Gerbe patching and a Mayer-Vietoris sequence

Bastian Haase, Emory
ECHORaP, May 2017
Patching after Harbater, Hartmann & Krashen
Patching after HHK

- Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse factorization system i.e.
 - a finite inverse system of fields and inclusions
 - the inverse limit is a field F
 - $I = I_v \sqcup I_e$ such that for $k \in I_e$, there are exactly two $i, j \in I_v$ with $i, j < k$
 - these are the only relations
 - associated graph Γ with vertices from I_v and edges from I_e
Patching after HHK

- Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse factorization system i.e.
 - a finite inverse system of fields and inclusions
 - the inverse limit is a field F
 - $I = I_v \sqcup I_e$ such that for $k \in I_e$, there are exactly two $i, j \in I_v$ with $i, j < k$
 - these are the only relations
 - associated graph Γ with vertices from I_v and edges from I_e
- A patching problem of vector spaces over \mathcal{F} is a collection of finite dimensional vector spaces V_i over F_i for all $i \in I_v$ together with isomorphisms $\phi_k : V_i \otimes F_i F_k \hom V_j \otimes F_j F_k$ whenever $i, j < k$
Patching after HHK

- Let \(\mathcal{F} = \{F_i\}_{i \in I} \) be a finite inverse factorization system i.e.
 - a finite inverse system of fields and inclusions
 - the inverse limit is a field \(F \)
 - \(I = I_v \sqcup I_e \) such that for \(k \in I_e \), there are exactly two \(i, j \in I_v \) with \(i, j < k \)
 - these are the only relations
 - associated graph \(\Gamma \) with vertices from \(I_v \) and edges from \(I_e \)

- A patching problem of vector spaces over \(\mathcal{F} \) is a collection of finite dimensional vector spaces \(V_i \) over \(F_i \) for all \(i \in I_v \) together with isomorphisms \(\phi_k : V_i \otimes F_i F_k \cong V_j \otimes F_j F_k \) whenever \(i, j < k \)

- Let \(\text{PP}(\mathcal{F}) \) denote the category of patching problems
Patching after HHK

- Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse factorization system i.e.
 - a finite inverse system of fields and inclusions
 - the inverse limit is a field F
 - $I = I_v \sqcup I_e$ such that for $k \in I_e$, there are exactly two $i, j \in I_v$ with $i, j < k$
 - these are the only relations
 - associated graph Γ with vertices from I_v and edges from I_e

- A patching problem of vector spaces over \mathcal{F} is a collection of
 finite dimensional vector spaces V_i over F_i for all $i \in I_v$
 together with isomorphisms $\phi_k : V_i \otimes F_i F_k \xrightarrow{\sim} V_j \otimes F_j F_k$
 whenever $i, j < k$

- Let $\text{PP}(\mathcal{F})$ denote the category of patching problems

- There is a natural functor $\beta : \text{Vect}(F) \to \text{PP}(\mathcal{F})$
Patching after HHK

- Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse factorization system i.e.
 - a finite inverse system of fields and inclusions
 - the inverse limit is a field F
 - $I = I_v \sqcup I_e$ such that for $k \in I_e$, there are exactly two $i, j \in I_v$ with $i, j < k$
 - these are the only relations
 - associated graph Γ with vertices from I_v and edges from I_e
- A patching problem of vector spaces over \mathcal{F} is a collection of finite dimensional vector spaces V_i over F_i for all $i \in I_v$ together with isomorphisms $\phi_k : V_i \otimes_{F_i} F_k \sim \rightarrow V_j \otimes_{F_j} F_k$ whenever $i, j < k$
- Let $\text{PP}(\mathcal{F})$ denote the category of patching problems
- There is a natural functor $\beta : \text{Vect}(F) \rightarrow \text{PP}(\mathcal{F})$
- We say that patching holds over \mathcal{F} if β is an equivalence
Patching after HHK

- Let T be a cdvr with uniformizer t
- Let K be its fraction field and k its residue field
- Let F be a one variable function field over K
- Let \hat{X} be a normal model of F (normal, connected, projective T-curve)
- Let X be the special fiber of \hat{X}
Patching after HHK

