NOTE ON THE TEXT

This is an early version of Descartes’s method which was composed intermittently between 1619 and 1628. Work on redrafting the text seems to have been suspended about 1628, and the manuscript remained unpublished during the author’s lifetime. After Descartes’s death in 1650, the manuscript was passed to Claude Clerel, his literary executor, who arranged for publication of The World and three volumes of correspondence. However, Clerel died in 1684, prior to publishing the Rules, but not before showing the manuscript to various other philosophers who were interested in Cartesian philosophy. These included A. Arnauld and P. Nicole, the authors of the Port-Royal Logic; Descartes’s biographer, Baillet; and Nicolas Poisson, who wrote his own introduction to method in the sciences. Some indications of the contents of the original manuscript, and translations of short excerpts, were published in French by these authors during the seventeenth century, but the original manuscript was lost. A Dutch translation of the Rules was published in 1684 (usually identified as N), and the first Latin edition appeared in Amsterdam in 1701 (denoted as A). A copy of the manuscript prepared for Leibniz was found among his papers at the Hanover library in the nineteenth century (denoted as H).

The original plan of the work was to provide thirty-six rules, grouped in three sets of twelve each. Only twenty-one rules survive, the last three of which are incomplete. This translation is based on the critical edition prepared by G. Crapulli, Regulae ad directionem ingenii (Nijhoff, The Hague, 1966), whose text was based on N, A and H. In preparing this edition I also consulted the French translation of Jean-Luc Marion, Règles utiles et claire pour la direction de l’esprit et la recherche de la vérité (Nijhoff, The Hague, 1977).

Since the original manuscript was lost, we are not sure what working
title Descartes had given to this draft essay. The inventory of manuscripts found after Descartes’s death in Stockholm identified the Rules as: ‘Un traité des règles utiles et claires pour la direction de l’Esprit en la recherche de la Vérité’. In fact, all references to the title of this work, with the exception of that used in edition A, include some mention of searching for the truth; however, it has been customary since its original publication to repeat the short title used in A, Regulae ad directionem ingenii, even though it is evidently not authoritative. I have followed Jean-Luc Marion’s suggestion by restoring a reference to ‘searching for the truth’ in the title, but have adopted the slightly shorter title used by Baillet.

Since Descartes left this manuscript unfinished, one could hardly argue that his choice of where to place new paragraphs was philosophically significant. In the interests of readability, therefore, I have supplied extra indentions wherever they seemed appropriate.

RULES FOR GUIDING ONE’S INTELLIGENCE IN SEARCHING FOR THE TRUTH

RULE ONE

The aim of studies should be to guide one’s intelligence towards making well-founded, true judgements about everything that one encounters.

Whenever people notice some similarity between two things, they habitually judge that whatever they find to be true of either one of them applies to both of them, even in the case of some feature with respect to which they differ. Thus they mistakenly compare the sciences, which consist exclusively of knowledge by the mind, with the arts, which presuppose some kind of training and skill on the part of the body. And when they notice that all the arts cannot be learned simultaneously by the same person, and that one becomes a very skilled artisan more easily by exercising only one skill – because the same hands are not as adaptable to cultivating the fields and playing the zither, or to many different skills like those, as they would be to only one of them – they imagine that the same thing is true in the sciences. They distinguish them from each other by the diversity of their objects, and then think that they should each be sought separately by omitting all the others. But they are completely wrong about this. For since all the sciences are nothing other than human wisdom, which remains always one and the same even when it is applied to different subjects, and since human wisdom is no more changed than is the light of the sun by the variety of things that it illuminates, there is no need to constrain our intelligence within such limits.

Nor does knowledge of one truth prevent us from discovering another, as happens in the practice of an art; on the contrary, it helps us. Indeed it seems surprising to me that many people investigate very diligently
the powers of plants, the motions of the stars, the transmutation of metals, and the objects of similar disciplines, but that almost no one thinks about common sense or this universal wisdom, even though none of the other sciences are valuable except in so far as they contribute in some way to this. Therefore it is right that we propose this as the first rule of all, because there is nothing that will lead us astray more readily from the right path by which to search for truth, than if we direct ourselves towards certain particular studies and not towards this general objective. I am not referring to various immoral or blameworthy objectives, such as vainglory or filthy lucre; it is obvious that spurious reasons, and illusions that are accommodated to the lowest minds, provide a much more direct path to them than could reliable knowledge of the truth. I am speaking instead of honourable and praiseworthy objectives, because we are often deceived by them more subtly — for example, if we seek sciences that are useful to human needs, or the pleasure that is found in contemplation of the truth and is almost the only happiness in this life that is complete and untroubled by sorrow. We can expect these as the legitimate fruits of the sciences; but if we include them among the things that should be studied, they often cause us to omit many things that are necessary for knowing other things, because the latter seem initially to be either less useful or less interesting. But it must be accepted that all the sciences are so mutually interconnected that it would be much easier to learn them all together than to separate one of them from the others.

