

SIAM J. Sci. Comput. c©1995 Society for Industrial and Applied Mathematics

Vol. 17, No. 5, pp. 1135–1149, September 1996 007

A SPARSE APPROXIMATE INVERSE PRECONDITIONER
FOR THE CONJUGATE GRADIENT METHOD*

MICHELE BENZI
†
, CARL D. MEYER

‡
, AND MIROSLAV TŮMA

§

Abstract. A method for computing a sparse incomplete factorization of the inverse of a
symmetric positive definite matrix A is developed, and the resulting factorized sparse approximate
inverse is used as an explicit preconditioner for conjugate gradient calculations. It is proved that in
exact arithmetic the preconditioner is well defined if A is an H-matrix. The results of numerical
experiments are presented.

Key words. sparse approximate inverses, preconditioned conjugate gradient method, H-
matrices, incomplete factorizations

AMS subject classifications. 65F10, 65F35, 65F50, 65Y05

1. Introduction. In this paper we develop a method for computing an incom-
plete factorization of the inverse of a symmetric positive definite (SPD) matrix A .
The resulting factorized sparse approximate inverse is used as an explicit precondi-
tioner for the solution of Ax = b by the preconditioned conjugate gradient (PCG)
method. Due to the fact that an explicit preconditioning step only requires matrix–
vector products, explicit preconditioners are of considerable interest for use on parallel
computers [7, 9, 17, 19–21]. This is in contrast with more traditional precondition-
ers based on incomplete factorizations of the coefficient matrix A which necessitate
triangular solves (a serial bottleneck) in the preconditioning steps. Sparse incomplete
inverses are also useful in the construction of sparse approximate Schur complements
for use in incomplete block factorization preconditioners [2, 8]. Furthermore, our pre-
conditioner does not require that A be explicitly stored, a feature which is useful for
some problems where A is only implicitly given as an operator.

The paper is organized as follows. In §2 we describe the main idea upon which
the preconditioner is based. Section 3 is devoted to a proof of the existence of the
incomplete inverse factorization for H-matrices, while in §§4 and 5 implementation de-
tails and the results of numerical experiments are discussed. Our experiments indicate
that this preconditioning strategy can insure rapid convergence of the PCG iteration
with convergence rates comparable with those of the best serial preconditioners. In
§6 we draw some conclusions and we indicate some future research directions.

This paper can be viewed as a natural outgrowth of work on a direct sparse linear
solver based on oblique projections [3, 4, 28].

*Received by the editors July 20, 1994; accepted for publication (in revised form) April 21,
1995.

†Dipartimento di Matematica, Università degli Studi di Bologna, 40127 Bologna, Italy and
CERFACS, 42 Ave. G. Coriolis, 31057 Toulouse Cedex, France (benzi@dm.unibo.it and benzi@
cerfacs.fr).

‡Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205 (meyer
@math.ncsu.edu). The work of this author was supported in part by National Science Foundation
grants DMS-9403224 and CCR-9413309 and by computing grants from the North Carolina Super
Computing Center.

§Academy of Sciences of the Czech Republic, Institute of Computer Science, 182 07 Prague 8–
Libeň, Czech Republic (tuma@uivt.cas.cz). The work of this author was supported in part by grants
GA CR 201/93/0067 and GA AS CR 230401.

1135

1136 m. benzi, c. d. meyer, and m. t̊uma

2. Computing an incomplete inverse factorization. If An×n is an SPD
matrix, then a factorization of A−1 can readily be obtained from a set of conjugate
directions z1, z2, . . . , zn for A . If

Z = [z1, z2, . . . , zn]

is the matrix whose i th column is zi, we have

ZTAZ = D =

p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 where pi = zTi Azi.

It follows that

A−1 = ZD−1ZT ,

and a factorization of A−1 is obtained. A set of conjugate directions zi may be con-
structed by means of a “conjugate Gram–Schmidt” (or A -orthogonalization) process
applied to any set of linearly independent vectors v1, v2, . . . , vn. The choice vi = ei
(the i th unit vector) is computationally convenient. The resulting Z matrix is unit
upper triangular; indeed,

Z = L−T where A = LDLT

is the root-free Cholesky factorization of A. Denoting the i th row of A by aT
i , the

inverse factorization algorithm can be written as follows.

The Inverse Factorization Algorithm

(1) Let z
(0)
i := ei (1 ≤ i ≤ n)

(2) for i = 1, 2, . . . , n
for j = i, i + 1, . . . , n

p
(i−1)
j := aT

i z
(i−1)
j

end
if i = n go to (3)
for j = i + 1, . . . , n

z
(i)
j := z

(i−1)
j −

(
p
(i−1)
j

p
(i−1)
i

)
z
(i−1)
i

end
end

(3) Let zi := z
(i−1)
i and pi := p

(i−1)
i , for 1 ≤ i ≤ n .

Return Z = [z1, z2, . . . , zn] and D =

p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 .

Notice that the matrix A need not be explicitly stored—only the capability of
forming inner products involving the rows of A is required. This is an attractive

a sparse preconditioner for conjugate gradient 1137

feature for cases where the matrix is only implicitly given as an operator. Once Z
and D are available, the solution of Ax = b can be computed as

x∗ = A−1b = ZD−1ZT b =

n∑
i=1

(
zTi b

pi

)
zi.

