Errata for Spectral Theory

David Borthwick
February 28, 2021

Please email any additional corrections to dborthw@emory.edu.

Chapter 3

p. 51: Lemma 3.27
For the second statement of the lemma, we continue to assume that \(A \) is self-adjoint on \(\mathcal{D}(A) \), and add the hypothesis that \(A \) is essentially self-adjoint on a sub-domain. Here is a corrected wording: “Furthermore, if \(A \) is essentially self-adjoint on a core domain contained in \(\mathcal{D}(A) \), then \(A + B \) is essentially self-adjoint on this core domain.”

Chapter 4

p. 71: Proof of Theorem 4.5
The proof is correct, but the final equation should read
\[\sigma(M_f) \subset \text{ess-range}(f), \]
i.e., the opposite direction to (4.3).

p. 84: Corollary 4.12
An argument based on the power series expansion (4.26) applies only if \(z \) and \(w \) lie in the same connected component of \(\rho(T) \). One can prove the formula more directly by observing that \((T - z)^{-1}(T - z) = I \) on \(\mathcal{D}(T) \) and \((T - z)(T - z)^{-1} = I \) on \(\mathcal{H} \). Thus
\[
(T - z)^{-1} - (T - w)^{-1} = (T - z)^{-1}(T - w)(T - w)^{-1} - (T - z)^{-1}(T - z)(T - w)^{-1} = (T - z)^{-1}(z - w)(T - w)^{-1}.
\]

p. 84: Second resolvent identity
This formula should read,
\[
(S - z)^{-1} - (T - z)^{-1} = (S - z)^{-1}(T - S)(T - z)^{-1},
\]
both here and in Exercise 4.1

p. 85: Corollary 4.13
Technically, the assumption \(\mathcal{H} \neq \{0\} \) should be included here.

p. 91: Fourth equation
This should read: By (4.31),
\[
(I - F(z))Q(z)^{-1}v = 0.
\]

p. 91: Final paragraph of the proof of Thm. 4.19
The specification of \(A \) and \(B \) is a bit unclear.
Chapter 5

p. 107: Final equation
The measure ν should perhaps have been defined more explicitly. A subset $E \subset Y$ consists of a collection of subsets $E_k \subset \mathbb{S}$. The measure is given by

$$\nu(E) := \sum_k \nu_k(E_k).$$

Since the measures ν_k are finite, the measure ν is σ-finite.

p. 115: Proof of Thm. 5.10
The claim that $f_\varepsilon(A) = \text{right side of (5.21)}$ should be justified. The integral in (5.21) defines an operator

$$B_\varepsilon := \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(\lambda) \left[(A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} \right] d\lambda.$$

This can be interpreted in the weak sense described in §4.2.1, as the unique operator for which

$$\langle u, B_\varepsilon v \rangle = \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(\lambda) \langle u, (A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} v \rangle d\lambda,$$

for all $u, v \in \mathcal{H}$. Using the unitary transformation Q provided by the spectral theorem (Theorem 5.6), this can be written

$$\langle u, B_\varepsilon v \rangle = \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(\lambda) \langle Q^{-1}u, (x - \lambda - i\varepsilon)^{-1} - (x - \lambda + i\varepsilon)^{-1} Q^{-1}v \rangle d\lambda,$$

where the inner product now takes place in $L^2(X, d\nu)$. Since f is integrable and the expression in brackets is bounded, Fubini’s theorem allows us to take the λ integral first, yielding

$$\langle u, B_\varepsilon v \rangle = \langle Q^{-1}u, f_\varepsilon(x)Q^{-1}v \rangle = \langle u, f_\varepsilon(A)v \rangle.$$

This proves that $B_\varepsilon = f_\varepsilon(A)$.

p. 116: Proof of Thm 5.11
Missing brackets in the second paragraph. The function $Q^{-1}\phi$ has support on $\{\alpha = \lambda\}$.