Therefore if someone wishes seriously to investigate the truth about things, they should not choose some particular science, because all the sciences are interconnected and dependent on each other. They should think instead only about increasing the natural light of reason, not in order to resolve this or that problem of scholastic philosophy, but in order for their intellect to instruct their will about what choice to make in each of life’s decisions; and in a short time they will be surprised that they have made much more progress than those who study particular things, and thus they will have achieved not only all the things that others desire, but they will also have achieved much more than others could hope for.

RULE TWO

We should be concerned only with those objects, for which our intelligence seems adequate to achieve a certain and indubitable knowledge.

Every science is certain and evident knowledge. Someone who doubts about many things is no wiser than someone else who has never thought about them; but they seem none the less to be less wise than the other person, if they have formed a false opinion about something. Thus it is better never to study than to be concerned with things that are so difficult that, since we are unable to distinguish true and false opinions about them, we are forced to accept what is doubtful as if it were certain; for in questions like this there is a greater danger of decreasing our learning than a hope of increasing it. Thus by means of this proposal we reject all knowledge that is merely probable, and we decide to believe only what is known perfectly and cannot be doubted. Although educated people may convince themselves that there are very few such items of knowledge because, due to a common human weakness, they have failed to reflect on them and think that they are too easy and too obvious to everyone; but I claim that they are much more numerous than is believed, and that such truths are enough to demonstrate with certainty innumerable propositions about which, so far, it has been possible to write only in a probabilistic fashion. And since they thought it was beneath the dignity of an educated person to admit that there was something they did not know, they became so used to embellishing their false reasons that they later convinced themselves of them and thus defended them as if they were true.

However, if we observe this rule strictly, there will be very few things to the study of which we can devote ourselves. For there is hardly any question in the sciences about which intelligent scholars have not often disagreed. When two people make contrary judgements about the same thing, however, it is certain that at least one of them is mistaken, and it seems as if neither one of them has scientific knowledge. For if either one had reasons that were clear and certain, they could present them to the other in such a way that their intellect would eventually be convinced. Thus it seems that we cannot acquire
perfect knowledge of probable opinions like this, because it would be foolish to hope that we could make more progress on them than others have made. Thus, if we are assessing the situation correctly, the observance of this rule reduces us to arithmetic and geometry, which alone remain among all the sciences discovered so far.

It does not follow from this that we condemn the type of philosophizing that others have previously discovered, or those missiles—the probable arguments of the scholastics—which are very suitable for belligerent disputes. They exercise the intelligence of young people and develop in them a certain rivalry; and it is far better for them to be informed about such views, even if they are obviously uncertain, since they are disputed among the learned, than to be left completely to their own devices. Without any guide, they might wander towards precipices; but as long as they follow in their teachers' footsteps, then, even if they sometimes turn aside from the truth, they will surely find a path that is more secure, at least in the sense that it has already been tested by prudent people. We ourselves are glad that we were once taught in this way in the schools; but since we are now released from the oath that bound us to the words of a teacher and have eventually become mature enough to guide ourselves, if we wish seriously to propose rules for ourselves by the use of which we shall reach the heights of human knowledge, the following should clearly be included among the first rules: to take care not to waste our free time, as many people do who neglect everything that is easy and who are concerned only with difficult things, about which they ingeniously construct hypotheses that are definitely very subtle and arguments that are very probable. However after much hard work they eventually realize that they have merely increased the number of their doubts, but have acquired no scientific knowledge.

Now that we have said above that, among all the disciplines known to others, arithmetic and geometry alone are free from every taint of falsehood or uncertainty, in order to explain more carefully why this is so we should note that we can arrive at knowledge of things by means of two paths, viz. by experience or deduction. It should also be noted that experiences of things are often deceptive, whereas a deduction—or the pure inference of one thing from another—may be overlooked if it is not apparent, but it can never be performed badly by a minimally rational intellect. The chains of dialecticians, by which they think they can regulate human reason, seem to me to be of little use for deduction, although I do not deny that they are very appropriate for other purposes. No deception that can occur to human beings (I am not claiming this applies to animals) ever results from a poor inference, but only from the fact that various experiences that are poorly understood are accepted, or rash judgements are made without any foundation.