- Let T be a cdvr with uniformizer t
- Let K be its fraction field and k its residue field
- Let F be a one variable function field over K
- Let \hat{X} be a normal model of F (normal, connected, projective T-curve)
- Let X be the special fiber of \hat{X}

For a closed point $p \in X$:
- R_p = local ring of \hat{X} at p
- \hat{R}_p = its completion
- F_P = fraction field of \hat{R}_p
Patching after HHK

- Let T be a cdvr with uniformizer t
- Let K be its fraction field and k its residue field
- Let F be a one variable function field over K
- Let \hat{X} be a normal model of F (normal, connected, projective T-curve)
- Let X be the special fiber of \hat{X}

- Let $U \subset X$ be contained in an irreducible component and not meeting any other
 - $R_U =$ subring of F of rational functions regular on U
 - $\hat{R}_U =$ completion of R_U at t
 - $F_U =$ fraction field of \hat{R}_U
Patching after HHK

- Let T be a cdvr with uniformizer t
- Let K be its fraction field and k its residue field
- Let F be a one variable function field over K
- Let \hat{X} be a normal model of F (normal, connected, projective T-curve)
- Let X be the special fiber of \hat{X}

- Let b be a branch at some p (i.e. height one prime ideal in \hat{R}_p containing t)
 - \hat{R}_b = completion of the localization of \hat{R}_p at b
 - F_b = fraction field of \hat{R}_b
Patching after HHK

- Let \mathcal{P} be a finite subset of closed points of X containing all points where irreducible components meet
Patching after HHK

- Let \(\mathcal{P} \) be a finite subset of closed points of \(X \) containing all points where irreducible components meet.
- Let \(\mathcal{U} \) be the set of connected components of the complements of \(\mathcal{P} \).
Patching after HHK

- Let \mathcal{P} be a finite subset of closed points of X containing all points where irreducible components meet.
- Let \mathcal{U} be the set of connected components of the complements of \mathcal{P}.
- Let \mathcal{B} be the set of branches on $U \in \mathcal{U}$ at $p \in \mathcal{P}$ for $p \in \overline{U}$.
Let \mathcal{P} be a finite subset of closed points of X containing all points where irreducible components meet.

Let \mathcal{U} be the set of connected components of the complements of \mathcal{P}.

Let \mathcal{B} be the set of branches on $U \in \mathcal{U}$ at $p \in \mathcal{P}$ for $p \in \overline{U}$.

For p in the closure of U: $F \subset F_U$, $F_p \subset F_b$.
Let \mathcal{P} be a finite subset of closed points of X containing all points where irreducible components meet.

Let \mathcal{U} be the set of connected components of the complements of \mathcal{P}.

Let \mathcal{B} be the set of branches on $U \in \mathcal{U}$ at $p \in \mathcal{P}$ for $p \in \overline{U}$.

For p in the closure of U: $F \subset F_U, F_p \subset F_b$.

With these relations, we get a finite inverse factorization system \mathcal{F} with $I_{\mathcal{V}} = \mathcal{P} \sqcup \mathcal{U}$ and $I_{\mathcal{V}} = \mathcal{B}$ and limit F.

Theorem (Harbater, Hartmann, Krashen) With the notation from above, patching holds for vector spaces over F.

Patching after HHK
Patching after HHK

- Let \mathcal{P} be a finite subset of closed points of X containing all points where irreducible components meet
- Let \mathcal{U} be the set of connected components of the complements of \mathcal{P}
- Let \mathcal{B} be the set of branches on $U \in \mathcal{U}$ at $p \in \mathcal{P}$ for $p \in \overline{U}$
- For p in the closure of U: $F \subset F_{\mathcal{U}}, F_{p} \subset F_{\mathcal{B}}$
- With these relations, we get a finite inverse factorization system \mathcal{F} with $I_{\nu} = \mathcal{P} \sqcup \mathcal{U}$ and $I_{\nu} = \mathcal{B}$ and limit F

Theorem (Harbater, Hartmann, Krashen)

