Math 111 - Quiz 3
Name: Solutions

September 21, 2012

Instructions: Show all of your work and mark your answers clearly.

1. (5 points) Prove that \(\lim_{x \to 0} x^4 \cos(2/x) = 0. \)

\[-1 \leq \cos\left(\frac{2}{x}\right) \leq 1, \ so \]
\[-x^4 \leq x^4 \cos\left(\frac{2}{x}\right) \leq x^4 \]

\(\lim_{x \to 0} (-x^4) = \lim_{x \to 0} (x^4) = 0, \ so \)

\(\lim_{x \to 0} x^4 \cos\left(\frac{2}{x}\right) = 0 \) by the Squeeze Theorem.

2. (5 points) Find an equation of the tangent line to the curve \(y = \sqrt{x} \) at the point \((1,1) \).

\[y = f(x) \]

\[f'(1) = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \left(\frac{\sqrt{x} - 1}{x - 1} \right) \left(\frac{\sqrt{x} + 1}{\sqrt{x} + 1} \right) \]

\[= \lim_{x \to 1} \frac{x - 1}{(x-1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2} \]

Tangent Line: \(y - 1 = \frac{1}{2} (x - 1) \).
3. (10 points)

(a) From the graph of \(f \), state the numbers at which \(f \) is discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine whether \(f \) is continuous from the right, or from the left, or neither.

(a) \(f \) is discontinuous at
- \(a = -4 \) because \(f(-4) \) is not defined
- \(a = -2, 2, 4 \) because \(\lim_{x \to a} f(x) \) does not exist

\[\lim_{x \to -2^-} f(x) \neq \lim_{x \to -2^+} f(x), \quad \text{and} \quad \lim_{x \to 4^-} f(x) \text{ does not exist} \]

(b) \(f \) is left-continuous at \(x = -2 \)

\(f \) is right-continuous at \(x = 2 \) and \(x = 4 \)

\(f \) is neither left nor right continuous at \(x = -2 \)
4. (Optional Bonus - 3 points) Show that the equation $x^3 - x + 1 = 0$ has a real root.

Let $f(x) = x^3 - x + 1$.

Then $f(-2) = (-2)^3 - (-2) + 1 = -5$ and $f(-1) = (-1)^3 - (-1) + 1 = 1$.

So $f(-2) < 0 < f(-1)$.

Since f is continuous on $(-\infty, \infty)$, and in particular on $[-2, -1]$, by the Intermediate Value Theorem, f has a root (on the interval $(-2, -1)$).