A similar algorithm was first proposed in [14]; see also [13, 18]. Further references
and a few historical notes can be found in [3, 4]. For a dense matrix this method
requires roughly twice as much work as Cholesky. For a sparse matrix the cost can
be substantially reduced, but the method is still impractical because the resulting Z
tends to be dense. The idea of computing a sparse approximation of Z to construct
a preconditioner for the conjugate gradient method was first proposed in [3] (see also
[4, 5]). This paper is devoted to developing and testing this idea.

Sparsity is preserved by reducing the amount of fill-in occurring in the computa-
tion of the z -vectors (that is, above the main diagonal in the unit upper triangular
matrix Z). This can be achieved either by ignoring all fill outside selected positions
in Z or by discarding fill whose magnitude falls below a preset drop tolerance (see §4
for details). The motivation for this approach is based upon theoretical results and
computer experiments which show that many of the entries in the inverse (or in the
inverse Cholesky factor) of a sparse SPD matrix are small in absolute value [2, 10, 25].
Several authors have exploited this fact to construct explicit preconditioners based on
sparse approximate inverses [2, 20, 21]. However, the approach taken in this paper is
quite different from the previous ones.

If the incomplete inverse factorization process is successfully completed, one ob-
tains a unit upper triangular matrix Z̄ and a diagonal matrix D̄ with positive diag-
onal entries such that

M−1 := Z̄D̄−1Z̄T ≈ A−1

is a factorized sparse approximate inverse of A . It is shown in the next section
that such an incomplete inverse factorization of A exists (in exact arithmetic) for
arbitrary values of the drop tolerance and for any choice of the sparsity pattern in
Z̄ when A is an H-matrix. For general SPD matrices the process may break down
due to the occurrence of negative or zero pivots p̄i. Although numerical experiments
show that this breakdown is not very likely to occur for reasonably well-conditioned
problems, it is necessary to safeguard the computation of the approximate pivots
against breakdown in order to obtain a robust procedure (see §4).

In this paper we limit ourselves to SPD matrices, but it is possible to apply
the inverse factorization algorithm to arbitrary matrices. In exact arithmetic, the
procedure can be carried out provided that all leading principal minors of A are
nonzero [3]. The resulting Z and D matrices satisfy

AZ = LD

where L , a unit lower triangular matrix, is not explicitly computed. Hence, Z is the
inverse of U in the LDU factorization of A. The application of such an implicit Gaus-
sian elimination method to the solution of sparse linear systems has been investigated
in [3, 4, 28].

3. Existence of the incomplete inverse factorization. The preconditioner
based on the incomplete inverse factorization of A exhibits many analogies with the
classical incomplete LDU factorization of Meijerink and van der Vorst [24]. These

1138 m. benzi, c. d. meyer, and m. t̊uma

authors proved that such an incomplete factorization is well defined for arbitrary zero
structures of the incomplete factors if A is an M-matrix. In other words, if A is a
nonsingular M-matrix, then the incomplete factorization can be carried out (in exact
arithmetic) and the computed pivots are strictly positive. Furthermore, the pivots in
the incomplete factorization are no smaller than the pivots in the exact factorization.
In [23], Manteuffel extended the existence of incomplete LDU factorizations to the
class of H-matrices. Recall that A = [aij] is an H-matrix if Â = [âij] is an M-matrix
where

âij =

{
−|aij | when i �= j,
aii when i = j.

Note that a diagonally dominant matrix is an H-matrix.
This result means that if A is a symmetric H-matrix, then the incomplete

Cholesky factorization always exists and it can be used to construct an SPD precon-
ditioner for the conjugate gradient method. If A is a general (non-H) SPD matrix,
the incomplete factorization may break down due to the occurrence of zero pivots, or
the corresponding preconditioner may fail to be positive definite due to the presence
of negative pivots.

The same turns out to be true for the incomplete inverse factorization described in
the previous section. Here we prove that in exact arithmetic the inverse factorization
algorithm given in §2 will never break down provided that A is an H-matrix. In
the symmetric case this implies that the approximate inverse Z̄D̄−1Z̄T is positive
definite, so it may be used as preconditioner for the conjugate gradient method. This
fact was first proved for M-matrices in [3].

The proof runs as follows. First we show that the incomplete process will never
break down if A is an M-matrix. This is a consequence of the fact that dropping a
nonzero fill-in in the computation of a vector zj at step i is equivalent to setting the
corresponding entry of the i th row of A to zero. Because the off-diagonal entries of
an M-matrix are nonpositive and the entries of Z̄ are nonnegative, this shows that
the pivots p̄i produced by the inexact scheme are greater than or equal to the exact
pivots pi. Since these are strictly positive for an M-matrix, no breakdown can occur
during the inexact inverse factorization scheme.

Subsequently we show that when A is an H-matrix, the pivots pi computed by
the inverse factorization scheme are no smaller than the pivots p̂i corresponding to
the associated M-matrix.

