Merge Sort
Divide-and-Conquer (§ 10.1.1)

- **Divide-and conquer** is a general algorithm design paradigm:
 - **Divide**: divide the input data S in two disjoint subsets S_1 and S_2
 - **Recur**: solve the subproblems associated with S_1 and S_2
 - **Conquer**: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- **Merge-sort** is a sorting algorithm based on the divide-and-conquer paradigm
 - **Like heap-sort**
 - It uses a comparator
 - It has $O(n \log n)$ running time
 - **Unlike heap-sort**
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)
Merge-Sort (§ 10.1)

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence

Algorithm $\text{mergeSort}(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if S.size() > 1

$(S_1, S_2) \leftarrow \text{partition}(S, n/2)$

$\text{mergeSort}(S_1, C)$

$\text{mergeSort}(S_2, C)$

$S \leftarrow \text{merge}(S_1, S_2)$
Merging Two Sorted Sequences

The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.

Merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes $O(n)$ time.

Algorithm $\text{merge}(A, B)$

Input sequences A and B with $n/2$ elements each

Output sorted sequence of $A \cup B$

$S \leftarrow$ empty sequence

while $\neg A.\text{isEmpty()} \land \neg B.\text{isEmpty()}$

if $A.\text{first().element()} < B.\text{first().element()}$

$S.\text{addLast}(A.\text{remove}(A.\text{first}())])$

else

$S.\text{addLast}(B.\text{remove}(B.\text{first}())])$

while $\neg A.\text{isEmpty()}$

$S.\text{addLast}(A.\text{remove}(A.\text{first}())])$

while $\neg B.\text{isEmpty()}$

$S.\text{addLast}(B.\text{remove}(B.\text{first}())])$

return S
Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree
- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1
Execution Example

Partition

Merge Sort
Execution Example (cont.)

Recursive call, partition

```
7 2 9 4 3 8 6 1
```

```
7 2 | 9 4
```

© 2004 Goodrich, Tamassia
Execution Example (cont.)

Recursive call, partition

```plaintext
7 2 9 4 | 3 8 6 1
```

1. Recursive call, partition:
 - 7 2 9 4
 - 7 2
 - 7
 - 2
 - 9 4
 - 9
 - 4
 - 3 8 6 1
 - 3
 - 8
 - 6
 - 1

2. Merging:
 - 1 2 3 4 6 7 8 9
Execution Example (cont.)

Recursive call, base case

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 | 2

7 → 7
Execution Example (cont.)

Recursive call, base case

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 2 9 4 | 3 8 6 1

7 | 2

7 → 7 2 → 2

© 2004 Goodrich, Tamassia
Execution Example (cont.)

Merge Sort
Execution Example (cont.)

Recursive call, ..., base case, merge
Execution Example (cont.)

Merge

7 2 9 4 | 3 8 6 1

1 2 3 4 6 7 8 9
Execution Example (cont.)

 Recursive call, ..., merge, merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 → 2 4 7 9
```

```
7 2 | 9 4 → 2 7
```

```
9 4 → 4 9
```

```
3 8 6 1 → 1 3 6 8
```

```
3 8 → 3 8
```

```
6 1 → 1 6
```

```
7 → 7
```

```
2 → 2
```

```
9 → 9
```

```
4 → 4
```

```
3 → 3
```

```
8 → 8
```

```
6 → 6
```

```
1 → 1
```
Execution Example (cont.)

Merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 9 4 → 2 4 7 9
3 8 6 1 → 1 3 6 8

7 | 2 → 2 7
9 4 → 4 9
3 8 → 3 8
6 1 → 1 6

7 → 7
2 → 2
9 → 9
4 → 4
3 → 3
8 → 8
6 → 6
1 → 1
Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$n/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>- slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for small data sets ($< 1K$)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>- slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for small data sets ($< 1K$)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>- fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for large data sets ($1K — 1M$)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>- fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for huge data sets ($> 1M$)</td>
</tr>
</tbody>
</table>