Math 315, Quiz 2

NOTE: You must show all details of your work to receive credit.

1. Consider the matrix

\[
A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2 \\
\end{bmatrix}
\]

Find the LU factorization of \(A \), where \(L \) is unit lower triangular and \(U \) is upper triangular. Is pivoting necessary for this problem? Do all computations in exact arithmetic.

Solution:

Clearly, no pivoting is necessary at step 1 since \(2 > | -1 | = 1 \). Let

\[
L_1 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Then

\[
L_1A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2 \\
\end{bmatrix}
\]

Again, no row interchanges are needed since \(\frac{3}{2} > | -1 | = 1 \). Let

\[
L_2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{2}{3} & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Then

\[
L_2L_1A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & 0 & \frac{4}{3} & -1 \\
0 & 0 & -1 & 2 \\
\end{bmatrix}
\]
As before, no row interchanges are needed since $\frac{4}{3} > -1 = 1$. Let

$$L_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{3}{4} & 1 \end{bmatrix}.$$

Then

$$L_3L_2L_1A = L^{-1}A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & 0 & \frac{5}{4} \end{bmatrix} = U.$$

Finally,

$$L = L_1^{-1}L_2^{-1}L_3^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ 0 & -\frac{2}{3} & 1 & 0 \\ 0 & 0 & -\frac{3}{4} & 1 \end{bmatrix}.$$

(Note that A is diagonally dominant, which explains why pivoting is not needed.)
2. Use the $A = LU$ factorization of A to solve $Ax = b$, where $b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

Solution:

First we solve $Ly = b$ by forward substitution, obtaining

$$y = \begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{7} \\ \frac{5}{4} \end{bmatrix}.$$

Finally we solve $Ux = y$ by back-substitution, obtaining

$$x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$