CS570 Data Mining

Frequent Pattern Mining and Association Analysis 2

Cengiz Gunay

Slide credits: Li Xiong, Jiawei Han and Micheline Kamber
George Kollios
Mining Frequent Patterns and Association Analysis

- Basic concepts
- Efficient and scalable frequent itemset mining methods
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical format
 - Closed and maximal patterns and their mining method
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
Mining Frequent Patterns Without Candidate Generation

- Basic idea: grow long patterns from short ones using local frequent items
 - “abc” is a frequent pattern
 - Get all transactions having “abc”: DB|abc
 - “d” is a local frequent item in DB|abc → abcd is a frequent pattern
- FP-Growth
 - Construct FP-tree
 - Divide compressed database into a set of conditional databases and mine them separately
Construct FP-tree from a Transaction Database

1. Scan DB once, find frequent 1-itemsets (single item pattern)
2. Sort frequent items in descending frequency order (f-list)
3. Scan DB again, construct FP-tree

Header Table

<table>
<thead>
<tr>
<th>Items bought</th>
<th>(ordered) frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>{f, a, c, d, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
<tr>
<td>{a, b, c, f, l, m, o}</td>
<td>{f, c, a, b, m}</td>
</tr>
<tr>
<td>{b, f, h, j, o, w}</td>
<td>{f, b}</td>
</tr>
<tr>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
</tr>
<tr>
<td>{a, f, c, e, l, p, m, n}</td>
<td>{f, c, a, m, p}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TID</th>
<th>Items bought</th>
<th>(ordered) frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, a, c, d, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, l, m, o}</td>
<td>{f, c, a, b, m}</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, j, o, w}</td>
<td>{f, b}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
</tr>
<tr>
<td>500</td>
<td>{a, f, c, e, l, p, m, n}</td>
<td>{f, c, a, m, p}</td>
</tr>
</tbody>
</table>

min_support = 3

F-list = f-c-a-b-m-p
Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction

- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never larger than the original database (not counting node-links and the count field)
 - For a Connect-4 Dataset, compression ratio could be over 100
Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition

- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern
Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list: f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundancy
Set Enumeration Tree of the Patterns

- Depth-first recursive search
- Pruning while building conditional patterns
Find Patterns Having p From p-conditional Database

- Start at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p’s conditional pattern base

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Conditional pattern bases

- c : f : 3
- a : fc : 3
- b : fca : 1, f : 1, c : 1
- m : fca : 2, $fcab$: 1
- p : $fcam$: 2, cb : 1
From Conditional Pattern-bases to Conditional FP-trees

- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base
- Repeat the process on each newly created conditional FP-tree until the resulting FP-tree is empty, or only one path

p-conditional pattern base:

\[\text{fca:m:2, c:1} \]

All frequent patterns containing p

\[\{\} \]

\[p, \]

\[c:3 \rightarrow cp \]
Finding Patterns Having m

- Construct m-conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree until the resulting FP-tree is empty, or only one path

m-conditional pattern base: $fca:2, fcab:1$

Header Table

<table>
<thead>
<tr>
<th>Item</th>
<th>frequency</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

m-conditional FP-tree (min-support =3)

All frequent patterns relate to m

- $fm, cm, am,$
- $fcm, fam, cam,$
- $fcam$
FP-Growth vs. Apriori: Scalability With the Support Threshold

Data set T25I20D10K

- **Run time (sec.)**
- **Support threshold (%)**

- **D1 FP-growth runtime**
- **D1 Apriori runtime**
Why Is FP-Growth the Winner?

- Decompose both mining task and DB and leads to focused search of smaller databases
- Use least frequent items as suffix (offering good selectivity) and find shorter patterns recursively and concatenate with suffix
Scalable Methods for Mining Frequent Patterns

- Scalable mining methods for frequent patterns
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical format (ECLAT)
- Closed and maximal patterns and their mining methods
- FIMI Workshop and implementation repository

For each item, store a list of transaction ids (tids)

Horizontal Data Layout

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A,B,E</td>
</tr>
<tr>
<td>2</td>
<td>B,C,D</td>
</tr>
<tr>
<td>3</td>
<td>C,E</td>
</tr>
<tr>
<td>4</td>
<td>A,C,D</td>
</tr>
<tr>
<td>5</td>
<td>A,B,C,D</td>
</tr>
<tr>
<td>6</td>
<td>A,E</td>
</tr>
<tr>
<td>7</td>
<td>A,B</td>
</tr>
<tr>
<td>8</td>
<td>A,B,C</td>
</tr>
<tr>
<td>9</td>
<td>A,C,D</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
</tr>
</tbody>
</table>

