CS 171: Introduction to Computer Science II

Algorithm Analysis

Li Xiong
Today

• Hw1 discussion
• Recap: linear search and binary search
• Algorithm Analysis
• Big-O Notation
• Loop Analysis
Hw1 Discussion

• Read the instructions carefully
• Think before you code
• Useful classes/methods
 – ArrayList
 – Random Number generation
ArrayList

• Use generics - parameterized types
 – Type parameters have to be instantiated as reference types
• Autoboxing
 – Autoboxing: Automatically casting a primitive type to a wrapper type
 – Auto-unboxing: automatically casting a wrapper type to a primitive type

ArrayList<Integer> numbers = new ArrayList<Integer>();
numbers.add(1001);
int mynumber = numbers.remove(0);
ArrayList

• Useful methods
 – add(E e): Appends the specified element to the end of this list
 – size(): returns the number of elements in this list
 – remove(int index): Removes the element at the specified position in this list. Shifts any subsequent elements to the left (subtracts one from their indices)
 – get(int index): Returns the element at the specified position in this list.

ArrayList<Integer> numbers = new ArrayList<Integer>();
numbers.add(1001);
int n = numbers.size();
int mynumber2 = numbers.get(0);
int mynumber = numbers.remove(0);
Random number generation

- If you want to generate random test numbers, use the Math.random() method:

  ```java
double x = Math.random();
```

 This generates a double between [0.0, 1.0].
Today

• Hw1 discussion
• Recap: linear search and binary search
• Algorithm Analysis
• Big-O Notation
• Loop Analysis
Search in an Array

- Unordered array: $\sim N$
- Order array: $\sim \lg N$
Review question 1

• The maximum number of elements to examine to complete binary search of 30 elements is:
 – A: 1
 – B: 30
 – C: 7
 – D: 5
Review Question 2

• True or false: It is generally faster to find an existing item in an ordered array than a missing one (item not there).

• Trust or false: It is generally faster to search an item in an ordered array than in an unordered array of the same size.
Algorithm Analysis

• An algorithm is a method for solving a problem expressed as a sequence of steps that is suitable for execution by a computer (machine)
 – E.g. Search, insertion, deletion in an array

• We are interested in designing good algorithms
 – Linear search vs. binary search

• Good algorithms
 – Running time
 – Space usage (amount of memory required)
Running time of an algorithm

• Running time typically increases with the input size (problem size)
• Also affected by hardware and software environment
• We would like to focus on the relationship between the running time and the input size
How to measure running time

• Experimental studies
• Theoretical analysis
Experimental Studies

• Write a program implementing the algorithm
• Run the program with inputs of varying size and composition
• Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
• Plot the results
Limitations of Experiments

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs not included in the experiment.

• In order to compare two algorithms, the same hardware and software environments must be used
MY HOBBY: EXTRAPOLATING

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
Mathematical Analysis - insight

• Total running time of a program is determined by two primary factors:
 – Cost of executing each statement (property of computer, Java compiler, OS)
 – Frequency of execution of each statement (property of program and input)
Algorithm Analysis

• Algorithm analysis:
 – Determine frequency of execution of statements
 – Characterizes running time as a function of the input size

• Benefit:
 – Takes into account all possible inputs
 – Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Analysis Method

• Count the number of primitive operations executed as a function of input size

• A primitive operation corresponds to a low-level (basic) computation with a constant execution time
 — Evaluating an expression
 — Assigning a value to a variable
 — Indexing into an array

• The number of primitive operations is a good estimate that is proportional to the running time of an algorithm
Average-case vs. worst-case

• An algorithm may run faster on some inputs than it does on others (with the same input size)

• Average case: taking the average over all possible inputs of the same size
 – Depends on input distribution

• Best case

• Worst case
 – Easier analysis
 – Typically leads to better algorithms
Loop Analysis

• Programs typically use loops to enumerate through input data items
• Count number of operations or steps in loops
• Each statement within the loop is counted as a step
Example 1

double sum = 0.0;
for (int i = 0; i < n; i ++) {
 sum += array[i];
}

How many steps?
Only count the loop statements (update to the loop variable i is ignored).
Example 1: Solution

double sum = 0.0;
for (int i = 0; i < n; i ++) {
 sum += array[i];
}

How many steps?
Loop will be executed \(n \) times; and there is 1 loop statement. So overall:

\(n \)
Example 2

double sum = 0.0;
for (int i = 0; i < n; i += 2) {
 sum += array[i];
}

How many steps?
Example 2: Solution

double sum = 0.0;
for (int i = 0; i < n; i += 2) {
 sum += array[i];
}

How many steps?
Loop will be executed n/2 times. So overall:

\[\frac{n}{2} \]
Example 3 – Multiple Loops

```
for (int i = 0; i < n; i ++) {
    for (int j = 0; j < n; j ++) {
        int x = i*j;
        sum += x;
    }
}
```

How many steps?
Example 3 – Solution

```java
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        int x = i*j;
        sum += x;
    }
}
```

How many steps?