Chapter 6

p. 133: First equation
The γ is erroneous. The first equation should read

$$|\langle f, v \rangle| \leq \|f\|\|v\| \leq \|f\|\|v\|_{H^1},$$
p. 136: Proof of Thm 6.8
The first sentence of the second paragraph is mixed up. This paragraph should read as follows:

If \(u \in \mathcal{D}(-\Delta_D) \), then by (6.13) we have

\[
\|u\|_{H^1}^2 = \langle u, (-\Delta + 1)u \rangle.
\]

By Cauchy-Schwarz and the fact that \(\|u\| \leq \|u\|_{H^1} \), this implies that

\[
\|u\|_{H^1} \leq \|(-\Delta + 1)u\|.
\]

This shows that \((-\Delta_D + 1)^{-1}\) is bounded as a map \(L^2(\Omega) \rightarrow H^1_0(\Omega) \). Therefore \((-\Delta_D + 1)^{-1}\) is compact as a map \(L^2(\Omega) \rightarrow L^2(\Omega) \) by Theorem 6.9.

p. 144: Corollary 6.16
The assumption on \(\psi \) should read \(\psi \in H^1(\Omega) \).

p. 151: Equation (6.48)
The \(\sigma \) in the brackets should be \(\sigma(-\Delta_D) \).

p. 151: Equation (6.49)
These inequalities are backwards. The equation should read:

\[
N_{\mathcal{R}_1}(t) \leq N_{\Omega}(t) \leq N_{\mathcal{R}_2}(t).
\]

p. 168: Last three equations
The \(\mu_t \) on the left side of the last three equations should be \(\nu_t \), as defined at the beginning of the proof.

p. 170: Sentence after (6.92)
The \(a \) should be capitalized in \(A\nu^{-1}s' \).

p. 172: Proof of Thm 6.34
The definition of \(\psi^\pm_1 \) should read

\[
\psi^\pm_1(x) := \max\{\pm\psi_1(x), 0\}.
\]

p. 177: Proof of Thm 6.36
The first sentence should read: “Let \(\phi_1 \) be the eigenfunction...”. (Since \(\lambda_1 \) is simple, \(\phi_1 \) is uniquely defined.)

p. 193: First eq. after Fig. 7.1
The \(\gamma \) should be \(\omega \):

\[
U_{\omega}f(x) := \omega^{\frac{1}{2}}f(\omega^{\frac{1}{2}}x).
\]
p. 195: Proof of Thm 7.7
In last part of the proof, B was mistakenly assumed to be closed. Here is a clean version of the final two paragraphs:

Now assume that A is merely essential self-adjoint. If $u \in D(\overline{A})$, then there exists a sequence $u_n \to u$ with $u_n \in D(A)$, such that Au_n converges to $\overline{A}u$. By the assumption (7.24), the sequence Bu_n also converges, so that $u \in D(\overline{B})$ (since B is closed). By continuity, we can extend (7.24) to

$$\|\overline{B}u\| \leq \alpha \|\overline{A}u\| + \beta \|u\|$$

for all $u \in D(\overline{A})$. By the first part of the proof, this implies that $\overline{A} + \overline{B}$ is self-adjoint on the domain $D(\overline{A})$.

It remains to check that $\overline{A} + \overline{B} = \overline{A + B}$. Since $\overline{A} + \overline{B}$ is a closed extension of $A + B$, we have $\overline{A} + \overline{B} \subset \overline{A + B}$. On the other hand, the assumption (7.24) gives

$$\|(A + B)u\| \leq (\alpha + 1)\|Au\| + \beta \|u\|.$$

For $u \in D(\overline{A})$ this implies that $u \in D(\overline{A + B})$ and that $(\overline{A} + \overline{B})u = (\overline{A + B})u$. In other words,

$$\overline{A + B} \subset \overline{A + B}.$$

We conclude that $\overline{A + B}$ is self-adjoint on $D(A)$.

p. 206: First equation
A factor of r^2 is missing in the h'' term:

$$r^2h'' + 2rh' + (r + \lambda r^2 - l(l + 1))h = 0.$$

Also, the first sentence second paragraph should read “...extract the asymptotic behavior as $r \to \infty$,” not $r \to 0$.

Chapter 8

p. 232: Examples 8.6 and 8.7
The number of edges was notated inconsistently in these two examples. Each instance of k should be replaced by m, the number of edges.

Acknowledgments: Thanks to Dieter Engelhardt for pointing out a number of typos. I am also grateful to the students in my Fall 2020 functional analysis class for helping to track down errors.