CS171 Introduction to Computer Science II

Graphs
Graphs

• Simple graphs
• Algorithms
 – Depth-first search
 – Breadth-first search
 – shortest path
 – Connected components
• Directed graphs
• Weighted graphs
• Shortest path
• Minimum spanning tree
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).
Weighted edge API

Edge abstraction needed for weighted edges.

```java
public class Edge implements Comparable<Edge>
{
    Edge(int v, int w, double weight) // create a weighted edge v-w
    {
        // constructor
    }

    int either() // either endpoint
    {
        // method to get either endpoint
    }

    int other(int v) // the endpoint that's not v
    {
        // method to get the other endpoint
    }

    int compareTo(Edge that) // compare this edge to that edge
    {
        // method to compare edges
    }

    double weight() // the weight
    {
        // method to get the weight
    }

    String toString() // string representation
    {
        // method to get string representation
    }
}
```

Idiom for processing an edge:
```java
int v = e.either(), w = e.other(v);
```
public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

EdgeWeightedGraph(In in) create a graph from input stream

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

int V() number of vertices

int E() number of edges

String toString() string representation
Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to t.

edge-weighted digraph

- 4→5 0.35
- 5→4 0.35
- 4→7 0.37
- 5→7 0.28
- 7→5 0.28
- 5→1 0.32
- 0→4 0.38
- 0→2 0.26
- 7→3 0.39
- 1→3 0.29
- 2→7 0.34
- 6→2 0.40
- 3→6 0.52
- 6→0 0.58
- 6→4 0.93

shortest path from 0 to 6

- 0→2 0.26
- 2→7 0.34
- 7→3 0.39
- 3→6 0.52
Dijkstra’s algorithm

• Maintain a queue of nodes to be examined (open set)
• Remove the node with shortest distance to the source to the closed set and add its neighbors to the open set
Shortest Paths – Dijkstra’s Algorithm

• Initialization
 – Assign to every node a distance value: set it to zero for source node and to infinity for all other nodes.
 – Mark all nodes unvisited, insert source node into a queue (open set)

• Repeat until the queue is empty
 – Remove a node from the queue with the smallest distance from the source node as the "current node“ and mark it as visited (closed set)
 – For current node, consider all its unvisited neighbors (not in the closed set) and calculate their tentative distance.
 – If this distance is less than the previously recorded distance, overwrite the distance and update the parent for the neighbor, and add the neighbor into the queue or update its distance if it is already in the queue (edge relaxation)
Data structures

• Distance to the source: a vertex-indexed array distTo[] such that distTo[v] is the length of the shortest known path from s to v

• Edges on the shortest paths tree: a parent-edge representation of a vertex-indexed array edgeTo[] where edgeTo[v] is the parent edge on the shortest path to v
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

$v \rightarrow w$ successfully relaxes

[Diagram showing a network with nodes and edges labeled with distances, highlighting black edges that are in $\text{edgeTo}[]$.]
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo[]} \) value).
- Add vertex to tree and relax all edges pointing from that vertex.

\begin{tabular}{c|c}
0→1 & 5.0 \\
0→4 & 9.0 \\
0→7 & 8.0 \\
1→2 & 12.0 \\
1→3 & 15.0 \\
1→7 & 4.0 \\
2→3 & 3.0 \\
2→6 & 11.0 \\
3→6 & 9.0 \\
4→5 & 4.0 \\
4→6 & 20.0 \\
4→7 & 5.0 \\
5→2 & 1.0 \\
5→6 & 13.0 \\
7→5 & 6.0 \\
7→2 & 7.0 \\
\end{tabular}
public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
Dijkstra's algorithm: Java implementation

```java
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else            pq.insert (w, distTo[w]);
    }
}
```
Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
• Maintain a set of explored vertices S.
• Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.
Dijkstra. Take edge to vertex that is closest to S.
From Dijkstra to A*

- Dijkstra: remove the node with shortest distance from the source
- A*: remove the node with shortest distance from the source and likely the shortest distance to the target
- \(f(n) = g(n) + h(n) \)
 - \(g(n) \) = “cost from the starting node to reach \(n \)”
 - \(h(n) \) = “estimate of the cost of the cheapest path from \(n \) to the goal node”
Properties of A*

• A* generates an optimal solution if \(h(n) \) is an admissible heuristic and the search space is a tree:
 – \(h(n) \) is **admissible** if it never overestimates the cost to reach the destination node

• A* generates an optimal solution if \(h(n) \) is a consistent heuristic and the search space is a graph:
 – \(h(n) \) is **consistent** if for every node \(n \) and for every successor node \(n' \) of \(n \):
 \[h(n) \leq c(n,n') + h(n') \]

• If \(h(n) \) is consistent then \(h(n) \) is admissible
• Frequently when \(h(n) \) is admissible, it is also consistent
A heuristic is admissible if it is optimistic, estimating the cost to be smaller than it actually is.

MapQuest:

\[h(n) = \text{“Euclidean distance to destination”} \]

is admissible as normally cities are not connected by roads that make straight lines.
Shortest Paths – A* Algorithm

• Initialization
 – Assign to every node a distance value: set it to zero for source node and to infinity for all other nodes.
 – Mark all nodes unvisited, compute the cost (distance + estimate cost) for source node, and insert it into a queue (open set)

• Repeat until the queue is empty
 – Remove a node from the queue with the smallest cost as the "current node“ and mark it as visited (closed set)
 – For current node, consider all its unvisited neighbors (not in the closed set) and calculate their tentative distance.
 – If this distance is less than the previously recorded distance, overwrite the distance and update the parent for the neighbor, and compute the cost (distance + estimated cost) for the neighbor, and add the neighbor into the queue or update its cost if it is already in the queue (edge relaxation)
Graphs

• Simple graphs
• Algorithms
 – Depth-first search
 – Breadth-first search
 – shortest path
 – Connected components
• Directed graphs
• Weighted graphs
• Shortest path
• Minimum spanning tree
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A **spanning tree** of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.
Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A **spanning tree** of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

spanning tree T: $\text{cost} = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$
Applications

• Phone/cable network design – minimum cost
• Approximation algorithms for NP-hard problems
Minimum spanning tree API

Q. How to represent the MST?

```java
public class MST

MST(EdgeWeightedGraph G) constructor

Iterables<Edge> edges() edges in MST

double weight() weight of MST
```

```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```
Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

an edge-weighted graph
Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Delete min to determine next edge $e = v \rightarrow w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T
Prim's algorithm demo: lazy implementation

Use MinPQ: key = edge, prioritized by weight.
(lazy version leaves some obsolete edges on the PQ)
public class LazyPrimMST
{
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G)
 {
 pq = new MinPQ<Edge>();
 mst = new Queue<Edge>();
 marked = new boolean[G.V()];
 visit(G, 0);

 while (!pq.isEmpty())
 {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
 }
 }
}
Prim's algorithm: lazy implementation

```java
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{    return mst; }
```
Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Take edge from vertex which was discovered most recently.</td>
</tr>
<tr>
<td>BFS</td>
<td>Take edge from vertex which was discovered least recently.</td>
</tr>
<tr>
<td>Prim.</td>
<td>Take edge of minimum weight.</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>Take edge to vertex that is closest to S.</td>
</tr>
</tbody>
</table>