When combined, these two results will insure the stability of the incomplete
procedure for H-matrices. For symmetric matrices this will mean that the factorized
approximate inverse is positive definite and can be used as a preconditioner for the
conjugate gradient method. However, symmetry is not required in our proof.

Proposition 3.1. Let A be an M-matrix and let pi be the pivots produced
by the inverse factorization algorithm. If p̄i are the pivots computed by the incom-
plete inverse factorization algorithm with any preset zero pattern in the strictly upper
triangular part of Z or any value of the drop tolerance, then

p̄i ≥ pi > 0.

Proof. From the identity AZ = LD and the fact that Z and L are unit trian-
gular matrices it follows that the pivots pi can be expressed in terms of the leading
principal minors ∆i of A as

pi =
∆i

∆i−1
(1 ≤ i ≤ n; ∆0 = 1).

a sparse preconditioner for conjugate gradient 1139

Because A is an M-matrix, all its leading principal minors are positive and therefore
pi > 0 for all i. After i − 1 steps of the inverse factorization scheme, the column

vectors z
(i−1)
j (i ≤ j ≤ n) are available. Let z

(i−1)
kj denote the k th entry of z

(i−1)
j .

At step i of the inverse factorization scheme, the following are computed:

(3.1) p
(i−1)
j =

i−1∑
l=1

ailz
(i−1)
lj + aij (i ≤ j ≤ n).

Suppose now that a sparsity pattern is imposed on the z -vectors, or that all fill-in in
the z -vectors whose magnitude falls below a given drop tolerance is to be dropped.

The modified z -vectors will be denoted by z̄
(i−1)
j , and the pivots are now given by

(3.2) p̄
(i−1)
i =

i−1∑
l=1

ailz̄
(i−1)
li + aii.

We show by induction that p̄
(i−1)
i > 0 for 1 ≤ i ≤ n. We also show that p̄

(i−1)
j ≤ 0

for i + 1 ≤ j ≤ n and that z̄
(i−1)
j ≥ 0 (componentwise) for i ≤ j ≤ n for all i. For

i = 1 the inequalities are obviously true. Now fix i ≥ 2 and assume that p̄
(i−2)
i−1 > 0,

p̄
(i−2)
j ≤ 0 for i ≤ j ≤ n, and z̄

(i−2)
j ≥ 0 for i − 1 ≤ j ≤ n. It follows that in the

updates

z̄
(i−1)
j := z̄

(i−2)
j −

(
p̄
(i−2)
j

p̄
(i−2)
i−1

)
z̄
(i−2)
i−1

nonpositive quantities are subtracted from nonnegative quantities. Therefore, even

after dropping, no component of z̄
(i−1)
j can become negative. That is, z̄

(i−1)
j ≥ 0

for i ≤ j ≤ n. Using this inequalities and the fact that the off-diagonal entries of

an M-matrix are nonpositive, we see from (3.1) that p̄
(i−1)
j ≤ 0 for i + 1 ≤ j ≤ n.

Finally, it is clear from (3.2) that p̄
(i−1)
i ≥ p

(i−1)
i . Thus, the pivots cannot become

smaller because of dropping. Since the exact pivots are positive, this proves that the
incomplete inverse factorization process will not break down.

We explicitly observe that when A is an M-matrix, our method is guaranteed to
produce a nonnegative approximate inverse.

Now let A be an H-matrix, and apply the inverse factorization scheme to A as
well as to the associated M-matrix Â. In the sequel, quantities with hats correspond to
the associated process on Â. We need to compare pivots and z -vectors for the original
process (on A) and for the associated process (on Â). To do this we also need to
introduce intermediate quantities—denoted with tildes—which are constructed with
entries from Â and with pivots from A.

Proposition 3.2. Let A be an H-matrix and let Â be the associated M-matrix.
If pi and p̂i denote the pivots computed by the inverse factorization scheme applied to
A and to Â, respectively, then pi ≥ p̂i. Furthermore, if p̄i denote the pivots computed
by the incomplete inverse factorization algorithm applied to A , then p̄i ≥ p̂i .

Proof. Consider the elements z
(k)
lj of z

(k)
j as rational functions

z
(k)
lj = F

(k)
lj (a11, . . . , akn, p1, . . . , pk)

1140 m. benzi, c. d. meyer, and m. t̊uma

dependent on the elements of A and on the pivots p1, . . . , pk . Likewise, we can

consider the entries ẑ
(k)
lj as rational functions depending on the entries in the first k

rows of Â and on the corresponding pivots p̂1, . . . , p̂k . Let

z̃
(k)
lj = F

(k)
lj (â11, . . . , âkn, p1, . . . , pk)

be computed in the same way as ẑ
(k)
lj using p1, . . . , pk instead of p̂1, . . . , p̂k . In

the following, it helps to think of the pivots pi , p̂i as parameters, ignoring their

dependency on the entries of A and Â , respectively. In this way, the entries of z
(k)
j ,

ẑ
(k)
j , and z̃

(k)
j can be regarded as polynomials in the entries of A and Â , respectively.