Vertical Data Layout

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TID-list

- 1
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

- 3 traversal approaches:
 - top-down, bottom-up and hybrid

- Advantage: very fast support counting

- Disadvantage: intermediate tid-lists may become too large for memory
Scalable Methods for Mining Frequent Patterns

- Scalable mining methods for frequent patterns
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical data format (ECLAT)
- Closed and maximal patterns and their mining methods
 - Concepts
 - Max-patterns: MaxMiner, MAFIA
 - Closed patterns: CLOSET, CLOSET+, CARPENTER
- FIMI Workshop
Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., \{a1, ..., a100\} contains $2^{100} - 1$ sub-patterns!
- Solution: *Mine “boundary” patterns*
- A frequent itemset X is:
 - closed if there exists *no super-pattern* $Y \supseteq X$, *with the same support* as X (Pasquier, et al. @ ICDT’99)
 - a max-pattern if there exists *no frequent super-pattern* $Y \supseteq X$ (Bayardo @ SIGMOD’98)
- Closed pattern is a lossless compression of freq. patterns and support counts
Max-patterns

- Frequent patterns without frequent super patterns
 - BCDE, ACD are max-patterns
 - E.g. BCD, AD, CD is not a max-pattern

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A,B,C,D,E</td>
</tr>
<tr>
<td>20</td>
<td>B,C,D,E,</td>
</tr>
<tr>
<td>30</td>
<td>A,C,D,F</td>
</tr>
</tbody>
</table>

Min_sup=2
Max-Patterns Illustration

An itemset is maximal frequent if none of its immediate supersets is frequent.
Closed Patterns

- An itemset is closed if none of its immediate supersets has the **same support** as the itemset

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>{A,B,D}</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C,D}</td>
<td>2</td>
</tr>
</tbody>
</table>

- Closed patterns: B: 5, {A,B}: 4, {B,D}: 4, {A,B,D}:3, {B,C,D}: 3, {A,B,C,D}: 2
Maximal vs Closed Itemsets

- Frequent Itemsets
 - Closed Frequent Itemsets
 - Maximal Frequent Itemsets
Example: Closed Patterns and Max-Patterns

- DB = \{<a_1, \ldots, a_{100}>, <a_1, \ldots, a_{50}>\}

- Min_sup = 1

- What is the set of closed itemsets?
 - <a_1, \ldots, a_{100}>: 1
 - <a_1, \ldots, a_{50}>: 2

- What is the set of max-patterns?
 - <a_1, \ldots, a_{100}>: 1

- What is the set of all patterns?
 - !!
Scalable Methods for Mining Frequent Patterns

- Scalable mining methods for frequent patterns
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical data format (ECLAT)
- Closed and maximal patterns and their mining methods
 - Concepts
 - Max-pattern mining: MaxMiner, MAFIA
 - Closed pattern mining: CLOSET, CLOSET+, CARPENTER
- FIMI Workshop
MaxMiner: Mining Max-patterns

- Idea: generate the complete set-enumeration tree one level at a time (breadth-first search), while pruning if applicable.

```
Φ
 (ABCD)

A (BCD)  B (CD)  C (D)  D ()

AB (CD)  AC (D)  AD ()  BC (D)  BD ()  CD ()

ABC (C)  ABD ()  ACD ()  BCD ()

ABCD ()
```
Algorithm MaxMiner

- Initially, generate one node \(N = \Phi (ABCD) \), where \(h(N) = \Phi \) and \(t(N) = \{A, B, C, D\} \).
- Recursively expanding \(N \)
 - Local pruning
 - If \(h(N) \cup t(N) \) is frequent, do not expand \(N \).
 - If for some \(i \in t(N) \), \(h(N) \cup \{i\} \) is NOT frequent, remove \(i \) from \(t(N) \) before expanding \(N \).
 - Global pruning
Local Pruning Techniques (e.g. at node A)

Check the frequency of ABCD and AB, AC, AD.
- If ABCD is frequent, prune the whole sub-tree.
- If AC is NOT frequent, remove C from the parenthesis before expanding.
Global Pruning Technique (across sub-trees)

- When a max pattern is identified (e.g. ABCD), prune all nodes (e.g. B, C and D) where $h(N) \cup t(N)$ is a sub-set of it (e.g. ABCD).
Example

<table>
<thead>
<tr>
<th>Items</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEF</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

