Math 111 - Quiz 1

September 7, 2012

Instructions: Show all of your work and mark your answers clearly. Each problem is worth 5 points.

1. Find the domain of the function \(f(x) = \frac{x + 4}{x^2 - 9} \).

\[x^2 - 9 = 0 \implies (x - 3)(x + 3) = 0 \]
\[\implies x = \pm 3 \]

So the domain of \(f \) is \(\{ x \neq \pm 3 \} \),
or \(x \) in \((-\infty, -3) \cup (-3, 3) \cup (3, \infty) \),
or \(\exists x \in \mathbb{R} \mid x \neq \pm 3 \).

2. Find the domain of the function \(F(p) = \sqrt{2 - \sqrt{p}} \).

First, we need \(p \geq 0 \), so that \(\sqrt{p} \) is defined.

Then \(2 - \sqrt{p} \geq 0 \implies \sqrt{p} \leq 2 \implies p \leq 4. \)

So the domain is \(\{ 0 \leq p \leq 4 \} \).
3. Let \(f(x) = 1 - 3x \) and \(g(x) = \cos x \). Find the functions \(f \circ g, g \circ f, f \circ f, \) and \(g \circ g \).

Be sure to label your answers!

\[
\begin{align*}
(f \circ g)(x) &= f(\cos x) = 1 - 3 \cos x. \\
(g \circ f)(x) &= g(1 - 3x) = \cos(1 - 3x). \\
(f \circ f)(x) &= f(1 - 3x) = 1 - 3(1 - 3x) = 8x - 2. \\
(g \circ g)(x) &= g(\cos x) = \cos(\cos x).
\end{align*}
\]

4. Let \(F(x) = \frac{\sqrt{x}}{1 + \sqrt{x}} \). Express \(F \) as \(f \circ g \).

Let \(f(x) = \frac{x}{1 + x} \) and \(g(x) = \frac{3}{\sqrt{x}} \).

Then \(F = f \circ g \).