It is clear from this why arithmetic and geometry are much more certain than other disciplines. The reason is that these alone are concerned with an object that is so pure and simple that they evidently presuppose nothing that experience might render uncertain, but they consist exclusively of conclusions that are deduced by reason. They are therefore the easiest and clearest of all disciplines, and they have the kind of object that we require since it seems that, in their case, it is scarcely possible for someone to be mistaken except by not paying attention. It should not be surprising, therefore, if many people spontaneously apply their intelligence, instead, to other arts or to philosophy; this happens because everyone is more confident in allowing themselves the freedom to guess about obscure matters than about what is clear, and it is much easier to make a guess about some question than to arrive at the truth itself, no matter how easy it may be.

One should conclude from all this, not that arithmetic and geometry alone should be studied, but only that, in seeking the right path to the truth, one should not be concerned with any object about which one cannot have as much certainty as in the demonstrations of arithmetic and geometry.

Rule Three

We should seek whatever we can intuit clearly and evidently or what we can deduce with certainty about any proposed objects, and not what others have thought about them or what we ourselves might guess; for scientific knowledge cannot be acquired in any other way.

The books of the ancients should be read because it is very beneficial
for us to be able to use the work of so many people, both to learn what has already been correctly discovered and also to be informed about what remains to be thought out in all disciplines. Meanwhile there is a great danger that the stains of errors that could be acquired from too close a reading of those books would stick to us despite ourselves and despite the care we take. For writers usually have an intelligence such that, once they have fallen for some controversial view because of their incautious credulity, they always try to draw us into the same view by very subtle reasons. On the other hand, whenever they are lucky enough to discover something certain and evident, they never reveal it unless it is wrapped up in various obscurities, for fear that the simplicity of their argument would diminish the importance of the discovery or because they begrudge us the bare truth.

But even if all writers were sincere and open-minded, and never tried to pass off anything doubtful as if it were true, but revealed everything to us in good faith, we would always be uncertain about who to believe because there is hardly anything claimed by one without someone else asserting the opposite. There would also be no point in counting votes, in order to follow the view that has most supporters. For if the question at stake is difficult, it is much more likely that the truth about it could be discovered by few people rather than by many. Even if everyone agreed about something, their teaching would still not be enough. For example, we will never become mathematicians, even if we remember all the demonstrations of others, unless we are also able to use our intelligence to solve whatever problems we encounter. Nor shall we ever become philosophers by reading all the arguments of Plato and Aristotle, if we are unable to make a definite judgement about questions that are raised, for by doing this we would seem to have learned only histories rather than sciences.

We are also advised that no conjectures should ever be mixed in with the judgements we make about the truth of things. This realization is not insignificant. The main reason why the common philosophy contains nothing that is evident and certain enough that it cannot be challenged is that students are, first, not content to acknowledge clear and certain things, but they dare to make claims about obscure and unknown things, which they have been able to reach only by means of probable conjectures. They then gradually put their whole trust in such claims and, by mixing them indiscriminately with true and evident beliefs, they were eventually unable to conclude anything from them which did not seem to depend on one of the probable propositions, and which was not therefore uncertain.

But lest we fall into the same mistake in future, we shall list here all the actions of our intellect, by which we can arrive at knowledge of things without any fear of error. We accept only two, namely, intuition and deduction.

By 'intuition' I understand, not the changing testimony of the senses or the false judgement of an imagination when it composes images badly, but the conception of a pure and attentive mind that is so easy and so distinct that no doubt remains subsequently about what we understand; or, what is the same thing, the undoubting conception of a pure and attentive mind which arises from the light of reason alone, and which is more certain than deduction because it is simpler – though we noted above that even human beings cannot perform a deduction poorly. Thus each person can mentally intuit that they exist, that they think, that a triangle is bound by only three sides, that a globe has a single surface, and similar things which are much more numerous than most people realize, because they think it is below their dignity to turn their minds to such easy things.