Min_sup=2

Max patterns:

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A,B,C,D,E</td>
</tr>
<tr>
<td>20</td>
<td>B,C,D,E,</td>
</tr>
<tr>
<td>30</td>
<td>A,C,D,F</td>
</tr>
</tbody>
</table>

Φ (ABCDEF)

A (BCDE) B (CDE) C (DE) D (E) E ()
Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C, D, E</td>
</tr>
<tr>
<td>20</td>
<td>B, C, D, E</td>
</tr>
<tr>
<td>30</td>
<td>A, C, D, F</td>
</tr>
</tbody>
</table>

Min_sup = 2

Max patterns:

Node A

<table>
<thead>
<tr>
<th>Items</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDE</td>
<td>1</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
</tr>
<tr>
<td>AD</td>
<td>2</td>
</tr>
<tr>
<td>AE</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

\[\Phi \ (ABCDEF) \]

\[A \ (BCDE) \ B \ (CDE) \ C \ (DE) \ D \ (E) \ E \ () \]

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A,B,C,D,E</td>
</tr>
<tr>
<td>20</td>
<td>B,C,D,E,</td>
</tr>
<tr>
<td>30</td>
<td>A,C,D,F</td>
</tr>
</tbody>
</table>

Min_sup=2

Max patterns:

- BCDE
Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A,B,C,D,E</td>
</tr>
<tr>
<td>20</td>
<td>B,C,D,E,</td>
</tr>
<tr>
<td>30</td>
<td>A,C,D,F</td>
</tr>
</tbody>
</table>

Min_sup = 2

Max patterns: BCDE, ACD
Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Mining Various Kinds of Association Rules

- Mining multilevel association
- Miming multidimensional association
- Mining quantitative association
- Mining other interesting associations
Mining Multiple-Level Association Rules

- Items often form hierarchies
- Multi-level association rules
 - Top down mining for different levels
 - Support threshold for each level
 - Uniform support vs. reduced support vs. group based support
- Apriori property

uniform support

```
Level 1
min_sup = 5%
```

```
Level 2
min_sup = 5%
```

reduced support

```
Level 1
min_sup = 5%
```

```
Level 2
min_sup = 3%
```

```
Milk
[support = 10%]
```

```
2% Milk
[support = 6%]
```

```
Skim Milk
[support = 4%]
```
Multi-level Association Rules: Redundancy

- Some rules may be redundant due to “ancestor” relationships between items.

- Example
 - milk \Rightarrow wheat bread \[\text{[support = 8\%, confidence = 70\%]}\]
 - 2\% milk \Rightarrow wheat bread \[\text{[support = 2\%, confidence = 72\%]}\]

- We say the first rule is an ancestor of the second rule.

- A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor.
Mining Multi-Dimensional Association

- Single-dimensional rules:
 \[\text{buys}(X, \text{“milk”}) \implies \text{buys}(X, \text{“bread”}) \]

- Multi-dimensional rules: \(\geq 2 \) dimensions or predicates
 - Inter-dimension assoc. rules (*no repeated predicates*)
 \[\text{age}(X, \text{“19-25”}) \land \text{occupation}(X, \text{“student”}) \implies \text{buys}(X, \text{“coke”}) \]
 - hybrid-dimension assoc. rules (*repeated predicates*).
 \[\text{age}(X, \text{“19-25”}) \land \text{buys}(X, \text{“popcorn”}) \implies \text{buys}(X, \text{“coke”}) \]

- Frequent itemset -> frequent predicate set
- Treating quantitative attributes: discretization
Mining Other Interesting Patterns

- Flexible support constraints (Wang et al. @ VLDB’02)
 - Some items (e.g., diamond) may occur rarely but are valuable
 - Customized supmin specification and application
- Top-K closed frequent patterns (Han, et al. @ ICDM’02)
 - Hard to specify supmin, but top-k with lengthmin is more desirable
 - Dynamically raise supmin in FP-tree construction and mining, and select most promising path to mine
Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Correlation Analysis

- Association rules with strong support and confidence can be still uninteresting or even misleading
 - *Buy walnuts ⇒ buy milk* [1%, 80%] misleading - 85% of customers buy milk

- Additional interestingness and correlation measures indicates the strength (and direction) of the (linear) relationship between two random variables.
 - Lift, all-confidence, coherence
 - Chi-square
 - Pearson correlation

- Correlation analysis discussed in dimension reduction
Correlation Measure: Lift