With the notation from above, patching holds for vector spaces over \mathcal{F}.
From now on: $\mathcal{F} = \{F_1, F_2, F_0\}$ with

and $F_1 \cap F_2 = F$
Patching of torsors and Galois cohomology
Let G be a linear algebraic group over F. Let $\text{TPP}(G, \mathcal{F})$ be the category of torsor patching problems. We have a natural functor

$$\beta': \text{torsors}(G, F) \rightarrow \text{TPP}(G, \mathcal{F})$$

Theorem (HHK)

If patching holds for vector spaces, then it holds for G-torsors. In particular, patching for G-torsors holds over arithmetic curves.
A Mayer–Vietoris sequence

Theorem (HHK)

Let G be a LAG. There is an exact sequence

$$1 \to H^0(F, G) \to H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G) \to H^1(F, G) \to H^1(F_1, G) \times H^1(F_2, G) \to H^1(F_0, G)$$
A Mayer-Vietoris sequence

Theorem (HHK)

Let \(G \) be a LAG. There is an exact sequence

\[
1 \to H^0(F, G) \to H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G) \cong H^1(F, G) \to H^1(F_1, G) \times H^1(F_2, G) \to H^1(F_0, G)
\]

- The map \(H^0(F_0, G) \to H^1(F, G) \) is defined via \(g_0 \mapsto (G, G, g_0) \).
A Mayer-Vietoris sequence

Theorem (HHK)

Let G be a LAG. There is an exact sequence

$$
1 \to H^0(F, G) \to H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G) \\
\to H^1(F, G) \to H^1(F_1, G) \times H^1(F_2, G) \to H^1(F_0, G)
$$

- The map $H^0(F_0, G) \to H^1(F, G)$ is defined via $g_0 \mapsto (G, G, g_0)$
- Local-global principle for torsors holds if $H^1(F, G) \to H^0(F_1, G) \times H^0(F_2, G)$ is injective
Theorem (HHK)

Let G be a LAG. There is an exact sequence

$$1 \to H^0(F, G) \to H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G) \to H^1(F, G) \to H^1(F_1, G) \times H^1(F_2, G) \to H^1(F_0, G)$$

- The map $H^0(F_0, G) \to H^1(F, G)$ is defined via $g_0 \mapsto (G, G, g_0)$
- local-global principle for torsors holds if $H^1(F, G) \to H^0(F_1, G) \times H^0(F_2, G)$ is injective
- local-global for G-torsors is equivalent to surjectivity of $H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G)$
A Mayer–Vietoris sequence

Theorem (HHK)

Let G be a LAG. There is an exact sequence

$$1 \to H^0(F, G) \to H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G) \quad \to \quad H^1(F, G) \to H^1(F_1, G) \times H^1(F_2, G) \quad \to \quad H^1(F_0, G)$$

- The map $H^0(F_0, G) \to H^1(F, G)$ is defined via $g_0 \mapsto (G, G, g_0)$
- Local-global principle for torsors holds if $H^1(F, G) \to H^0(F_1, G) \times H^0(F_2, G)$ is injective
- Local-global for G-torsors is equivalent to surjectivity of $H^0(F_1, G) \times H^0(F_2, G) \to H^0(F_0, G)$
- I.e. for $g_0 \in G(F_0)$, there is $g_1 \in G(F_1)$ and $g_2 \in G(F_2)$ such that $g_0 = g_1 g_2^{-1}$.
Theorem (HHK)

Let G be an abelian linear algebraic group and assume that $\text{char}(k) = 0$ or $\text{char}(k) \nmid |G| < \infty$. There is an exact sequence

\[\cdots \rightarrow H^n(F, G) \rightarrow H^n(F_1, G) \times H^n(F_2, G) \rightarrow H^n(F_0, G) \rightarrow \cdots\]
Non-abelian hypercohomology
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \to \text{Aut}(G)$ be given by conjugation
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \rightarrow \text{Aut}(G)$ be given by conjugation
- $H^{-1}(F, G \rightarrow \text{Aut}(G)) = Z(G)$
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \to \text{Aut}(G)$ be given by conjugation
- $H^{-1}(F, G \to \text{Aut}(G)) = Z(G)$
- $H^0(F, G \to \text{Aut}(G)) = \{G - \text{bitorsors over } F\} / \text{isomorphism}$
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \to \text{Aut}(G)$ be given by conjugation
- $H^{-1}(F, G \to \text{Aut}(G)) = Z(G)$
- $H^0(F, G \to \text{Aut}(G)) = \{ G - \text{bitorsors over } F \} / \text{isomorphism}$
- A G-bitorsor is a left and right G-torsor such that right and left action commute
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \to \text{Aut}(G)$ be given by conjugation
- $H^{-1}(F, G \to \text{Aut}(G)) = Z(G)$
- $H^0(F, G \to \text{Aut}(G)) = \{ G - \text{bitorsors over } F \} / \text{isomorphism}$
- A G-bitorsor is a left and right G-torsor such that right and left action commute
- $H^1(F, G \to \text{Aut}(G)) = \{ G - \text{gerbes over } F \} / \text{equivalence}$
Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules was introduced (independently) by Breen and Borovoi.

