Idle Sense:

An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs

Presented by Nikki Benecke, October 10th, 2006 for CS577

Martin Heusse

Franck Rosseau

Romaric Guillier

Andrzej Duda
Objective:

“Define an access method optimized for throughput and fairness, able to dynamically adapt to physical channel conditions, to operate near optimum for a wide range of error rates, and to provide equal time shares when hosts use different bit rates.”
Access method

• Way of deciding who can access the media at a given time
• In WLANs, CSMA/CA as implemented by DCF (required) or PCF
Optimized for throughput and fairness

- Throughput
 - Not goodput
 - Expect to maintain, not increase, with IS

- Fairness in *Idle Sense*:
 - Jain Index
 - Time Fairness
Dynamic channel adaptation

• Physical conditions vary wildly with time
• Frames received in error -> sender’s bitrate lowered to reduce error rate
• *Idle Sense* tries to intelligently decide when lowering the bitrate is worthwhile
Supporting a wide range of error rates

• Sort of superfluous – handled by dynamic channel adaptation
Equal time shares

• Step away from min-max fairness
• Keep slow senders from unnecessarily restricting fast senders
Motivation

- 802.11 currently requires DCF as the access method
 - Also allows PCF
- Idle Sense addresses some key problems with DCF
DCF: Operation

- [DCF in a nutshell]

Martin Heusse's presentation at SIGCOMM '05
DCF: Backoff

Figure 52—Backoff procedure
DCF: “Bad Day” Problem

Bad transmission conditions -> host will lose many frames

High error rate -> frequent backoffs

CW is increased -> transmission attempt probability is lower

So the host will try to send less often and may eventually starve!
DCF: Physical Layer Capture

- The stronger signal in a collision may be successfully received
- It causes long term unfairness
 - Farther host has a greater average contention window

(Kochut et al., ICNP'04)
Two Modifications to DCF

1. No exponential backoff
2. All senders have equal CW

Figure 2: Two hosts contending for the channel.
Ideal channel contention

N - number of hosts

P_t - probability of one host successfully transmitting

P_e - probability of one host attempting to transmit
Channel contention

For a transmission to occur, one host must try to send and all others must be idle, so:

\[P_t = N P_e (1 - P_e)^{N-1} \]
Channel contention

\(P_i \) - probability that no hosts are sending

\[P_i = (1 - P_e)^N \]

\(P_c \) - probability of a collision

\[P_c = 1 - P_t - P_i \]
Channel contention

\(\bar{n}_i \) - average number of consecutive idle slots

\[
\bar{n}_i = \frac{P_i}{1 - P_i}
\]
Channel contention

Since all CW are equal:

\[P_e(CW) = \frac{2}{CW + 1} \]
Channel contention

Throughput as a function of P_e

$$X(P_e) = \frac{P_{tsd}}{P_tT_t + P_cT_c + P_iT_{SLOT}}$$
Channel contention

Goal: maximize the throughput by minimizing the time spent in collisions and contention
Channel contention

Maximizing $X(P_e)$ equivalent to

minimizing $cost(P_e)$ defined as:

$$cost(P_e) = \frac{T_c}{T_{SLOT}} \frac{P_c}{Pt} + P_i$$
Channel contention

Define η as

$$\eta = 1 - \frac{T_{SLOT}}{T_C}$$

Take the first derivative of the cost function to get:

$$1 - N P_e^{opt} = \eta(1 - P_e^{opt})^N$$

P_e^{opt} is the unique solution for this equation that is in $[0,1]$
Formulas

\[\zeta = N P_e^{opt} \]

\[1 - \zeta = \eta e^{-\zeta} \]

\[P_i^{opt} = \left(1 - \frac{\zeta}{N}\right)^N = e^{-\zeta} \]

\[\overline{n_i^{opt}} = \frac{e^{-\zeta}}{1 - e^{-\zeta}} \]
value based on variant

This is because it is based on the \(\frac{T_C}{T_{SLOT}} \) ratio, which varies by flavor of 802.11

\(\zeta = 0.1622 \) for 802.11b

(important for later use)
Idle Sense: Principles

Each host estimates \hat{n}_i and uses it to compute its CW

By adjusting CW, a host makes \hat{n}_i converge to $\bar{n}_i^{\text{target}}$ (common across hosts)
\(\bar{n}_{i \text{ opt}} \) vs \(\bar{n}_{i \text{ target}} \)