- **play basketball ⇒ eat cereal**
 - Support and confidence? [40%, 66.7%]
 - Misleading - overall % of students eating cereal is 75%
- **play basketball ⇒ not eat cereal** [20%, 33.3%] is more accurate, although with lower support and confidence

Measure of dependent/correlated events: lift

\[
lift = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B | A)}{P(B)}
\]

- Independent or correlated?

\[
lift(B, C) = \frac{2000 / 5000}{3000 / 5000 \times 3750 / 5000} = 0.89
\]

\[
lift(B, \neg C) = \frac{1000 / 5000}{3000 / 5000 \times 1250 / 5000} = 1.33
\]
Correlation Measures: All_confidence and Coherence

- Tan, Kumar, Sritastava @KDD’02

\[
lift = \frac{P(A \cup B)}{P(A)P(B)}
\]

\[
all_conf = \frac{\text{sup}(X)}{\text{max_item_sup}(X)} = \frac{P(A \cup B)}{\text{max}(P(A), P(B))}
\]

\[
coh = \frac{\text{sup}(X)}{|\text{universe}(X)|} = \frac{P(A \cup B)}{P(A) + P(B) - P(A \cup B)}
\]

- Both all-confidence and coherence have the downward closure property
Are Lift and Chi-Square Good Measures?

- Tan, Kumar, Sritastava @KDD’02, Omiecinski@TKDE’03

<table>
<thead>
<tr>
<th></th>
<th>Milk</th>
<th>No Milk</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>m, c</td>
<td>~m, c</td>
<td>c</td>
</tr>
<tr>
<td>No Coffee</td>
<td>m, ~c</td>
<td>~m, ~c</td>
<td>~c</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>m</td>
<td>~m</td>
<td>Σ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DB</th>
<th>m, c</th>
<th>~m, c</th>
<th>m~c</th>
<th>mc</th>
<th>lift</th>
<th>all-conf</th>
<th>coh</th>
<th>χ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1000</td>
<td>100</td>
<td>100</td>
<td>10,000</td>
<td>9.26</td>
<td>0.91</td>
<td>0.83</td>
<td>9055</td>
</tr>
<tr>
<td>A2</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
<td>100,000</td>
<td>8.44</td>
<td>0.09</td>
<td>0.05</td>
<td>670</td>
</tr>
<tr>
<td>A3</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
<td>100,000</td>
<td>9.18</td>
<td>0.09</td>
<td>0.09</td>
<td>8172</td>
</tr>
<tr>
<td>A4</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>0.5</td>
<td>0.33</td>
<td>0</td>
</tr>
</tbody>
</table>