We will prove that pi ≥ p̂i using induction on i . We make the following inductive
assumptions for all k ≤ i− 1.

pk ≥ p̂k,(3.3)

ẑ
(k)
lj ≥ z̃

(k)
lj for l ≤ j, j ≥ i,(3.4)

z̃
(k)
lj has all its terms nonnegative (as a polynomial).(3.5)

I. For i = 1 we have p1 = a11 = â11 = p̂1 > 0 and ẑ
(1)
lk ≥ z̃

(1)
lk ≥ 0.

II. Using (3.1) for p̂i we get

p̂i =

i−1∑
l=1

âilẑ
(i−1)
li + âii ≤

i−1∑
l=1

âilz̃
(i−1)
li + âii.

This inequality follows from the inductive assumption ẑ
(i−1)
li ≥ z̃

(i−1)
li and from the

fact that the âil ’s are nonpositive (being off-diagonal elements of the associated M-
matrix).

Notice that corresponding terms in the expressions of z̃
(i−1)
li and z

(i−1)
li as poly-

nomials have the same absolute value, so they can differ only by the sign. Using the
defining identities for the H-matrix, i.e., âii = aii and âik = −|aik| for i �= k, we
get

i−1∑
l=1

âilz̃
(i−1)
li + âii ≤

i−1∑
l=1

ailz
(i−1)
li + aii = pi.

All terms in âilz̃
(i−1)
li on the left-hand side, when considered as a polynomial in

elements of Â , are nonpositive. On the right-hand side, some of the terms in the

expression for z
(i−1)
li can be positive. But corresponding terms of these polynomials

have the same absolute value, so they differ only by the sign. Hence the inequality.
Using the updating formula—given in the inverse factorization algorithm—for

ẑ
(i)
j we have

ẑ
(i)
j = ẑ

(i−1)
j −

∑i−1
l=1 âilẑ

(i−1)
lj + âij

p̂i
ẑ
(i−1)
i .

Since the off-diagonal elements of the M-matrix are nonpositive, and since pi ≥ p̂i > 0,
we obtain

ẑ
(i)
j ≥ z̃

(i−1)
j −

∑i−1
l=1 âilz̃

(i−1)
lj + âij

pi
z̃
(i−1)
i ≡ z̃

(i)
j .

a sparse preconditioner for conjugate gradient 1141

This follows from the set of inequalities

−âilẑ
(i−1)
lj ≥ −âilz̃

(i−1)
lj ,

ẑ
(i−1)
i ≥ z̃

(i−1)
i ,

p̂−1
i ≥ p−1

i .

Assembling everything together we have

−
∑i−1

l=1 âilẑ
(i−1)
lj + âij

p̂i
ẑ
(i−1)
i ≥ −

∑i−1
l=1 âilz̃

(i−1)
lj + âij

pi
z̃
(i−1)
i .

This inequality is added to the inequality from the assumption

ẑ
(i−1)
j ≥ z̃

(i−1)
j

to arrive at
ẑ
(i)
j ≥ z̃

(i)
j .

In addition, all the terms of z̃
(i)
j are nonnegative.

Using the inductive assumption and defining identities for the H-matrix it can
also be seen that (3.5) is true for k = i.

Concerning the second statement, it is easily seen that the same inequality for the
pivots holds when the inverse factorization algorithm is applied to A incompletely, as
the same argument for the polynomial terms can be applied even when some elements

of ẑ
(i)
j are set to zero.
It follows from Propositions 3.1 and 3.2 that the incomplete inverse factorization

process will never break down (in exact arithmetic) when A is an H-matrix. This
is true for arbitrary zero patterns in the strictly upper triangular part of Z̄ and for
arbitrary choices of the drop tolerance.

The pivots produced by the incomplete inverse factorization of an H-matrix are
no smaller than the pivots produced by the incomplete inverse factorization of the as-
sociated M-matrix. However, they are not necessarily larger than the pivots produced
by the exact inverse factorization of A, contrary to what happens in the M-matrix
case. For example, consider the H-matrix

 4 −1 −ε
−1 4 1
−ε 1 4

 .

If 0 < ε < 1/4 , the incomplete inverse factorization algorithm with drop tolerance
Tol = 1/16 returns a pivot p̄3 which is smaller than the pivot p3 produced by
the exact inverse factorization scheme. This is in perfect analogy with incomplete
Cholesky factorizations (see [23, p. 479]).

If A is not an H-matrix, the incomplete inverse factorization algorithm may break
down. For instance, applying the algorithm with a drop tolerance Tol = 0.06 to the
SPD matrix

 2.00 0.40 0.10
0.40 1.08 2.00
0.10 2.00 3.96

1142 m. benzi, c. d. meyer, and m. t̊uma

results in p̄3 = 0 (a breakdown).

In finite precision computations, zero or negative pivots may occur even for H-
matrices, due to round-off errors. Also, trouble can be expected in the presence of
extremely small pivots. Indeed, this is one way for severe ill conditioning to manifest
itself. Furthermore, there are many applications leading to SPD matrices which are
not H-matrices—typically, finite element analysis. It is therefore desirable to incor-
porate some safeguard mechanism in the incomplete algorithm which guarantees that
the computation of the preconditioner will run to completion and that it will always
produce a symmetric positive definite approximate inverse factorization. Similar tech-
niques have been implemented in connection with incomplete Cholesky factorization
preconditioning and with approximate Hessian modifications [23, 16, 27].

