ C

n×n are normal. From Theorem 3.3 we
see that the Euclidean condition numbers of the normalized matrices X̃(α) from the eigenvector
matrices X(α) of the PMHSS-preconditioned matrices F(α)−1A are equal to 1, i.e., κ2(X̃

(α)) = 1;
see Remark 3.1 and Theorem 3.2. Recall that in this case F(α)−1A in both Examples 4.1 and 4.2

On Preconditioned MHSS Iteration Methods 17

Table 7: The Experimental Optimal Parameters αexp for MHSS and PMHSS Iteration Methods
by Minimizing Iteration Steps

Grid
Example Method

16 × 16 32 × 32 64 × 64 128 ×128 256 × 256

No. 4.1 MHSS [1.11, 1.16] [0.78, 0.81] [0.55, 0.57] [0.40, 0.41] [0.29, 0.30]
PMHSS [0.97, 1.55] [0.94, 1.51] [0.87, 1.49] [0.80, 1.48] [0.75, 1.47]

No. 4.2 MHSS [0.17, 0.27] 0.09 0.04 0.02 0.01
PMHSS [0.55, 1.04] [0.64, 1.16] [0.68, 1.18] [0.74, 1.12] [0.77, 1.10]

No. 4.3 MHSS [1.69, 1.88] [1.03, 1.05] [0.55, 0.57] [0.27, 0.28] 0.14
PMHSS [0.24, 0.78] [0.31, 0.78] [0.40, 0.79] [0.52, 0.80] [0.73, 0.75]

Table 8: The Experimental Optimal Parameters αexp for Preconditioned GMRES and
GMRES(10) by Minimizing Iteration Steps

Grid
Example Method Prec

16 × 16 32 × 32 64 × 64 128 ×128 256 × 256

No. 4.1 GMRES MHSS [1.40, 2.18] [0.87, 1.49] [0.69, 0.88] [0.40, 0.69] [0.35, 0.40]
PMHSS [0.13, 2.67] [0.01, 3.13] [0.01, 4.02] [0.01, 2.10] [0.01, 1.81]

GMRES(10) MHSS [1.40, 2.18] [0.90, 1.46] [0.72, 0.80] [0.43, 0.64] [0.35, 0.40]
PMHSS [0.13, 2.67] [0.01, 3.13] [0.01, 4.02] [0.01, 2.10] [0.01, 1.81]

No. 4.2 GMRES MHSS [0.09, 0.48] [0.08, 0.24] [0.05, 0.11] [0.03, 0.06] [0.02, 0.03]
PMHSS [3.65, 1000] [0.68, 1000] [0.72, 1000] [0.73, 1000] [0.73, 1000]

GMRES(10) MHSS [0.09, 0.48] [0.08, 0.24] [0.06, 0.10] 0.02 0.01
PMHSS [3.65 1000] [0.68, 1000] [0.72, 1000] [0.73 1000] [0.73, 1000]

No. 4.3 GMRES MHSS [3.28, 6.71] [1.77, 3.95] [1.20, 1.79] [0.60, 0.94] [0.31, 0.42]
PMHSS [0.90, 1000] [0.92, 1000] [1.40, 1000] [0.77, 1000] [0.69, 1000]

GMRES(10) MHSS [3.28, 6.71] [1.88, 1.97] [1.05, 1.12] [0.79, 0.83] [0.28, 0.30]
PMHSS [0.90, 1000] [0.92, 1000] [1.40, 1000] [0.77, 1000] [0.75, 30.75]

18 Z.-Z. Bai, M. Benzi and F. Chen

0 50 100 150 200 250 300
6

8

10

12

14

16

18

20

22

24

m

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

50

55

m

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

m

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

Figure 1: Pictures of IT versus m for MHSS- and PMHSS-preconditioned GMRES(5),
GMRES(10) and GMRES methods with α = αexp; left: Example 4.1, middle: Example 4.2,
and right: Example 4.3.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
20

40

60

80

100

120

140

160

180

200

220

α

IT

MHSS
PMHSS

0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

α

IT

MHSS
PMHSS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350

α

IT

MHSS
PMHSS

Figure 2: Pictures of IT versus α for MHSS and PMHSS iteration methods with m = 64; left:
Example 4.1, middle: Example 4.2, and right: Example 4.3.

are normal matrices. The situation for Example 4.3 is different, since the matrices W,T ∈ R
n×n

do not commute, so that F(α)−1A is not a normal matrix. As a result, we cannot expect κ2(X̃
(α))

to be 1, or even to remain bounded as the problem size increases. We found, however, that for
mesh sizes m = 16, m = 32 and m = 64, the condition numbers for the experimentally optimal
values of α are κ2(X̃

(αexp)) = 11.86, 20.41 and 20.58, respectively. This suggests that for the
optimal value of α the eigenvector condition numbers remain bounded as the mesh size increases.

