CS171 Introduction to Computer Science II

Graphs
Graphs

• Simple graphs
• Algorithms
 – Depth-first search
 – Breadth-first search
 – shortest path
 – Connected components
• Directed graphs
• Weighted graphs
• Minimum spanning tree
• Shortest path
Digraph. Set of vertices connected pairwise by directed edges.
Vertex = intersection; edge = one-way street.
Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).
Digraph API

```java
public class Digraph

    Digraph(int V)                  // create an empty digraph with V vertices
    Digraph(In in)                  // create a digraph from input stream

    void addEdge(int v, int w)      // add a directed edge v→w

    Iterable<Integer> adj(int v)   // vertices pointing from v

    int V()                        // number of vertices

    int E()                        // number of edges

    Digraph reverse()              // reverse of this digraph

    String toString()              // string representation
```
public class Digraph
{
 private final int V;
 private final Bag<Integer>[] adj;

 public Digraph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[])(new Bag[V]);
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 }

 public Iterable<Integer> adj(int v)
 {
 return adj[v];
 }
}
Digraph API

```java
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```

% java TestDigraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
...
11->4
11->12
12->9

read digraph from input stream
print out each edge (once)
Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
Breadth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges).
Edge-weighted graphs

• Each connection has an associated weight
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).

tinyEWG.txt

```
V
8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

adj[]
```

```
0
6 0 0.58 -> 0 2 0.26 -> 0 4 0.38 -> 0 7 0.16

1
1 3 0.29 -> 1 2 0.36 -> 1 7 0.19 -> 1 5 0.32

2
6 2 0.40 -> 2 7 0.34 -> 1 2 0.36 -> 0 2 0.26 -> 2 3 0.17

3
3 6 0.52 -> 1 3 0.29 -> 2 3 0.17

4
6 4 0.93 -> 0 4 0.38 -> 4 7 0.37 -> 4 5 0.35

5
1 5 0.32 -> 5 7 0.28 -> 4 5 0.35

6
6 4 0.93 -> 6 0 0.58 -> 3 6 0.52 -> 6 2 0.40

7
2 7 0.34 -> 1 7 0.19 -> 0 7 0.16 -> 5 7 0.28 -> 5 7 0.28

Bag objects

References to the same Edge object
```
Weighted edge API

Edge abstraction needed for weighted edges.

```java
public class Edge implements Comparable<Edge>
{
    Edge(int v, int w, double weight) // create a weighted edge v-w

    int either() // either endpoint

    int other(int v) // the endpoint that's not v

    int compareTo(Edge that) // compare this edge to that edge

    double weight() // the weight

    String toString() // string representation
}
```

Idiom for processing an edge e: $v = e.either()$, $w = e.other(v)$;
public class Edge implements Comparable<Edge> {
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either() {
 return v;
 }

 public int other(int vertex) {
 if (vertex == v) return w;
 else return v;
 }

 public int compareTo(Edge that) {
 if (this.weight < that.weight) return -1;
 else if (this.weight > that.weight) return +1;
 else return 0;
 }
}
public class EdgeWeightedGraph

EdgeWeightedGraph(int V)
create an empty graph with V vertices

EdgeWeightedGraph(In in)
create a graph from input stream

void addEdge(Edge e)
add weighted edge e to this graph

Iterable<Edge> adj(int v)
edges incident to v

Iterable<Edge> edges()
all edges in this graph

int V()
umber of vertices

int E()
number of edges

String toString()
string representation
public class EdgeWeightedGraph
{
 private final int V;
 private final Bag<Edge>[] adj;

 public EdgeWeightedGraph(int V)
 {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 {
 return adj[v];
 }
}
Graphs

• Simple graphs
• Algorithms
 – Depth-first search
 – Breadth-first search
 – shortest path
 – Connected components
• Directed graphs
• Weighted graphs
• Minimum spanning tree
• Shortest path
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph \(G \) with positive edge weights (connected).

Def. A spanning tree of \(G \) is a subgraph \(T \) that is connected and acyclic.

Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

spanning tree T: cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
Applications

- Phone/cable network design – minimum cost
- Approximation algorithms for NP-hard problems
Minimum spanning tree API

Q. How to represent the MST?