4. Notes on implementation. We have implemented the PCG algorithm
with our approximate inverse preconditioner—hereafter referred to as AINV—based
on the inverse factorization algorithm of §2 as well as with a standard incomplete
Cholesky (IC) preconditioner. The purpose of this comparison is to explore some
characteristic algorithmic properties of the explicit preconditioner and to get a feeling
for the convergence rate for the explicit PCG method as compared with one of the
best implicit preconditioners.

We first describe the IC preconditioner used in our comparison. It was computed
by a standard column algorithm with symbolic and numeric phases (see [15, 22]). Dur-
ing the decomposition we removed all the elements of the factor less than a prescribed
drop tolerance Tol. Necessary working space was thus dominated by the size (number
of nonzero entries) of the lower triangular factor of the IC preconditioner.

This decomposition, which could break down for general (non-H) matrices, was
modified by a standard stabilization; see [16]. The algorithm insures that all diagonal
elements of D in the LDLT decomposition are strictly positive and the absolute val-
ues of the elements of L satisfy a uniform upper bound in order to preserve numerical
stability and to prevent excessively large elements in the factors. We refer to [16] for
details.

Computing the AINV preconditioner is a slightly more complicated process. In
the Cholesky case we can use an elimination tree structure to minimize symbolic
integer overhead and working storage. Due to the complicated rules governing fill-in in
the AINV case, it is not clear how to realize an analogous symbolic process. Therefore,
we used a submatrix type of algorithm which updates at each step all the remaining
z -vectors by a rank-one modification. We adopted dynamic data structures similar to
those used in submatrix formulations of sparse unsymmetric Gaussian elimination (see
[11,28,29]). This requires the user to provide an estimate for the number of nonzeros
allowed in the preconditioner. Additionally, some elbow space is needed for the data
structures. In our implementation the elbow space was four times the estimated space
for storing the nonzeros in the preconditioner—similar to the implementation of sparse
Gaussian elimination in the widely used packages MA28 [11] and Y12M [29].

However, there are some differences in the use of such data structures in Gaussian
elimination and in the AINV procedure. For instance, these data structures are used
in AINV for the matrix Z but not for A, now stored in static data structures. During
the AINV process, A is delivered into the cache by rows since we need at each step
only one row of A. Recall that in some cases it may even be possible to avoid storage
of A altogether—e.g., when a routine is available to compute the action of A on a
vector (we did not take advantage of this option in our implementation).

The amount of fill-in created during the computation of the AINV preconditioner

a sparse preconditioner for conjugate gradient 1143

in most of the first steps is very small and thus the integer overhead and CPU time
spent in these initial stages is very small. This is in contrast with sparse Gaussian
elimination (as represented, for instance, by MA28), where the proportion of integer
overhead and CPU time is distributed more uniformly over the algorithmic steps.

The sizes of the data structures in the AINV case which are necessary in the
top level of the memory hierarchy (cache and registers) were found to be small, often
much smaller than the size of the preconditioner. This fact can strongly influence
performance, especially on workstation equipment. Nevertheless, working storage for
the implementation of AINV is larger than for the implementation of IC.

Sparsity was preserved on the basis of value rather than on the positions of fill-in.
For capturing the relevant entries in the inverse Cholesky factor of A, this is a better
strategy than imposing a preset sparsity pattern on Z. Consistency suggested that
drop tolerances be used with IC as well.

Skipping some z -vector updates in step (2) of the inverse factorization algorithm

when the coefficients p
(i−1)
j /p

(i−1)
i were in some sense “small” produced bad numerical

results, so no skipping was done.
In the AINV case we also implemented an algorithmic modification to avoid

breakdown for general SPD (non-H) matrices. When some computed diagonal element
p̄i was too small—in our case, less than

√
εM where εM is the machine precision—we

replaced it by

(4.1) p̄i ←− max{√εM , µσθ}

where
µ = 0.1 (a relaxation parameter),

σ = max
i≤k≤n−1

{
p
(i−1)
k

}
,

θ = ‖z(i−1)
i ‖∞ �= 0.

The rule (4.1) was chosen to avoid breakdowns due to very small or negative diagonal
elements p̄i . It also has the effect of constraining the growth of elements in the
z -vectors. This avoids break downs, but, just as in the IC case, there is no guarantee
that we will get a good preconditioner after this regularization.

5. Numerical experiments. The following experiments illustrate some prop-
erties of the two preconditioners when applied within the PCG algorithm to SPD
matrices. Nine test matrices were taken from the Harwell–Boeing collection [12] and
the remaining two were kindly provided by G. Zilli (Padua University).

All experiments were run on a SGI Crimson computer with RISC processor R4000.
Codes were written in Fortran 77 and compiled with the optimization level –O4. CPU
time was measured using the standard function dtime. We also experimented with the
compiling option −MIPS2 which enables double word loads and stores. It is known
that this can substantially enhance the performance of floating point arithmetic of
some codes. This option led to slightly improved timings in only a few cases, mostly
for ICCG. The timings reported in the tables are the best between those obtained
with the two compiling options.