5 Concluding Remarks

In this paper we have studied a preconditioned variant of the modified Hermitian and skew-
Hermitian iteration for a class of complex symmetric systems. The PMHSS iteration method not

On Preconditioned MHSS Iteration Methods 19

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

α

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

α

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

α

IT

MHSS−GMRES
PMHSS−GMRES
MHSS−GMRES(5)
PMHSS−GMRES(5)
MHSS−GMRES(10)
PMHSS−GMRES(10)

Figure 3: Pictures of IT versus α for MHSS- and PMHSS-preconditioned GMRES(5),
GMRES(10) and GMRES methods with α = αexp; left: Example 4.1, middle: Example 4.2,
and right: Example 4.3.

only presents a more general framework, but also yields much better theoretical and numerical
properties than the MHSS iteration method. In particular, the PMHSS iteration results in
asymptotically h-independent convergence rates when it is employed either as a solver or as a
preconditioner.

Using PMHSS as a preconditioner for GMRES always results in faster solution times than
using PMHSS as a stationary (fixed point) iteration. However, GMRES acceleration requires
additional operations, such as inner products and orthogonalization steps, which may be difficult
to implement efficiently on parallel architectures. Hence, it may be better to use PMHSS alone
in some cases.

Our analysis shows that when V = W we obtain PMHSS preconditioners for which the
eigenvalues of the preconditioned matrices are clustered within complex disks centered at 1 with

radii δ(α) :=
√

α2+1
α+1 , and the condition numbers of the corresponding eigenvector matrices are

equal to γ(α) :=
√

κ2(αW + T), where α > 0 is the iteration parameter. Note that when

α = 1, it holds that δ(1) =
√

2
2 and γ(1) =

√
κ2(W + T). In actual implementations of the

PMHSS preconditioner we can simply take the iteration parameter α to be 1, resulting in a
parameter-free method.

In this paper we have limited ourselves to “exact” variants of the PMHSS iteration. In
practice, using V = W is likely to be too costly, especially when solving problems arising from
the discretization of 3D partial differential equations. In this case, inexact solve should be used
instead, that is, one should use V ≈ W. For the problems considered in this paper, exact solves
can be replaced with a single multigrid V-cycle or any other spectrally equivalent preconditioner.
We leave the investigation of inexact variants of PMHSS for future work.

20 Z.-Z. Bai, M. Benzi and F. Chen

References

[1] O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric
linear systems, Numer. Linear Algebra Appl., 7(2000), 197-218.

[2] Z.-Z. Bai, Construction and analysis of structured preconditioners for block two-by-two
matrices, J. Shanghai Univ. (English Edition), 8(2004), 397-405.

[3] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two struc-
tures, Math. Comput., 75(2006), 791-815.

[4] Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex
symmetric linear systems, Computing, 87(2010), 93-111.

[5] Z.-Z. Bai, G. H. Golub and C.-K. Li, Convergence properties of preconditioned Hermitian
and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices,
Math. Comput., 76(2007), 287-298.

[6] Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24(2003),
603-626.

[7] Z.-Z. Bai, G. H. Golub and M. K. Ng, On inexact Hermitian and skew-Hermitian split-
ting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl.,
428(2008), 413-440.

[8] Z.-Z. Bai, G. H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian
splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math.,
98(2004), 1-32.

[9] M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for
complex linear systems, IMA J. Numer. Anal., 28(2008), 598-618.

[10] D. Bertaccini, Efficient solvers for sequences of complex symmetric linear systems, Electr.
Trans. Numer. Anal., 18(2004), 49-64.

[11] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge University
Press, Cambridge and New York, 2005.

