1. **Find the derivative of**

 (a) \(f(x) = \sqrt{x^2 + 3x} \)

 Use the general power rule (or the Chain rule).

 (b) \(C(t) = \frac{t}{\sqrt{t^2 + 3t}} \)

 Use the quotient rule or write \(C(t) = t(t^2 + 3t)^{-1/2} \) and then use the product rule + the general power rule.

2. **Approximate the value of** \(\frac{1}{10.1} \) **using the method of approximation by increments.**

 Let \(f(x) = 1/x \). We would like to approximate the value of \(f(10.1) \).

 Since for small values of \(h \) we have

 \[f(x + h) \approx f(x) + hf'(x), \]

 we may find the approximation by computing \(f(10) + (.1) \cdot f'(10) \).

 Since \(f'(x) = -x^{-2} \) we have \(f'(10) = -.01 \), consequently \(\frac{1}{10.1} \approx \frac{1}{10} + .1 \times (-.01) = .099 + .0009 = 0.099 \).

3. **Find the linear equation of the tangent of the curve given by** \(x^2 - y^2 = 3x + y \) **at the point** \((0,0) \).

 The slope of the tangent to the curve at the point \((0,0) \) is given by

 \[m = \left. \frac{dy}{dx} \right|_{x=0,y=0}. \]

 We can obtain this slope by implicit differentiation. Recall that \(y \) is an implicit function \(y(x) \) so when we derive terms involving a functional composition of \(y(x) \) (in this case, the term \(y^2 \)) we have to use the Chain rule.
Deriving both sides yields
\[2x - 2yy' = 3 + y'. \]

Solving for \(y' = \frac{dy}{dx} \) we obtain
\[\frac{dy}{dx} = y' = \frac{2x - 3}{2y + 1}. \]

Therefore
\[m = \frac{dy}{dx} \bigg|_{x=0,y=0} = \frac{2(0) - 3}{2(0) + 1} = -3. \]

Since the tangent line contains the point \((0, 0)\) the line equation is simply
\[y = -3x. \]