- Let G be a group sheaf over F
- Let $G \to \text{Aut}(G)$ be given by conjugation
- $H^{-1}(F, G \to \text{Aut}(G)) = Z(G)$
- $H^0(F, G \to \text{Aut}(G)) = \{G - \text{bitorsors over } F\} / \text{isomorphism}$
- A G-bitorsor is a left and right G-torsor such that right and left action commute
- $H^1(F, G \to \text{Aut}(G)) = \{G - \text{gerbes over } F\} / \text{equivalence}$
- An example of a G-gerbe is BG, the classifying stack of G-torsors. Every G-gerbe is locally equivalent to BG
Mayer–Vietoris in non-abelian hypercohomology
Theorem

Let G be a LAG and let $\text{char}(k) = 0$. There is an exact sequence

$$1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G))$$

$$\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G))$$

$$\to H^1(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^1(F_i, G \to \text{Aut}(G)) \to H^1(F_0, G \to \text{Aut}(G))$$
A Mayer-Vietoris sequence

Theorem

Let G be a LAG and let $\text{char}(k) = 0$. There is an exact sequence

$$1 \rightarrow H^{-1}(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^{-1}(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^{-1}(F_0, G \rightarrow \text{Aut}(G))$$

$$\rightarrow H^0(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^0(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^0(F_0, G \rightarrow \text{Aut}(G))$$

$$\rightarrow H^1(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^1(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^1(F_0, G \rightarrow \text{Aut}(G))$$

1. if $\text{char}(k) = p$, this also holds under additional assumptions on G and $Z(G)$
A Mayer–Vietoris sequence

Theorem

Let G be a LAG and let $\text{char}(k) = 0$. There is an exact sequence

\[
1 \rightarrow H^{-1}(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^{-1}(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^{-1}(F_0, G \rightarrow \text{Aut}(G))
\]

\[
\rightarrow H^0(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^0(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^0(F_0, G \rightarrow \text{Aut}(G))
\]

\[
\rightarrow H^1(F, G \rightarrow \text{Aut}(G)) \rightarrow \prod_{i=1,2} H^1(F_i, G \rightarrow \text{Aut}(G)) \rightarrow H^1(F_0, G \rightarrow \text{Aut}(G))
\]

1. if $\text{char}(k) = p$, this also holds under additional assumptions on G and $Z(G)$

2. the first two rows exist and are exact even if $\text{char}(k) = p$.
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1, 2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]
\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1, 2} H^0(F_i, G \to \text{Aut}(G)) \overset{\alpha}{\to} H^0(F_0, G \to \text{Aut}(G)) \]

- Let \(P \) be a \(G \)-bitorsor, i.e. a right and left \(G \)-torsors where right and left action commute
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]

\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \xrightarrow{\alpha} H^0(F_0, G \to \text{Aut}(G)) \]

- Let \(P \) be a \(G \)-bitorsor, i.e. a right and left \(G \)-torsors where right and left action commute
- Given two \(G \)-bitorsors \(P \) and \(Q \), the wedged product \(P \wedge^G Q \) is again a \(G \)-bitorsor
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]
\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \xrightarrow{\alpha} H^0(F_0, G \to \text{Aut}(G)) \]

- Let \(P \) be a \(G \)-bitorsor, i.e. a right and left \(G \)-torsors where right and left action commute
- Given two \(G \)-bitorsors \(P \) and \(Q \), the wedged product \(P \wedge^G Q \) is again a \(G \)-bitorsor
- this allows us to define the map \(\alpha \) via \((P_1, P_2) \mapsto P_1 \wedge^G P_2^{\text{op}}\)
Theorem

Let G be a LAG. Then, patching holds for G-bitorsors over \mathcal{F}.

$$
1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \\
\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G))$$
Patching for bitorsors

1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G))

\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G))

Theorem

Let G be a LAG. Then, patching holds for G-bitorsors over \(\mathcal{F} \).