All matrices were rescaled by dividing their elements by their largest nonzero
entry, but no preordering of their elements was used. The right-hand side of each
system was computed using the solution vector composed of ones. The PCG iteration
was terminated when the 2-norm of the unpreconditioned residual had been reduced

1144 m. benzi, c. d. meyer, and m. t̊uma

to less than 10−9 . The matrices used in the experiments correspond to finite ele-
ment approximations to problems in structural engineering (NOS3, NOS5, PADUA1,
PADUA2), finite difference approximations to elliptic PDEs (NOS6, NOS7, GR3030)
and to modelling of power system networks (BUS matrices).

Table 1

Behavior of the unpreconditioned CG algorithm.

test matrix n density time iterations

NOS3 960 8,402 1.76 266

NOS5 468 2,820 0.88 468*

NOS6 675 1,965 1.66 675*

NOS7 729 2,673 1.89 729*

494BUS 494 1,080 0.91 494*

662BUS 662 1,568 1.30 614

685BUS 685 1,967 1.44 556

1138BUS 1,138 2,596 3.83 1,138*

GR3030 900 4,322 0.28 45

PADUA1 812 3,135 3.06 812*

PADUA2 1,802 13,135 24.11 1,802*

The listings in Table 1 are for the unpreconditioned CG algorithm. Column 1
is the name of the test matrix; column 2 lists the size (n) of the matrix; column
3 (density) gives the number of nonzeros in the lower triangular part including the
diagonal of the test matrix; column 4 (time) reports the execution time in seconds;
and column 5 (iterations) gives the number of iterations. An asterisk (*) in column 5
indicates that the algorithm failed to converge after n steps using the above mentioned
stopping criterion, and computations were terminated.

From the description of our implementation it can be expected that the CPU
times for computing the two preconditioners IC and AINV will be different because
the IC computation has very small integer overhead. Of course, this difference may
become negligible if a sequence of linear systems with the same coefficient matrix (or
a slightly modified one) and different right-hand sides has to be solved, since the time
for computing the preconditioners is then only a small fraction of the time required
for the overall computation.

Drop tolerances parameterize IC and AINV in different ways. That is, using the
same Tol value will produce very different results in the two cases. It is preferable to
compare the two preconditioners in terms of amount of fill-in rather than to compare
two preconditioners obtained using the same value of Tol. The key role in the ex-
periments is played by the fill-in allowed in the preconditioners. Allowing more fill-in
results in less PCG iterations, though not always in less overall CPU time. The rela-
tion between preconditioner size (measured by fill-in) and number of PCG iterations
for AINV and IC is one of the objectives of our comparison.

Table 2 lists the results of applying PCG with different sizes (measured by fill-in)
of IC and AINV on the 675× 675 Harwell–Boeing test matrix NOS6 which is derived
from Poisson’s equation in an L-shaped region with mixed boundary conditions. The
timings in this table do not include the time required to compute the preconditioner.

a sparse preconditioner for conjugate gradient 1145

Table 2

Behavior of PCG using IC versus AINV on H–B test matrix NOS6.

IC AINV

fill-in iterations time fill-in iterations time

675 87 0.33 743 76 0.32

897 53 0.18 780 74 0.32

912 51 0.18 1,135 54 0.26

1,204 38 0.14 1,208 47 0.18

1,439 32 0.14 1,300 40 0.21

1,520 28 0.10 1,502 37 0.16

1,565 24 0.10 3,654 22 0.14

1,918 8 0.03 17,387 6 0.09

The results in Table 2 indicate that by using preconditioners of restricted size
(obtained by adjusting the drop tolerances), the iteration counts as well as the timings
for IC and AINV preconditioning are comparable, even in scalar mode allowing slightly
more fill-in for the AINV preconditioner. For preconditioners of comparable size,
slightly more iterations are needed by AINV preconditioning.

If we keep the size of the preconditioners “moderate,” we usually decrease overall
CPU time. What moderate means here is strongly problem and architecture (CPU,
memory hierarchy) dependent.

The AINV method tends to generate more fill-in than IC, and for small drop
tolerances the fill-in for AINV can be so high on some structured problems that we
can no longer talk of sparse approximate inverse preconditioning thus making the
comparison with IC not very meaningful (a preconditioner can be considered sparse
if it contains about the same number of nonzeros as the original matrix or less).
However, as discussed in [3, 4], problems having irregular sparsity patterns seem to
be well suited for the AINV preconditioner because fill-in is often reasonably low.

Table 3

Iteration counts and timings for the IC preconditioner in PCG.

