CS171 Introduction to Computer Science II

Graphs
Graphs

• Definitions
• Implementation/Representation of graphs
• Search
 – Depth-first search
 – Breadth-first search
• Applications
 – Find a path
 – Connected component
 – Shortest path
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w adjacent to v.

Typical applications. [ahead]
- Find all vertices connected to a given source vertex.
- Find a path between two vertices.
Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, **find** any such path.

```java
public class Paths {
    Paths(Graph G, int s) // find paths in G from source s
    boolean hasPathTo(int v) // is there a path from s to v?
    Iterable<Integer> pathTo(int v) // path from s to v; null if no such path
```
Depth-first search (pathfinding)

Goal. Find **paths** to all vertices connected to a given source s.

Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex by **keeping track of edge taken to visit it**.
- Return (retrace steps) when no unvisited options.

Data structures.
- `boolean[] marked` to mark visited vertices.
- `int[] edgeTo` to keep tree of paths.
- `(edgeTo[w] == v)` means that edge v-w was taken to visit w the first time.
public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private final int s;

 public DepthFirstPaths(Graph G, int s)
 {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 this.s = s;
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])

 edgeTo[w] = v;
 dfs(G, w);
 }

 public boolean hasPathTo(int v)
 public Iterable<Integer> pathTo(int v)
Depth-first search (pathfinding iterator)

`edgeTo[]` is a parent-link representation of a tree rooted at `s`.

```java
public boolean hasPathTo(int v)
{    return marked[v]; }

public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
    {        path.push(x);
        path.push(s);
    }    return path;
}
```
Connectivity queries

Def. Vertices \(v \) and \(w \) are **connected** if there is a path between them.

Goal. Preprocess graph to answer queries: is \(v \) connected to \(w \)? in **constant** time.

```java
public class CC {
    CC(Graph G) {
        find connected components in \( G \)
    }
    boolean connected(int v, int w) {
        are \( v \) and \( w \) connected?
    }
    int count() {
        number of connected components
    }
    int id(int v) {
        component identifier for \( v \)
    }
}
```
Connected components

The relation "is connected to" is an equivalence relation:

- Reflexive: v is connected to v.
- Symmetric: if v is connected to w, then w is connected to v.
- Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

![Diagram of connected components]

3 connected components

Remark. Given connected components, can answer queries in constant time.
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.
Finding connected components with DFS

```java
public class CC {
    private boolean marked[];
    private int[] id;
    private int count;

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    public int count() {
    }
    public int id(int v) {
    }
    private void dfs(Graph G, int v) {
    }
}
```

- `id[v] = id` of component containing `v`
- `number of components`
- Run DFS from one vertex in each component
- See next slide
Finding connected components with DFS (continued)

```java
public int count()
{    return count; }

public int id(int v)
{    return id[v]; }

private void dfs(Graph G, int v)
{
    marked[v] = true;
    id[v] = count;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
}
```

- number of components
- id of component containing v
- all vertices discovered in same call of dfs have same id
Finding connected components with DFS (trace)

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>dfs(0)</td>
<td>0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>dfs(6)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>check 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dfs(4)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>dfs(5)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>dfs(3)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>check 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dfs(2)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>check 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dfs(1)</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>check 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 done</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>check 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 done</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finding connected components with DFS (trace)

<table>
<thead>
<tr>
<th>count</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td></td>
<td>1 T T T T T T T T T T</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>dfs(7)</td>
<td></td>
<td>1 T T T T T T T T T T</td>
</tr>
<tr>
<td></td>
<td>2 T T T T T T T T T T T T</td>
<td>0 0 0 0 0 0 0 1 1 2</td>
</tr>
<tr>
<td>dfs(8)</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 7</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>8 done</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>dfs(9)</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>dfs(11)</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 9</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>dfs(12)</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 11</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 9</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>12 done</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>11 done</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>dfs(10)</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 9</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>10 done</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>check 12</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
<tr>
<td>9 done</td>
<td></td>
<td>2 T T T T T T T T T T T</td>
</tr>
</tbody>
</table>

Graph:

```
0 ——— 1 ——— 2
  |       |
  v       v
  3 ——— 4

6 ——— 7 ——— 8

9 ——— 10 ——— 11 ——— 12
```
Connected components application: study spread of STDs

Relationship graph at "Jefferson High"

Graph Search

• Depth-first search
 – Finding a path
 – Connected components

• Breadth-first search
Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.
private void bfs(Graph G, int s)
{
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 if (!marked[w])
 {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
}
Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s in a connected graph in time proportional to $E + V$.

Pf.

- Correctness: queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of distance $k + 1$.

- Running time: each vertex connected to s is visited once.
Six degrees of separation

- Everyone is on average approximately six steps away, by way of introduction, from any other person on Earth
- Online social networks
 - Facebook: average distance is 4.74 (Nov 2011)
 - Twitter: average distance is 4.67
- Erdos number
- Bacon number
Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham
Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org
Map Routing (Shortest Path)
Application: Web Search Engines

A Search Engine does three main things:

i. Gather the contents of all web pages (using a program called a **crawler** or **spider**)

ii. Organize the contents of the pages in a way that allows efficient retrieval (**indexing**)

iii. Take in a query, determine which pages match, and show the results (**ranking** and **display** of results)
Basic structure of a search engine:

Crawler

Indexing

Index

Disk

Query: “computer”

Search.com

Look up
Crawler

- fetches pages from the web
- starts at set of "seed pages"
- parses fetched pages for hyperlinks
- then follows those links
- variations:
 - recrawling
 - focused crawling
 - random walks
Breadth-First Crawl:

• Basic idea:
 - start at a set of known URLs
 - explore in “concentric circles” around these URLs

start pages
distance-one pages
distance-two pages
Project

• Option 1: The Emory MapQuest Project (TEMP)
• Option 2: FaceSpace
• Option 3: Oracle of Bacon (?)

• Project workshop: May 1, 2012
Midterm Exam

• Maximum: 101
• Mean: 86.57
• Median: 90.5