However, if some people are disturbed by this novel use of the word 'intuition', and of other words that I am forced to change from their usual meaning in the following pages, I hereby advise them as a general point that I am not thinking at all about the way in which certain words have been used in recent times in the schools, for it would be very difficult to use those same words and to understand them in a completely different way. All I do is to notice what particular words mean in Latin, so that, whenever I lack appropriate words, I shall transfer to my own meaning whatever words seem most suitable.

However, this certainty and evidence of intuition is required, not only for individual propositions, but also for any discourse. For example, the following conclusion is drawn: two plus two is equal to three plus
RULES FOR GUIDING ONE’S INTELLIGENCE

one. One must intuit, not only that two plus two equals four and that three plus one also equals four, but that the third proposition follows necessarily from these two.

There may therefore be some doubt why, in addition to intuition, we have added another form of knowing, namely, knowing by deduction, by which we understand everything that follows necessarily from other things that are known with certainty. But this had to be done in this way because many things are known with certainty even though they themselves are not evident, on condition only that they are deduced from principles that are true and certain, by means of a continuous and uninterrupted movement of thought which intuits each element clearly. This is similar to the way in which, in the case of a very long chain, we know that the last ring is connected to the first, even though we do not comprehend by one and the same visual intuition all the intermediate rings on which that connection depends, provided we survey them one after another and remember that each individual ring, from the first to the last, is joined with the one next to it. Therefore we distinguish here a mental intuition from a deduction which is certain, because we conceive of a motion or some kind of succession in the latter, but not in the former. Moreover, present evidence is not necessary for deduction, as it is in the case of intuition; instead, it borrows its certainty in some way from memory. It follows that those propositions that are inferred immediately from first principles can be said, from different points of view, to be known in one sense by intuition and in another sense by deduction. But the first principles themselves are known only by intuition and, in contrast, the remote conclusions are known only by deduction.

These two paths to scientific knowledge are very certain and, as far as our intelligence is concerned, no additional ones should be conceded, and all others should be rejected as suspect and liable to errors. However that does not prevent us from believing that everything that was revealed by God is more certain than all knowledge, since faith in these things, however obscure they may be, is not an act of intelligence but of will. Besides, if the latter had foundations in the intellect, they should and could be discovered, more than anything else, by either of the two paths just mentioned, as we shall perhaps show elsewhere.⁴

RULE FOUR

A method is required in order to search for the truth about things.

Mortals are so bound by blind curiosity that they often lead their intelligence down unfamiliar paths without any reason for hope, but merely to test if what they seek may happen to lie there. It is as if someone were so consumed by a foolish desire to find treasure, that they constantly wandered the streets hoping to find, by chance, something that had been lost by a passer-by. This is how almost all chemists, most geometers and quite a number of philosophers study. I certainly do not deny that they sometimes have such luck in their wandering that they find something true; however, I concede in that case that they are lucky rather than diligent. But it is much more satisfactory never to think about seeking the truth about anything, than to do so without a method, because it is very certain that the natural light is obscured and our intelligence is blinded by such disordered studies and obscure meditations. Anyone who gets used to walking thus in the shadows weakens their eyesight to such an extent that they cannot subsequently tolerate daylight. This is confirmed by experience, for we see very often that those who have never studied judge much more reliably and clearly about simple things than those who have spent all their time in the schools. By a 'method', however, I understand easy and certain rules such that, if anyone were to use them carefully, they would never accept what is false as true and, without wasting their mental effort but always increasing their scientific knowledge gradually, they would arrive at a true knowledge of all the things that they are capable of knowing.

It should be noted that there are two parts here: not to accept anything false as true, and to arrive at knowledge of everything. For if there is something we do not know among all the things that we are capable of knowing, that happens only because we have not noticed any path that would lead us to such knowledge, or because we have fallen into the opposite mistake. But if a method explains properly how mental intuition should be used, so that we do not fall into error (which is the opposite of the truth), and how deductions should be found so
that we come to have knowledge of all things; it seems to me that nothing further is required to make it complete, since the only way to acquire scientific knowledge is by intuition and deduction, as was said above. A method cannot be extended to teach us how these operations themselves should be performed, since they are the simplest of all and are primary. Thus unless our intellect were already able to make use of them, it would not comprehend any rules of a method, no matter how easy they were. Other mental operations, which dialectic claims to direct with the assistance of these primary ones, are useless in this context or, rather, they should be classified as impediments, because nothing can be added to the pure light of reason that would not obscure it in some way or other.