```java
public class MST

    MST(EdgeWeightedGraph G) constructor

    Iterable<Edge> edges() edges in MST

    double weight() weight of MST
```

% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

an edge-weighted graph
Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

- $O(E)$ time. \[\text{try all edges}\]
- $O(V)$ time.
- $O(\log E)$ time. \[\text{use a priority queue!}\]
- $O(\log^* F)$ time.
- **Constant time.**
Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Delete min to determine next edge $e = v$–w to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

![Graph with priority queue of crossing edges and weights](image)
Prim's algorithm demo: lazy implementation

Use MinPQ: key = edge, prioritized by weight.
(lazy version leaves some obsolete edges on the PQ)
public class LazyPrimMST
{
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G)
 {
 pq = new MinPQ<Edge>();
 mst = new Queue<Edge>();
 marked = new boolean[G.V()];
 visit(G, 0);

 while (!pq.isEmpty())
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
 }
 }
}
Prim's algorithm: lazy implementation

```java
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{   return mst;   }
```

- add v to T
- for each edge e = v-w, add to PQ if w not already in T
Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete min</td>
<td>E</td>
<td>log E</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>log E</td>
</tr>
</tbody>
</table>
Graphs

• Simple graphs
• Algorithms
 – Depth-first search
 – Breadth-first search
 – shortest path
 – Connected components
• Directed graphs
• Weighted graphs
• Minimum spanning tree
• Shortest path
Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from \(s \) to \(t \).
Dijkstra’s Algorithm

• Finds all shortest paths given a source
• Solves single-source, single-destination, single-pair shortest path problem
• Intuition: grows the paths from the source node using a greedy approach
Shortest Paths – Dijkstra’s Algorithm

• Assign to every node a distance value: set it to zero for source node and to infinity for all other nodes.

• Mark all nodes as unvisited. Set source node as current.

• For current node, consider all its unvisited neighbors and calculate their tentative distance. If this distance is less than the previously recorded distance, overwrite the distance (edge relaxation). Mark it as visited.

• Set the unvisited node with the smallest distance from the source node as the next "current node" and repeat the above.

• Done when all nodes are visited.
Data structures

• Distance to the source: a vertex-indexed array distTo[] such that distTo[v] is the length of the shortest known path from s to v

• Edges on the shortest paths tree: a parent-edge representation of a vertex-indexed array edgeTo[] where edgeTo[v] is the parent edge on the shortest path to v
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $distTo[]$ value).
- Add vertex to tree and relax all edges pointing from that vertex.
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```
private void relax(DirectedEdge e)
{
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else
 pq.insert(w, distTo[w]);
 }
}
Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.

BFS. Take edge from vertex which was discovered least recently.

Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.
MapQuest

- Shortest path for a single source-target pair
- Dijkstra algorithm can be used
Better Solution: Make a ‘hunch’!

- Use **heuristics** to guide the search
 - **Heuristic**: estimation or “hunch” of how to search for a solution
- We define a heuristic function:
 \[h(n) = \text{“estimate of the cost of the cheapest path from the starting node to the goal node”} \]
The A* Search

• A* is an algorithm that:
 – Uses heuristic to guide search
 – While ensuring that it will compute a path with minimum cost

• A* computes the function $f(n) = g(n) + h(n)$
A*

• $f(n) = g(n) + h(n)$
 - $g(n) = \text{“cost from the starting node to reach n”}$
 - $h(n) = \text{“estimate of the cost of the cheapest path from n to the goal node”}$
Properties of A*

- A* generates an optimal solution if $h(n)$ is an admissible heuristic and the search space is a tree:
 - $h(n)$ is **admissible** if it never overestimates the cost to reach the destination node

- A* generates an optimal solution if $h(n)$ is a consistent heuristic and the search space is a graph:
 - $h(n)$ is **consistent** if for every node n and for every successor node n' of n:
 $h(n) \leq c(n,n') + h(n')$

- If $h(n)$ is consistent then $h(n)$ is admissible
- Frequently when $h(n)$ is admissible, it is also consistent
Admissible Heuristics

• A heuristic is admissible if it is optimistic, estimating the cost to be smaller than it actually is.

• MapQuest:

 \[h(n) = \text{“Euclidean distance to destination”} \]

 is admissible as normally cities are not connected by roads that make straight lines