\(\bar{n}_{i \text{ opt}} \) requires knowing \(N \) (# of hosts), which we would like to avoid.
\[\bar{n}_{i}^{\text{opt}} \quad \text{vs} \quad \bar{n}_{i}^{\text{target}} \]

\[\bar{n}_{i}^{\text{opt}} \quad \text{quickly approaches} \quad \bar{n}_{i}^{\infty} , \quad \text{though,} \quad \text{so we can use this value as} \quad \bar{n}_{i}^{\text{target}} \quad \text{with little penalty} \]
Channel adaptation

\[\hat{n}_i > \bar{n}_i^{\text{target}}, P_e \leftarrow P_e + \epsilon \]

\[\hat{n}_i < \bar{n}_i^{\text{target}}, P_e \leftarrow \alpha P_e \]
Channel adaptation

\[\hat{n}_i > \bar{n}_i^{target}, \text{ } CW \leftarrow \frac{2CW}{2 + \epsilon CW} \]

\[\hat{n}_i < \bar{n}_i^{target}, \text{ } CW \leftarrow \frac{CW}{\alpha} \]
Adaptation example

$802.11b \ (\bar{n}_i^{target} = 5.68)$

$N = 5$

$CW = 60$

$\frac{1}{\alpha} = 1.2$

$\epsilon = 0.001$
Adaptation example

1. CW = 60 \rightarrow P_e = 0.033, \quad P_i = 0.847, \quad \hat{n}_i = 5.53

\hat{n}_i < 5.68, \text{ so increase CW}

\[CW = \frac{CW}{\alpha} = 1.2 \times 60 = 72 \]

(Multiplicative decrease)
Adaptation example

2. This increase leads to $\hat{n}_i = 6.71$

$6.71 > 5.68$, so decrease CW

$$CW = \frac{2CW}{2 + \epsilon CW}$$

$CW = 69$ (Additive Increase)
Adaptation example

3. \(\hat{n}_i \) is now 6.41, still greater than 5.68. So decrease again, CW gets value 67.

As this continues, we will oscillate around \(\bar{n}_i \) (target) (Additive Increase)
Time-fairness

Argument: using min-max fairness restricts fast hosts by making them send as slowly as slow hosts
Time-fairness

Using time-fairness eliminates two problematic situations:

(i) Slower hosts limit the throughput of faster hosts

(ii) Slow hosts suffer starvation because an access point will not switch to a slower rate
Time-fairness

They say TF is better for both slow hosts and fast hosts.
Time-fairness

In *Idle Sense*, accomplish TF by controlling the access probability for the hosts

Slow host transmitting at bit rate $r_{c\text{urr}}$ receives a modified CW, $CW' = CW \times \frac{r_{\text{max}}}{r_{c\text{urr}}}$, so P_e scales down.
Miscellaneous

• Determining idle slots is easy
• Efficiency may be slightly lower for small num. of hosts (N)
• Near optimal utilization for certain ratios
 \[\frac{T_C}{T_{SLOT}} \] -- real traffic may behave differently and have lower utilization
Idle Sense: Performance

• Developed discrete-event simulator that implements 802.11 DCF and *Idle Sense*
 – No source code provided
• Three variants of 802.11
 – 802.11b, 802.11g, theoretical 100Mb/s 802.11
• *Idle Sense* parameters:
 \[
 \frac{T_C}{T_{SLOT}} =
 \begin{align*}
 68.17 & \text{ for } 802.11b \\
 31.0 & \text{ for } 802.11g \\
 19.3 & \text{ for } 100\text{Mb/s } 802.11
 \end{align*}
 \]
Performance

- Simulations run for 10^6 transmissions
- Experimentally determined parameters

\[
\epsilon = 0.001
\]

\[
\frac{1}{\alpha} = 1.2
\]

\[
N_{\text{trans}} = 5 \text{ (see figure 6)}
\]
Throughput

Compare 802.11b DCF, Slow Decrease, Asymptotically Optimal Backoff (AOB) and *Idle Sense* for an increasing number of hosts

Throughput is the average of the throughput for all hosts active in the network
Throughput

Figure 7: Throughput comparison.
Throughput

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput, 802.11b (Mb/s)</td>
<td>6.39</td>
<td>3.35</td>
<td>1.67</td>
<td>0.63</td>
<td>0.41</td>
<td>0.29</td>
<td>0.23</td>
<td>0.10</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Throughput, Idle Sense (Mb/s)</td>
<td>7.59</td>
<td>3.38</td>
<td>1.67</td>
<td>0.62</td>
<td>0.42</td>
<td>0.32</td>
<td>0.27</td>
<td>0.13</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Throughput gain</td>
<td>19%</td>
<td>1%</td>
<td>0%</td>
<td>5%</td>
<td>9%</td>
<td>12%</td>
<td>15%</td>
<td>25%</td>
<td>40%</td>
<td>63%</td>
</tr>
<tr>
<td>Throughput, Slow Decrease (Mb/s)</td>
<td>7.32</td>
<td>3.40</td>
<td>1.65</td>
<td>0.63</td>
<td>0.41</td>
<td>0.31</td>
<td>0.24</td>
<td>0.12</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Throughput, AOB (Mb/s)</td>
<td>5.64</td>
<td>3.04</td>
<td>1.57</td>
<td>0.37</td>
<td>0.28</td>
<td>0.22</td>
<td>0.25</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 3: MAC-level throughput and collision rate for 802.11b DCF, Idle Sense, AOB, and Slow Decrease.