- proof via reduction to left G-torsor case and description of right action given by Breen
Patching for bitorsors

\[
1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \\
\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G))
\]

Theorem

Let G be a LAG. Then, patching holds for G-bitorsors over \mathcal{F}.

- proof via reduction to left G-torsor case and description of right action given by Breen
- This proves exactness here
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]
\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

- Note that automorphisms of G as a bitorsor come from $Z(G)$
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]
\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

- Note that automorphisms of \(G \) as a bitorsor come from \(Z(G) \)
- Given \(g_0 \in Z(G)(F_0) \), then \((G, G, g_0)\) is a bitorsor patching problem
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]

\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

- Note that automorphisms of G as a bitorsor come from $Z(G)$
- Given $g_0 \in Z(G)(F_0)$, then (G, G, g_0) is a bitorsor patching problem
- Let P_{g_0} denote a solution
Patching for bitorsors

\[1 \to H^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^{-1}(F_i, G \to \text{Aut}(G)) \to H^{-1}(F_0, G \to \text{Aut}(G)) \]

\[\to H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

- Note that automorphisms of \(G \) as a bitorsor come from \(Z(G) \)
- Given \(g_0 \in Z(G)(F_0) \), then \((G, G, g_0)\) is a bitorsor patching problem
- Let \(P_{g_0} \) denote a solution
- This allows us to define the connecting map via \(g_0 \mapsto [P_{g_0}] \)
Local-global principle for bitorsors

1 \rightarrow H^{-1}(F, G \rightarrow Aut(G)) \rightarrow \prod_{i=1,2} H^{-1}(F_i, G \rightarrow Aut(G)) \rightarrow H^{-1}(F_0, G \rightarrow Aut(G))

\rightarrow H^0(F, G \rightarrow Aut(G)) \rightarrow \prod_{i=1,2} H^0(F_i, G \rightarrow Aut(G)) \rightarrow H^0(F_0, G \rightarrow Aut(G))

Corollary

Local-global for G-bitorsors holds iff $Z(G)$ satisfies factorization.
Local-global principle for bitorsors

\[1 \to \mathcal{H}^{-1}(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} \mathcal{H}^{-1}(F_i, G \to \text{Aut}(G)) \to \mathcal{H}^{-1}(F_0, G \to \text{Aut}(G)) \]
\[\to \mathcal{H}^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} \mathcal{H}^0(F_i, G \to \text{Aut}(G)) \to \mathcal{H}^0(F_0, G \to \text{Aut}(G)) \]

Corollary

Local-global for G-bitorsors holds iff \(Z(G) \) satisfies factorization.

- HHK proved that a rational LAG \(H \) satisfies factorization iff \(H \) is connected or \(\Gamma \) is a tree.
Patching for gerbes and local-global principle for gerbes

\[H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

\[H^1(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^1(F_i, G \to \text{Aut}(G)) \to H^1(F_0, G \to \text{Aut}(G)) \]
Patching for gerbes and local-global principle for gerbes

\[H^0(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^0(F_i, G \to \text{Aut}(G)) \to H^0(F_0, G \to \text{Aut}(G)) \]

\[H^1(F, G \to \text{Aut}(G)) \to \prod_{i=1,2} H^1(F_i, G \to \text{Aut}(G)) \to H^1(F_0, G \to \text{Aut}(G)) \]

- exactness here follows from gerbe patching
Patching for gerbes and local-global principle for gerbes

\[
\begin{align*}
\text{H}^0(F,G \to \text{Aut}(G)) & \to \prod_{i=1,2} \text{H}^0(F_i,G \to \text{Aut}(G)) \to \text{H}^0(F_0,G \to \text{Aut}(G)) \\
\text{H}^1(F,G \to \text{Aut}(G)) & \to \prod_{i=1,2} \text{H}^1(F_i,G \to \text{Aut}(G)) \to \text{H}^1(F_0,G \to \text{Aut}(G))
\end{align*}
\]