2 loops, each loop \(n \) times, so overall:

\[2 \cdot n^2 \]
Increase of Cost w.r.t. \(n \)

- Example 1 takes twice as many steps (n) as Example 2 \((n/2)\), but both of them are **linear** to the input size \(n \)
 - If \(n \) is 3 times larger, both costs are 3 times larger
- Example 3 \((2n^2)\) is different:
 - If \(n \) is 3 times larger, it becomes 9 times more expensive.
 - Therefore the cost is **quadratic** w.r.t. to problem size.
Increase of Cost with Growth of n

• In practice we care a lot about how the cost increases w.r.t. the problem size, rather than the absolute cost.

• Therefore we can ignore the constant scale factor in the cost function, and concentrate on the part relevant to n

• We need formal mathematical definitions and tools for comparing the cost
Tilde Notation

• Tilde notation: ignore insignificant terms
• Definition: we write $f(n) \sim g(n)$ if $f(n)/g(n)$ approaches 1 as n grows

• $2n + 10 \sim 2n$
• $3n^3 + 20n^2 + 5 \sim 3n^3$
Big-Oh Notation

• Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for \(n \geq n_0 \)

• Example: \(2n + 10 \) is \(O(n) \)
 – pick \(c = 3 \) and \(n_0 = 10 \)
• Example: the function n^2 is not $O(n)$
 $n^2 \leq cn$
 $n \leq c$
 The above inequality cannot be satisfied since c must be a constant
Big-Oh and Growth Rate

• The big-Oh notation gives an **upper bound** on the growth rate of a function.
• The statement “$f(n)$ is $O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
• We can use the big-Oh notation to rank functions according to their growth rate.
Important Functions in Big-Oh Analysis

- Constant: 1
- Logarithmic: $\log n$
- Linear: n
- N-Log-N: $n \log n$
- Quadratic: n^2
- Cubic: n^3
- Polynomial: n^d
- Exponential: 2^n
- Factorial: $n!$
Growth Rate

- From calculus we know that: in terms of the order:
 - exponentials $> \text{polynomials} \> \log$-linear $> \text{linear} > \log$ $> \text{constant}$.

\[\begin{align*}
O(3^n) \\
O(2^n) \\
O(n^3) \\
O(n^2) \\
O(n \log n) \\
O(n) \\
O(\log n) \\
O(1)
\end{align*} \]
Big-Oh Analysis

• Write down cost function $f(n)$
 1. Look for highest-order term
 2. Drop constant factors

• Examples
 – $3n^3 + 20n^2 + 5$
 – $n \log n + 10$
Example 4

```java
for (int i = 0; i < n; i++) {
    for (int j = i; j < n; j++) {
        sum += i*j;
    }
}
```
Example 4: Solution

```java
for (int i = 0; i < n; i++) {
    for (int j = i; j < n; j++) {
        sum += i*j;
    }
}
```

\[
n+(n-1)+(n-2)+...+1+0 = \frac{n(n+1)}{2} \text{ is } 0.5 \left(n^2 + n \right) \Rightarrow O(n^2)
\]
double product = 1.0;
for (int i = 1; i <= n; i *= 2) {
 product *= i;
}

Example 5: Solution

double product = 1.0;
for (int i = 1; i <= n; i *= 2) {
 product *= i;
}

• This has a logarithmic cost:

\[O(\log_2 n) \]

or \(O(\log n) \) as the change of base is merely a matter of a constant factor.
Search in Ordered vs. Unordered Array

- What’s the big O function for linear search?
- Binary search?
Search in Ordered vs. Unordered Array

- What’s the big O function for linear search? $O(N)$
- Binary search? $O(\lg N)$
- Binary search has much better running time, particularly for large-scale problems
Review Question

• What is the Order of growth (big-oh) of the following code?

```cpp
for (int i=1; i<=N; ++i){
    for (int j=1; j<N; j*=2){
        count++;
        count++;
    }
}
```
Summary

• Today
 – Algorithm Analysis
 – Loop Analysis

• Next lecture
 – Simple sorting algorithms and analysis