Test Fill- PCG IC PCG Fill- PCG IC PCG
Matrix in steps time time in steps time time

NOS3 2,290 150 0.08 1.45 10,875 32 0.08 0.38

NOS5 744 76 0.04 0.25 1,967 57 0.05 0.21

NOS6 912 51 0.04 0.19 1,439 32 0.05 0.14

NOS7 902 51 0.09 0.21 938 40 0.09 0.14

494BUS 532 197 0.02 0.51 807 114 0.01 0.31

662BUS 694 159 0.02 0.58 1,090 103 0.02 0.42

685BUS 719 184 0.03 0.69 1,554 77 0.04 0.31

1138BUS 1,183 316 0.07 1.82 2,084 121 0.07 0.63

GR3030 900 45 0.07 0.28 4,322 26 0.06 0.22

PADUA1 1,228 104 0.06 0.54 1,644 70 0.06 0.45

PADUA2 5,305 143 0.23 2.71 7,777 84 0.20 1.65

1146 m. benzi, c. d. meyer, and m. t̊uma

Table 3 shows iteration counts and timings for PCG using the IC preconditioner,
and Table 4 gives the same information for PCG using the AINV preconditioner.
These tables also report the time required to compute each preconditioner. Again,
the timings for PCG refer to the iterative part only. The IC and AINV precondi-
tioners were computed with similar restricted sizes up to about the original number
of nonzeros. Drop tolerances for IC were taken between 0.0001 and 0.01 , and drop
tolerances for AINV were in the range 0.1 to 0.6. For each test matrix two sparse
preconditioners were computed—the first being very sparse while the second contains
roughly the same number of nonzeros as the test matrix being used.

Table 4

Iteration counts and timings for the AINV preconditioner in PCG.

Test Fill- PCG AINV PCG Fill- PCG AINV PCG
Matrix in steps time time in steps time time

NOS3 1,946 139 0.27 1.53 6,213 89 0.27 1.14

NOS5 889 87 0.09 0.29 2,086 67 0.12 0.30

NOS6 743 76 0.11 0.32 1,502 37 0.10 0.17

NOS7 903 55 0.07 0.28 2,727 30 0.13 0.19

494BUS 683 173 0.07 0.48 899 110 0.10 0.35

662BUS 893 147 0.13 0.68 1,008 125 0.10 0.56

685BUS 808 178 0.09 0.74 1,836 90 0.11 0.46

1138BUS 1,808 205 0.15 1.22 2,013 156 0.21 0.86

GR3030 900 45 0.12 0.29 13,541 26 0.35 0.37

PADUA1 1,274 63 0.14 0.38 1,459 48 0.14 0.31

PADUA2 5,269 159 0.25 3.14 11,095 80 0.42 1.92

Our results indicate that implicit and explicit sparse preconditioners can have
similar behavior—even in the scalar case. The fact that a somewhat higher fill-in
is required by the AINV preconditioner in order to achieve the same reduction in
the number of PCG iterations as with IC is only natural, since in AINV we are
approximating the inverse Cholesky factor (usually a dense matrix), whereas IC is a
sparse approximation to the Cholesky factor L itself. If L̄ is an incomplete Cholesky
factor of A and Z̄ is an incomplete inverse Cholesky factor, and if the amount of
nonzeros in these two matrices is about the same, then one can expect that L̄−1 will
be substantially denser than Z̄ .

In other words, for the same amount of fill-in in the preconditioners, IC yields a
better approximation to A−1 than AINV. But this comes at a price—namely that
two triangular solves are needed at each PCG iteration. On the other hand, the
price to pay for the explicitness afforded by the AINV preconditioner is the increased
size of the preconditioner, so, on a scalar computer, IC has a slight edge over AINV.
However, the situation could be reversed in a parallel computing environment thanks
to the explicit nature of AINV. This is a point which warrants further research, and no
firm conclusion can be drawn until a parallel version of AINV-PCG has been actually
implemented and compared with recent work on parallel solution of sparse triangular
systems (see, for instance, [1]). In any event, we observe that even in scalar mode
there are problems for which AINV is superior to IC—e.g., PADUA1.

a sparse preconditioner for conjugate gradient 1147

It should be observed that all test matrices used are M-matrices except for NOS3,
NOS5, PADUA1, and PADUA2, and these are not even H-matrices. In no case was
safeguarding necessary during the computation of the AINV preconditioners, whereas
in a few cases IC shifted positive pivots away from zero by a very small amount. This
did not adversely affect the convergence of PCG.

6. Conclusions and future work. Our study involved a novel approach to ap-
proximate inverse preconditioning for conjugate gradient calculations. One interesting
feature of this technique is the fact that the entries of the coefficient matrix A are
not explicitly needed, which may be useful for problems where A is only implicitly
given as an operator. It was proven that the computation of the preconditioner has
the same robustness as standard IC factorization, and numerical evidence was given
to make the point that the new preconditioner is competitive with IC—even in scalar
mode. The results presented in this paper suggest that our approximate inverse pre-
conditioner can be a useful tool for the solution of large sparse SPD linear systems on
modern high-performance architectures.

Future research will focus on efficient parallel implementations and on the ex-
tension to unsymmetric problems. A sparse approximate inverse preconditioner for
a nonsymmetric matrix A may be obtained by constructing a set of approximate
A -biconjugate directions. This can be achieved by applying the inverse factorization
algorithm to both A and AT together with suitable sparsity-preserving strategies.
The resulting factorized sparse approximate inverse, which is guaranteed to exist when
A is an H-matrix, is an explicit preconditioner which can be used to enhance the con-
vergence of conjugate gradient-like methods for the solution of Ax = b .