- exactness here follows from gerbe patching

Corollary

G-gerbes satisfy local-global principle iff *G*-bitorsors satisfy factorization, i.e. iff for all *G*-bitorsors \(P_0 \) over \(F_0 \), there are *G*-bitorsors \(P_1, P_2 \) over \(F_1 \) and \(F_2 \) such that \(P_0 \cong P_1 \wedge^G P_2^{\text{op}} \) holds.
Let G be a linear algebraic group over F with center Z. Then, the local global principle for G-gerbes with respect to patching holds if

- if $\text{char}(k) = 0$, Γ is a tree and
 - G is a finite constant group scheme with trivial center,
 - G is split, semisimple, adjoint of type $A_1, B_n, C_n, E_7, E_8, F_4$ or G_2,
 - G is semisimple such that G/Z admits no outer automorphism and $Z, G/Z$ satisfy bitorsor factorization,
 - $G = SL_1(D)$ where D is a central simple algebra over F,
- if $\text{char}(k) = p > 0$, Z has finite order not divided by $\text{char}(k)$ and G and Γ are as in the case of $\text{char}(k) = 0$.
• Let \(P \) be a \(G \)-bitorsor
• Consider the functor

\[
\psi_P : BG \to BG, \\
T \mapsto P \wedge^G T
\]
Let P be a G-bitorsor

Consider the functor

$$\psi_P : BG \to BG,$$

$$T \mapsto P \wedge^G T$$

It is an equivalence with quasi-inverse $T \mapsto P^{\text{op}} \wedge^G T$
Automorphisms of BG and bitorsors

- Let P be a G-bitorsor
- Consider the functor

 $\psi_P : BG \rightarrow BG,$

 $T \mapsto P^G T$

- It is an equivalence with quasi-inverse $T \mapsto P^{op}^G T$
- Given an isomorphism of G-bitorsors $f : P \rightarrow P'$, we get induced isomorphisms $P^G T \rightarrow P'^G T$
Automorphisms of BG and bitorsors

- Let P be a G-bitorsor
- Consider the functor

\[\psi_P : BG \to BG, \]
\[T \mapsto P \wedge^G T \]

- It is an equivalence with quasi-inverse $T \mapsto P^{\text{op}} \wedge^G T$
- Given an isomorphism of G-bitorsors $f : P \to P'$, we get induced isomorphisms $P \wedge^G T \to P' \wedge^G T$
- These isomorphisms define a natural isomorphism of functors $\alpha_f : \psi_P \Rightarrow \psi_{P'}$
Theorem (Giraud)

There is an equivalence of categories

\[\text{Bitorsors}(G, F) \simeq \text{Aut}(BG) \]

given by \(P \mapsto \psi_P \) and \(f \mapsto \psi_f \).
A semi-cocyclic description of G-gerbes

Let G be a G-gerbe over $\text{Spec}(F)$ over the big étale site.
A semi-cocyclic description of G-gerbes

Let G be a G-gerbe over Spec(F) over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in G(Y)$
A semi-cocyclic description of G-gerbes

Let \mathcal{G} be a G-gerbe over $\text{Spec}(F)$ over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in \mathcal{G}(Y)$
- We get an equivalence of G-gerbes:

$$\mathcal{G}|_Y \to B G|_Y$$

$$p \mapsto \text{Isom}(p, y)$$
A semi-cocyclic description of G-gerbes

Let \mathcal{G} be a G-gerbe over $\text{Spec}(F)$ over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in \mathcal{G}(Y)$
- We get an equivalence of G-gerbes:

\[
\mathcal{G}|_Y \to B\mathcal{G}|_Y \\
p \mapsto \text{Isom}(p, y)
\]

\[Y^2 = Y \times_F Y \quad \psi: B\mathcal{G}|_{Y^2} \to B\mathcal{G}|_{Y^2}\]
A semi-cocyclic description of G-gerbes