Since this method is so useful that, without it, it would seem to be more harmful than beneficial to take on the work involved in study, I easily convince myself that it was already noticed in some way by the great minds of the past, or that they were guided to it by nature alone. For the human mind has a divine I-know-not-what, in which the first seeds of useful thoughts have been sown in such a way that, oftentimes, despite being neglected and suffocated by obstructive studies, they produce spontaneous fruit. We experience this in the easiest sciences, arithmetic and geometry; for we recognize sufficiently that the ancient geometers used some kind of analysis which they applied to the resolution of all problems, although they did not pass it on to their successors. And a certain kind of arithmetic is already thriving, which they call 'algebra', and they have made it as successful in numbers as the ancients did in respect of geometrical shapes. But these two are nothing more than the spontaneous fruits that have resulted from the innate principles of this method; it is not surprising that they have thus far flourished more when applied to the very simple objects of these disciplines than in the case of others, in which greater impediments usually suffocate them. But even in the latter, there is no doubt that they could achieve perfect maturity provided they were very carefully cultivated.

This is indeed what I have principally undertaken to do in this treatise. I would also not think that these rules were significant if they were enough only to resolve the inane problems by which logicians and geometers have become accustomed to wasting their time; in that case I would think that I may have achieved nothing more than to have dealt with trifles more subtly than others. Although I am about to say much about figures and numbers here, because it is impossible to look for examples that are as evident and certain in other disciplines, whoever pays attention to my meaning will easily recognize that I am not at all thinking about ordinary mathematics here, but that I am expounding a new discipline of which mathematics is the outer layer rather than its parts. This discipline must contain the primary elements of human reason, and must extend to eliciting truths from any subject. To speak freely, I am convinced that it is more powerful than any other human knowledge that we have inherited, since it is the source of all other knowledge. I have spoken about an 'outer layer' – not in the sense that I want to hide this doctrine and surround it, so that ordinary people are kept at a distance from it, but in the sense, rather, of clothing and adorning it in such a way that it is better adapted to human intelligence.

When I first applied my mind to mathematical disciplines, I immediately read through most of what mathematical authors usually teach us, and I especially cultivated arithmetic and geometry, because they were said to be the most simple and to be like paths to the other [branches of mathematics]. But there were no writers in either of them, among those that I happened to come across, who satisfied me fully. For I read many things in them about numbers, that I found were true once I went through the calculations myself; and with respect to geometrical shapes, they in some sense revealed many before my very eyes, and they drew some inferences from them. But they did not seem to show the mind adequately why things were as they were, and how they were discovered. It was not surprising, therefore, that even very learned and intelligent people abandoned those disciplines or soon neglected them as childish and vain or, on the other hand, were discouraged at the outset from learning them because they were too difficult and complicated. For there is nothing more foolish than to be so concerned with bare numbers and imaginary figures that we seem to wish to remain content with knowledge of such trifles, and to devote ourselves to such superficial demonstrations that – since they are discovered by chance more often than by skill, and pertain to the eyes and the imagination more than to the intellect – we become
RULES FOR GUIDING ONE'S INTELLIGENCE

unaccustomed in some way to using reason itself. At the same time
there is nothing more complicated than to generate new difficulties
that are intertwined with confused numbers by using such a style of
proving.

When I later thought why it was that the first inventors of philosophy
were unwilling to admit anyone to the study of wisdom who lacked
expertise in mathesis, as if this discipline appeared to them to be the
simplest and most necessary for training and preparing minds to grasp
other more important sciences, I wondered whether they were familiar
with a mathesis that is very different from the one which is common
in our age. It is not that I think they knew it perfectly, for their
unreasonable celebrations and sacrifices on the occasion of trivial dis-
coversies show clearly that they were unsophisticated. Nor am I
convinced otherwise by some of their machines, which are celebrated by
historians. They may have been very simple, and may easily have been
raised to the status of miracles by an ignorant and impressionable
multitude. However, I am convinced that certain seeds of truth which
are innate in the human mind – and which we extinguish daily in
ourselves by the number of errors we read and hear – had such strength
in that primitive and pure antiquity, that the same light of nature by
which they saw that virtue is preferable to pleasure and duty to utility
(even if they did not know why) made them recognize true ideas in
philosophy and mathesis, although they were not yet able to pursue
those sciences perfectly. Indeed, some traces of this true mathesis seem
to me to appear in Pappus and Diophantes, who, although they were
not in the first age, lived many centuries before our time. I would
almost believe that, by a pernicious cunning, this was suppressed by
these writers themselves. For in the same way that many discoveries
were concealed by their inventors, they may have feared, because it
was very easy and simple, that it would be lost if it were revealed, and
they preferred to reveal instead, as the results of their work, certain
sterile truths that are demonstrated by subtle arguments so that we
would admire them, rather than teach us the art itself that would have
dispelled our admiration completely. There were eventually some very
gifted men who tried to revive it in this century; for the art that they
call by the barbaric name of 'algebra' seems to me to be identical with
it, if only it can be divested of the multiplicity of numbers and
inexplicable figures by which it is camouflaged, so that it would no
longer lack the greatest clarity and simplicity that we assume ought
to be found in genuine mathesis.