- **lift** and **χ²** are not good measures large transactional DBs
- **all-confidence** or **coherence** could be good measures because they are **null-invariant** – free of influence of null transactions (~m~c)
<table>
<thead>
<tr>
<th>symbol</th>
<th>measure</th>
<th>range</th>
<th>formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>(\phi)-coefficient</td>
<td>-1 \ldots 1</td>
<td>(P(A,B) - P(A)P(B))</td>
</tr>
<tr>
<td>(Q)</td>
<td>Yule’s Q</td>
<td>-1 \ldots 1</td>
<td>(\sqrt{P(A)P(B)(1-P(A))(1-P(B))})</td>
</tr>
<tr>
<td>(Y)</td>
<td>Yule’s Y</td>
<td>-1 \ldots 1</td>
<td>(P(A,B)P(\overline{A,B}) - P(A,B)P(\overline{A})P(\overline{B}))</td>
</tr>
<tr>
<td>(k)</td>
<td>Cohen’s</td>
<td>-1 \ldots 1</td>
<td>(\frac{\sqrt{P(A,B)P(\overline{A,B})} - \sqrt{P(A,B)P(\overline{A})P(\overline{B})}}{\sqrt{P(A,B)P(\overline{A,B})} + \sqrt{P(A,B)P(\overline{A})P(\overline{B})}})</td>
</tr>
<tr>
<td>(PS)</td>
<td>Piatetksy-Shapiro’s</td>
<td>-0.25 \ldots 0.25</td>
<td>(P(A,B) - P(A)P(B))</td>
</tr>
<tr>
<td>(F)</td>
<td>Certainty factor</td>
<td>-1 \ldots 1</td>
<td>(\max \left(\frac{P(B</td>
</tr>
<tr>
<td>(AV)</td>
<td>added value</td>
<td>-0.5 \ldots 1</td>
<td>(\max(P(B</td>
</tr>
<tr>
<td>(K)</td>
<td>Klosgen’s Q</td>
<td>-0.33 \ldots 0.38</td>
<td>(\frac{\sqrt{P(A,B)\max(P(B</td>
</tr>
<tr>
<td>(g)</td>
<td>Goodman-kruskal’s</td>
<td>0 \ldots 1</td>
<td>(\frac{2 \max_j P(A_j) - \max_k P(B_k)}{\sum_j \max_k P(A_j,B_k) \log \frac{P(A_j,B_k)}{P(A_j)P(B_k)}})</td>
</tr>
<tr>
<td>(M)</td>
<td>Mutual Information</td>
<td>0 \ldots 1</td>
<td>(\min(-\sum_i P(A_i) \log P(A_i) + \sum_i P(B_i) \log P(B_i) - \sum_i P(B_i) \log P(B_i)))</td>
</tr>
<tr>
<td>(J)</td>
<td>J-Measure</td>
<td>0 \ldots 1</td>
<td>(\max(P(A,B) \log \frac{P(B</td>
</tr>
<tr>
<td>(G)</td>
<td>Gini index</td>
<td>0 \ldots 1</td>
<td>(\max(P(A)</td>
</tr>
<tr>
<td>(s)</td>
<td>support</td>
<td>0 \ldots 1</td>
<td>(\max(P(B</td>
</tr>
<tr>
<td>(c)</td>
<td>confidence</td>
<td>0 \ldots 1</td>
<td>(\max(\frac{NP(A,B)+1}{NP(A,B)+2} , \frac{NP(A,B)+1}{NP(A,B)+2}))</td>
</tr>
<tr>
<td>(L)</td>
<td>Laplace</td>
<td>0 \ldots 1</td>
<td>(\sqrt{P(A)P(B)})</td>
</tr>
<tr>
<td>(IS)</td>
<td>Cosine</td>
<td>0 \ldots 1</td>
<td>(\frac{P(A,B)}{P(A)+P(B)-P(A,B)})</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>coherence(Jaccard)</td>
<td>0 \ldots 1</td>
<td>(\max(P(A),P(B)))</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>all confidence</td>
<td>0 \ldots 1</td>
<td>(\max(P(A,B)))</td>
</tr>
<tr>
<td>(o)</td>
<td>odds ratio</td>
<td>0 \ldots \infty</td>
<td>(\frac{P(A,B)P(\overline{A})}{P(A)P(\overline{B})})</td>
</tr>
<tr>
<td>(V)</td>
<td>Conviction</td>
<td>0.5 \ldots \infty</td>
<td>(\max(\frac{P(A)P(B)}{P(AB)}, \frac{P(B)P(\overline{A})}{P(\overline{AB})}))</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>lift</td>
<td>0 \ldots \infty</td>
<td>(\frac{P(A,B)}{P(AB)+P(\overline{A})P(\overline{B})})</td>
</tr>
<tr>
<td>(S)</td>
<td>Collective strength</td>
<td>0 \ldots \infty</td>
<td>(\frac{P(A,B)P(\overline{A})P(\overline{B})}{P(AB)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})})</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>(\chi^2)</td>
<td>0 \ldots \infty</td>
<td>(\sum_i \frac{(O_i-E_i)^2}{E_i})</td>
</tr>
</tbody>
</table>
Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
Constraint-based (Query-Directed) Mining

- Finding **all** the patterns in a database *autonomously*? — unrealistic!
 - Many patterns could be found but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides **constraints** on what to be mined
 - System optimization: explores such constraints for efficient mining—**constraint-based mining**
Constraints in Data Mining

- **Knowledge type constraint:**
 - association, correlation, etc.

- **Data constraint** — using SQL-like queries
 - find product pairs sold together in stores in _Chicago_ in Dec.'02

- **Dimension/level constraint**
 - in relevance to _region, price, brand, customer category_

- **Interestingness constraint (support, confidence, correlation)**
 - _min_support ≥ 3%, min_confidence ≥ 60_

- **Rule (or pattern) constraint**
 - small sales (price < $10) triggers big sales (sum > $200)
Constrained Mining

- Rule constraints as metarules specifies the syntactic form of rules
- Constrained mining
 - Finding all patterns satisfying constraints
- Constraint pushing
 - Shares a similar philosophy as pushing selections deeply in query processing
 - What kind of constraints can be pushed?
- Constraints
 - Anti-monotonic
 - Monotonic
 - Succinct
 - Convertible
Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (CHARM, ...)
- Max and closed pattern mining
 - Mining various kinds of rules
 - Correlation analysis
 - Constraint-based mining