Let G be a G-gerbe over $\text{Spec}(F)$ over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in G(Y)$
- We get an equivalence of G-gerbes:

$$G|_Y \to BG|_Y$$

$$p \mapsto \text{Isom}(p, y)$$

$$Y^2 = Y \times_F Y$$

$$\psi: BG|_{Y^2} \to BG|_{Y^2}$$

$$Y^3$$

$$\alpha: \psi_{23} \circ \psi_{12} \Rightarrow \psi_{13}$$
A semi-cocyclic description of G-gerbes

Let G be a G-gerbe over Spec(F) over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in G(Y)$
- We get an equivalence of G-gerbes:

$$G|_{Y} \to BG|_{Y}$$

$$p \mapsto \text{Isom}(p, y)$$

$Y^2 = Y \times_F Y$ \quad $\psi: BG|_{Y^2} \to BG|_{Y^2}$

Y^3 \quad $\alpha: \psi_{23} \circ \psi_{12} \Rightarrow \psi_{13}$

Y^4 \quad coherence condition on α
A semi-cocyclic description of \(G \)-gerbes

Let \(\mathcal{G} \) be a \(G \)-gerbe over \(\text{Spec}(F) \) over the big étale site.

- Let \(Y \to \text{Spec}(F) \) be a cover and \(y \in \mathcal{G}(Y) \)
- We get an equivalence of \(G \)-gerbes:

\[
\mathcal{G}|_Y \to B G|_Y
p \mapsto \text{Isom}(p, y)
\]

\[
Y^2 = Y \times_F Y \quad \psi : B G|_{Y^2} \to B G|_{Y^2} \quad \text{G-bitorsor } P
\]

\[
Y^3 \quad \alpha : \psi_{23} \circ \psi_{12} \Rightarrow \psi_{13}
\]

\[
Y^4 \quad \text{coherence condition on } \alpha
\]
A semi-cocyclic description of G-gerbes

Let \mathcal{G} be a G-gerbe over $\text{Spec}(F)$ over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in \mathcal{G}(Y)$
- We get an equivalence of G-gerbes:

\[
\mathcal{G} \mid_Y \to BG \mid_Y \\
p \mapsto \text{Isom}(p,y)
\]

$Y^2 = Y \times_F Y \quad \psi : BG \mid_{Y^2} \to BG \mid_{Y^2} \quad G$-bitorsor P

$Y^3 \quad \alpha : \psi_{23} \circ \psi_{12} \Rightarrow \psi_{13} \quad f : P_{12} \wedge^G P_{23} \sim P_{13}$

$Y^4 \quad$ coherence condition on α
Let G be a G-gerbe over $\text{Spec}(F)$ over the big étale site.

- Let $Y \to \text{Spec}(F)$ be a cover and $y \in G(Y)$
- We get an equivalence of G-gerbes:

$$G|_Y \to BG|_Y$$

$$p \mapsto \text{Isom}(p, y)$$

$Y^2 = Y \times_F Y$

$\psi: BG|_{Y^2} \to BG|_{Y^2}$

G-bitorsor P

Y^3

$\alpha: \psi_{23} \circ \psi_{12} \Rightarrow \psi_{13}$

$f: P_{12} \land^G P_{23} \sim P_{13}$

Y^4

coherence condition on α

coherence condition on f
A semi-cocyclic description of G-gerbes

Theorem (Breen)

A gerbe \mathcal{G} is, up to unique equivalence, determined by (Y, P, f)
Gerbe patching

\[\theta : \mathcal{G}_1|_{F_0} \sim \mathcal{G}_2|_{F_0} \]

\[\mathcal{G}_1 \quad \mathcal{G}_2\]

\[F \]

\[F_0 \]

\[F_1 \]

\[F_2 \]
Assumption

There is a cover $Y \rightarrow \text{Spec}(F)$ and $y_i \in \mathcal{G}_i(Y_i)$ such that $\theta(y_1)$ and y_2 are isomorphic over Y_0
Gerbe patching

Assumption

There is a cover
\[Y \to \operatorname{Spec}(F) \] and
\[y_i \in \mathcal{G}_i(Y_i) \] such that
\[\theta(y_1) \text{ and } y_2 \text{ are isomorphic over } Y_0 \]

1. write \(\mathcal{G}_i = (Y_i, P_i, f_i) \) using \(y_i \)
Assumption

There is a cover $Y \to \text{Spec}(F)$ and $y_i \in \mathcal{G}_i(Y_i)$ such that $\theta(y_1)$ and y_2 are isomorphic over Y_0.