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11g, 54 Mb/s</td>
<td>31.79</td>
<td>16.18</td>
<td>7.85</td>
<td>2.92</td>
<td>1.87</td>
<td>1.36</td>
<td>1.06</td>
<td>0.49</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>Idle Sense ($\epsilon = 0.001$)</td>
<td>38.12</td>
<td>15.49</td>
<td>7.86</td>
<td>3.12</td>
<td>2.08</td>
<td>1.56</td>
<td>1.25</td>
<td>0.62</td>
<td>0.31</td>
<td>0.15</td>
</tr>
<tr>
<td>Idle Sense ($\epsilon = 0.1$)</td>
<td>38.12</td>
<td>16.53</td>
<td>7.94</td>
<td>3.00</td>
<td>1.96</td>
<td>1.46</td>
<td>1.17</td>
<td>0.57</td>
<td>0.28</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 4: Throughput comparisons between high bit rate variants of 802.11 and Idle Sense.
Throughput: Conclusion

- Authors expected throughput to stay around that of DCF
- Throughput actually improves slightly
Fairness: Jain Index

Figure 8: Fairness comparison for $N = 50$ competing hosts.

Much better than DCF!
Delay

\[K = \# \text{ of intertransmissions between other hosts between two transmissions of a given host} \]

For larger K, hosts experience greater delays
Delay

<table>
<thead>
<tr>
<th>Bit rate (Mb/s)</th>
<th>11</th>
<th>54</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11</td>
<td>1484</td>
<td>2600</td>
<td>2700</td>
</tr>
<tr>
<td>Idle Sense</td>
<td>94</td>
<td>93</td>
<td>87</td>
</tr>
</tbody>
</table>

Table 5: Maximum values of K, the number of inter-transmissions, for $N = 10$, observed over 10^6 transmissions.

Hosts should experience significantly less delay!
Collision Overhead

<table>
<thead>
<tr>
<th>(N)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision rate, 802.11b</td>
<td>0.0%</td>
<td>3.1%</td>
<td>7.8%</td>
<td>15.9%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Collision rate, Idle Sense</td>
<td>0.0%</td>
<td>3.0%</td>
<td>4.7%</td>
<td>6.1%</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8%</td>
<td>25.1%</td>
<td>32.4%</td>
<td>40.5%</td>
<td>49.9%</td>
<td></td>
</tr>
<tr>
<td>6.9%</td>
<td>7.3%</td>
<td>8.4%</td>
<td>9.2%</td>
<td>9.7%</td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{1}{2} \text{ of } \frac{1}{5} \quad \text{DCF}
\]
Convergence Speed

Start out with 5 greedy hosts, add another 5 at 2000, drop 5 at 3000

Stabilizes quickly after every change

Figure 11: Convergence of the *Idle Sense* method.
Time fairness

- One 1Mb/s host and N-1 11Mb/s hosts
- By TF, fast hosts should get 11 x the throughput of the slow host in Idle Sense
Time fairness

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>4</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b (slow host)</td>
<td>0.77</td>
<td>0.60</td>
<td>0.35</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>802.11b (fast host)</td>
<td>0.77</td>
<td>0.60</td>
<td>0.35</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>802.11b (average)</td>
<td>0.77</td>
<td>0.59</td>
<td>0.35</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>Idle Sense (slow host)</td>
<td>0.34</td>
<td>0.18</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Idle Sense (fast host)</td>
<td>3.90</td>
<td>2.16</td>
<td>0.68</td>
<td>0.45</td>
<td>0.34</td>
</tr>
<tr>
<td>Idle Sense (average)</td>
<td>2.12</td>
<td>1.67</td>
<td>0.62</td>
<td>0.42</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 6: Performance anomaly: throughput when a single host transmits at a lower bit rate (1 Mb/s vs. 11Mb/s).

In DCF, all hosts get the slow host’s throughput – tput much lower than in IS!
Conclusions

• Throughput equivalent (sometimes better) than in DCF
• Better short-term fairness
• Shorter delay
• Less collision overhead
• Converges quickly
• Is time fair/doesn’t cripple fast senders
Possible weaknesses?

- No info provided on actual simulation tool/we can’t recreate experiments
- Some “experimentally derived” parameters
- How is this actually implemented?
- What happens if some senders have IS and others don’t?
- Is time-fairness really “fair”?
Oddities

- Figure 9 never referenced in text (second Jain fairness figure)
Questions/Comments
Acknowledgements

• Most figures taken directly from the paper
• Slide 10 is from the 1999 801.11 technical specifications (Section 9.2, DCF)
• Slides 9 & 12 and the “Bad Day” and physical capture ideas are from Martin Heusse’s presentation of Idle Sense at SIGCOMM ‘05