A different approach, applicable to general sparse matrices, is based on the normal
equations ATAx = AT b. The solution of this system by the preconditioned conjugate
gradient method (PCGNR) is an effective strategy for problems which are unsymmet-
ric and strongly indefinite; see [26, 29]. Also, the PCGNR method is attractive for
solving large sparse linear least squares problems. Some of the most effective precon-
ditioners for PCGNR are based on incomplete orthogonal factorizations of A and do
not require explicitly forming the matrix ATA. These procedures compute a sparse
approximation to the upper triangular factor R in the QR decomposition of A. It
is known that this approach is more robust than computing an incomplete Cholesky
factorization of ATA (notice that R is the transpose of the Cholesky factor of ATA).

A natural idea is to compute an approximate inverse preconditioner for ATA
based on the inverse factorization scheme of §2. At step i of the algorithm the
i th row of ATA is computed and used and then discarded. The resulting Z̄ is
a sparse approximation to R−1. The PCGNR scheme can be carried out free of
triangular solves in the preconditioning steps. This approach was found to be effective
for problems in which ATA enjoys some form of diagonal dominance but in general
was not competitive with more traditional schemes based on variants of the Gram–
Schmidt orthogonalization process. More important, there exist other methods which
can be used to compute R−1 directly from A. A description of some incomplete
orthogonalization methods for approximating R and R−1, together with the results
of numerical experiments on a variety of general sparse matrices (including rectangular
ones), can be found in [6].

REFERENCES

[1] F. L. Alvarado, A. Pothen, and R. Schreiber, Highly parallel sparse triangular solution, in

1148 m. benzi, c. d. meyer, and m. t̊uma

Graph Theory and Sparse Matrix Computations, IMA Vol. 56, A. George, J. R. Gilbert, and
J. W. H. Liu, eds., Springer, New York, 1994, pp. 141–157.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[3] M. Benzi, A Direct Row-Projection Method For Sparse Linear Systems, Ph.D. thesis, Department
of Mathematics, North Carolina State University, Raleigh, NC, 1993.

[4] M. Benzi and C. D. Meyer, A direct projection method for sparse linear systems, SIAM J. Sci.
Comput., 16 (1995), pp. 1159–1176.

[5] An explicit preconditioner for the conjugate gradient method, Proceedings of the Cornelius
Lanczos International Centenary Conference, J. D. Brown et al., eds., Society of Industrial
and Applied Mathematics, Philadelphia, 1994, pp. 294–296.

[6] M. Benzi and M. Tůma, A comparison of some preconditioning techniques for general sparse
matrices, in Proc. of the Second IMACS International Symposium on Iterative Methods in
Linear Algebra, S. Margenov and P. Vassilevski, eds., 1995, to appear.

[7] E. Chow and Y. Saad, Approximate inverse preconditioners for general sparse matrices, in Proc.
of the Colorado Conference on Iterative Methods, April 5–9, 1994.

[8] P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Statis. Comput., 6 (1985), pp. 220–252.

[9] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank, Approximate inverse preconditioning for
sparse linear systems, Internat. J. Computer Math., 44 (1992), pp. 91–110.

[10] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math.
Comp., 43 (1984), pp. 491–499.

[11] I. S. Duff, MA28 - A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations,
Harwell Report AERE - R.8730, Harwell Labortories, 1980.

[12] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1–14.

[13] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Freeman
and Co., San Francisco, London, 1963.

[14] L. Fox, H. D. Huskey, and J. H. Wilkinson, Notes on the solution of algebraic linear simul-
taneous equations, Quart. J. Mech. Appl. Math., 1 (1948), pp. 149–173.

[15] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[16] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London,
1981.

[17] M. Grote and H. Simon, Parallel preconditioning and approximate inverses on the Connection
Machine, in Proc. of the Sixth SIAM Conference on Parallel Processing for Scientific Com-
puting, R. Sincovec et al., eds., Society of Industrial and Applied Mathematics, Philadelphia,
1993, pp. 519–523.

[18] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co.,
New York, 1964.

[19] T. Huckle and M. Grote, A new approach to parallel preconditioning with sparse approximate
inverses, Manuscript SCCM-94-03, Scientific Computing and Computational Mathematics
Program, Stanford University, Stanford, CA, May 1994.

[20] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate inverse preconditioning
I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[21] E. A. Lipitakis and D. J. Evans, Explicit semi-direct methods based on approximate inverse
matrix techniques for solving boundary-value problems on parallel processors, Math. Comput.
Simulation, 29 (1987), pp. 1–17.

[22] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl.,
11 (1990), pp. 134–172.

[23] T. A. Manteuffel, An incomplete factorization technique for positive definite linear systems,
Math. Comp., 34 (1980), pp. 473–497.

[24] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–162.

[25] G. Meurant, A review of the inverse of symmetric tridiagonal and block tridiagonal matrices,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 707–728.

[26] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems, J. Comput.
Appl. Math., 24 (1988), pp. 89–105.

[27] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 1136–1158.

a sparse preconditioner for conjugate gradient 1149

[28] M. Tůma, Solving Sparse Unsymmetric Sets of Linear Equations Based on Implicit Gauss
Projection, Technical rep. 556, Institute of Computer Science, Academy of Sciences of the
Czech Republic, Prague, April 1993.

[29] Z. Zlatev, Computational Methods for General Sparse Matrices, Kluwer Academic Publishers,
Dordrecht, 1991.