1. write $\mathcal{G}_i = (Y_i, P_i, f_i)$ using y_i
2. θ corresponds to $P_1|_{F_0} \simeq P_2|_{F_0}$, compatible with f_i
Gerbe patching

Assumption

There is a cover \(Y \rightarrow \text{Spec}(F) \) and \(y_i \in \mathcal{G}_i(Y_i) \) such that \(\theta(y_1) \) and \(y_2 \) are isomorphic over \(Y_0 \)

1. write \(\mathcal{G}_i = (Y_i, P_i, f_i) \) using \(y_i \)
2. \(\theta \) corresponds to \(P_1|_{F_0} \simeq P_2|_{F_0} \), compatible with \(f_i \)
3. bitorsor patching gives
 - bitorsor \(P \) over \(Y^2 \)
Gerbe patching

Assumption
There is a cover $Y \to \text{Spec}(F)$ and $y_i \in \mathcal{G}_i(Y_i)$ such that $	heta(y_1)$ and y_2 are isomorphic over Y_0

1. write $\mathcal{G}_i = (Y_i, P_i, f_i)$ using y_i
2. θ corresponds to $P_1|_{F_0} \simeq P_2|_{F_0}$, compatible with f_i
3. bitorsor patching gives
 - bitorsor P over Y^2
 - $f : P_{12} \wedge^G P_{23} \simeq P_{13}$ over Y^3
Gerbe patching

Assumption
There is a cover

\[Y \rightarrow \text{Spec}(F) \] and

\[y_i \in \mathcal{G}_i(Y_i) \] such that

\[\theta(y_1) \] and \(y_2 \) are isomorphic over \(Y_0 \)

1. write \(\mathcal{G}_i = (Y_i, P_i, f_i) \) using \(y_i \)
2. \(\theta \) corresponds to \(P_1|_{F_0} \simeq P_2|_{F_0} \), compatible with \(f_i \)
3. bitorsor patching gives
 - bitorsor \(P \) over \(Y^2 \)
 - \(f : P_{12} \wedge^G P_{23} \overset{\simeq}{\rightarrow} P_{13} \) over \(Y^3 \)
 - \(f \) satisfies coherence condition on \(Y^4 \)
The gerbe $\mathcal{G} = (Y, P, f)$ solves the patching problem.
Gerbe patching

The gerbe $\mathcal{G} = (Y, P, f)$ solves the patching problem

- The assumption always holds in $\text{char}(k) = 0$ by a theorem of CHHKPS. In $\text{char}(k) = p$, it holds under a technical assumption on G and $Z(G)$.
Gerbe patching

The gerbe $\mathcal{G} = (Y, P, f)$ solves the patching problem

- The assumption always holds in $\text{char}(k) = 0$ by a theorem of CHHKPS. In $\text{char}(k) = p$, it holds under a technical assumption on G and $Z(G)$
- Also works for gerbes with linear algebraic band
Gerbe patching

The gerbe $G = (Y, P, f)$ solves the patching problem

- The assumption always holds in $\text{char}(k) = 0$ by a theorem of CHHKPS. In $\text{char}(k) = p$, it holds under a technical assumption on G and $Z(G)$
- Also works for gerbes with linear algebraic band
- One can also patch 1- and 2-morphisms of gerbes via bitorsor patching
Gerbe patching

The gerbe $\mathcal{G} = (Y, P, f)$ solves the patching problem

- The assumption always holds in $\text{char}(k) = 0$ by a theorem of CHHKPS. In $\text{char}(k) = p$, it holds under a technical assumption on G and $Z(G)$
- Also works for gerbes with linear algebraic band
- One can also patch 1- and 2-morphisms of gerbes via bitorsor patching

Theorem

Under the assumption, there is a 2-equivalence of 2-categories

\[\mathcal{G}\text{-Gerbes over } F \simeq \text{G-gerbe patching problems over } \mathbb{F} \]