Note: together with your write up, please include printouts of all the required functions, scripts and plots. Please neatly organize the material you turn in.

Part 1: Polynomial Interpolation

After reviewing the Matlab Notes in sections 4.5.1, 4.5.3, 4.5.5 of the textbook, do the following exercises:

- By hand: Problems 4.3.3, 4.3.4, 4.3.7.
- In Matlab: Problems 4.5.3, 4.5.4, 4.5.6; and 4.5.13, 4.5.14 and 4.5.15.

Part 2: Least Squares Approximation

Write a Matlab function that constructs and plots the best least squares mth degree polynomial fit to an arbitrary data set \(\{(x_i, y_i)\}_{i=0}^{n} \) with \(m \leq n \) and \(n \geq 1 \). The function should take the vectors \(x = (x_i) \) and \(y = (y_i) \in \mathbb{R}^{n+1} \) and the nonnegative integer \(m \) as input, and return the vector \(a = (a_k) \in \mathbb{R}^{m+1} \) of coefficients of the least squares polynomial \(p_m(x) = \sum_{k=0}^{m} a_k x^k \), as well as a plot of the graph of \(p_m(x) \) on the interval \([x_0, x_n]\). The plot should clearly display the data points \(\{(x_i, y_i)\}_{i=0}^{n} \), denoted for example as small circles.

In addition, the function should return the least squares error

\[
\varepsilon_{LS} = \left[\sum_{i=0}^{n} \left(y_i - \sum_{k=0}^{m} a_k x_i^k \right)^2 \right]^{1/2}
\]

(this can be easily computed as the 2-norm of the residual vector \(r = y - Aa \), where \(A \in \mathbb{R}^{(n+1) \times (m+1)} \) is the Vandermonde-type matrix constructed from the vector \(x \)).

You should verify that when \(n = m \), the computed approximation polynomial is actually the interpolation polynomial (so that \(\varepsilon_{LS} = 0 \) in this case). The code should also work in the case \(m = 0 \), in which case \(p_0(x) = a_0(= \text{const.}) \) should be simply the arithmetic average of the \(y_i \) values.

You should make sure that the code runs as efficiently as possible, and that the graphics is of good quality. For instance, you should use Matlab’ built-in `polyval` function when evaluating the polynomial \(p_m(x) \) at a given point, and the polynomial should be evaluated at sufficiently many points when the plot is constructed (so that the graph looks nice and smooth).

Also, the code should contain checks and provide error messages (for example if \(m > n \), or \(n < 1 \) or \(x_i = x_j \) for some \(i \neq j \)). You should test this feature by intentionally calling the function with inadmissible parameter choices.

Use your code to produce least squares polynomial approximations of degree \(m = 0, 1, 2, 3, 4, 5 \) to the following data sets:

1. The points \((-5, 10), (-4.5), (-3, 1), (-1, 0), (0, 0), (1, -3), (2, 4), (4, 1), (4.5, 3), (5, -1)\).
2. The values of the function \(f(x) = e^{-x^2} \sin x \) at 11 equally spaced points on the interval \([-\pi, \pi]\).
As before, produce plots of the approximating polynomials and data points. For the data set in item 2 above, include the graph of \(y = f(x) \) in your plots. Be sure to produce nice plots where all plotted quantities are clearly labeled and recognizable.

General instructions:

- The assignment should be typed (preferably using LaTeX, but other word processing systems are also acceptable). Be sure to place your completed assignment in the designated team leader’s directory, together with all Matlab codes and files, by midnight of the due date.

- Projects that are not turned in by the deadline will not be accepted. Metadata will be used to ensure that the files have not been modified past the deadline. Each violation will incur a 10 point penalty.

- Remember that collaboration is expected *within* each team, but strictly forbidden *between* teams. All suspected violations will be reported to the Honor Council.