When these thoughts recalled me from the particular study of
arithmetic and geometry to searching for a certain general mathesis, I
first inquired what precisely everyone understood by that term, and
why not only the disciplines already mentioned but also astronomy,
music, optics, mechanics and many others are also said to be parts of
mathematics. It is not enough here to examine the origin of the term;
since the word 'mathesis' means the same as 'discipline', the other
disciplines [i.e. astronomy, etc.] have as much right as geometry itself
to be called mathematics. But we see that there is almost no one with
the slightest education who does not distinguish easily, among the
things they encounter, between what pertains to mathematics and what
pertains to the other disciplines. It became clear eventually to anyone
who examined it more closely that only those things in which some
order or measure is examined pertain to mathesis, and it is irrelevant
whether such a measure is sought in numbers, or figures, or stars, or
sounds or any other object.

Therefore there must be some general science which explains every-
thing that can be learned about order and measure, which is not confined
to any particular subject matter, and is called universal mathesis. This
is not a borrowed name, but one with a long and accepted usage; for
it includes everything on account of which other sciences are called
parts of mathematics. The extent to which it is superior in usefulness
and facility to these subordinate sciences is clear from the fact that it
applies to everything to which they are applied, and to more besides;
and if it includes some difficulties, they are also found in the other
disciplines, whereas the latter include other difficulties that result from
their specific subject matter and that are not found in universal mathesis.
Now, since everyone knows its name and understands what it is
concerned with, even if they do not study it, how does it happen that
many people laboriously pursue the other disciplines that depend on
it, while no one bothers to learn this discipline itself? I would certainly
wonder about that if I had not been aware, for a long time, that the
RULE FIVE

The entire method consists in the order and arrangement of those things to which the mind’s eye must turn so that we can discover some truth. But we shall observe this method exactly if we reduce convoluted and obscure propositions step by step to more simple ones, and if we then try to ascend by the same steps to knowledge of all the others, beginning from an intuition of all the most simple propositions.

This contains, on its own, the sum of all human diligence and this rule must be observed by anyone who is searching for knowledge of things, just as they would follow the thread of Theseus to enter the labyrinth. But many people do not reflect on what it prescribes, ignore it completely, or presume that they do not need it, and they frequently examine the most difficult questions in such a disorderly manner that they seem to me to act as if they are trying to go from the bottom of some building to its top in one step, either by bypassing the steps of the stairs which are designed for that purpose or by not noticing them at all. All astrologers do this when, not knowing the nature of the skies and not having even observed their motions accurately, they hope to be able to say what their effects are. Most people who study mechanics without physics do likewise, when they casually construct new instru-

RULE SIX

In order to distinguish the simplest things from those that are complex and to search for them in an orderly way, one should notice what is most simple in each sequence of things in which we have directly deduced some truths from others, and how all the others are more, or less, or equally distant from the most simple item.

Although this proposition seems to teach us nothing very novel, it still contains the principal secret of the art and there is none more useful in this whole treatise. For it advises us that all things can be arranged in various sequences, not indeed in so far as they are referred to some metaphysical class, as the philosophers have divided them into their categories, but in so far as some can be known from others; thus whenever some difficulty arises, we can immediately notice whether it would be worth while to examine some others first, which ones should be examined first, and in what order.

In order to do this properly, however, it should be noted first that, in the sense in which things can be useful for our project – where we do not examine their natures in isolation but compare them with each other, so that we can know some of them from others – all things can be said to be either absolute or relative.

I apply the term ‘absolute’ to anything that contains in itself the pure and simple nature that is in question – thus everything that is thought to be independent, a cause, simple, universal, one, equal, similar, straight and other things like that. I also call the first thing the most simple and easy, so that we may use it to resolve questions.