Specialization of Divisors from Curves to Graphs

Matthew Baker

Georgia Institute of Technology

AMS Southeastern Section Meeting
University of Richmond
November 2010
Outline

1. The secret life of graphs
2. Tropical curves and their Jacobians
3. Graphs and arithmetic surfaces
Outline

1. The secret life of graphs
2. Tropical curves and their Jacobians
3. Graphs and arithmetic surfaces
Outline

1. The secret life of graphs
2. Tropical curves and their Jacobians
3. Graphs and arithmetic surfaces
Outline

1. The secret life of graphs

2. Tropical curves and their Jacobians

3. Graphs and arithmetic surfaces
By a graph G, we mean a connected, finite, undirected multigraph without loop edges.
Divisors

The group $\text{Div}(G)$ of divisors on G is the free abelian group on $V(G)$.

We write elements of $\text{Div}(G)$ as formal sums

$$D = \sum_{v \in V(G)} a_v(v)$$

with $a_v \in \mathbb{Z}$.

A divisor D is effective if $a_v \geq 0$ for all v.

The degree of $D = \sum a_v(v)$ is $\deg(D) = \sum a_v$.

We set

$$\text{Div}^0(G) = \{D \in \text{Div}(G) : \deg(D) = 0\}.$$
The group \(\text{Div}(G) \) of divisors on \(G \) is the free abelian group on \(V(G) \).

We write elements of \(\text{Div}(G) \) as formal sums

\[
D = \sum_{v \in V(G)} a_v(v)
\]

with \(a_v \in \mathbb{Z} \).

A divisor \(D \) is effective if \(a_v \geq 0 \) for all \(v \).

The degree of \(D = \sum a_v(v) \) is \(\deg(D) = \sum a_v \).

We set

\[
\text{Div}^0(G) = \{ D \in \text{Div}(G) : \deg(D) = 0 \}.
\]
Divisors

- The group $\text{Div}(G)$ of divisors on G is the free abelian group on $V(G)$.
- We write elements of $\text{Div}(G)$ as formal sums
 \[
 D = \sum_{v \in V(G)} a_v(v)
 \]
 with $a_v \in \mathbb{Z}$.
- A divisor D is effective if $a_v \geq 0$ for all v.
- The degree of $D = \sum a_v(v)$ is $\deg(D) = \sum a_v$.
- We set $\text{Div}^0(G) = \{ D \in \text{Div}(G) : \deg(D) = 0 \}$.
The group \(\text{Div}(G) \) of *divisors* on \(G \) is the free abelian group on \(V(G) \).

We write elements of \(\text{Div}(G) \) as formal sums

\[
D = \sum_{v \in V(G)} a_v(v)
\]

with \(a_v \in \mathbb{Z} \).

A divisor \(D \) is *effective* if \(a_v \geq 0 \) for all \(v \).

The *degree* of \(D = \sum a_v(v) \) is \(\deg(D) = \sum a_v \).

We set

\[
\text{Div}^0(G) = \{ D \in \text{Div}(G) : \deg(D) = 0 \}.
\]
The group $\text{Div}(G)$ of divisors on G is the free abelian group on $V(G)$.

We write elements of $\text{Div}(G)$ as formal sums

$$D = \sum_{v \in V(G)} a_v(v)$$

with $a_v \in \mathbb{Z}$.

A divisor D is effective if $a_v \geq 0$ for all v.

The degree of $D = \sum a_v(v)$ is $\deg(D) = \sum a_v$.

We set

$$\text{Div}^0(G) = \{ D \in \text{Div}(G) : \deg(D) = 0 \}.$$
Rational functions and principal divisors

- The group of **rational functions** on G is
 \[\mathcal{M}(G) = \{ \text{functions } f : V(G) \to \mathbb{Z} \} . \]

- The **Laplacian operator** $\Delta : \mathcal{M}(G) \to \text{Div}^0(G)$ is defined by
 \[\Delta f = \sum_{v \in V(G)} \left(\sum_{e = vw} (f(v) - f(w)) \right) (v). \]

- The group of **principal divisors** on G is the subgroup
 \[\text{Prin}(G) = \{ \Delta f : f \in \mathcal{M}(G) \} \]
 of $\text{Div}^0(G)$.
Rational functions and principal divisors

- The group of **rational functions** on G is
 \[M(G) = \{ \text{functions } f : V(G) \to \mathbb{Z} \}. \]

- The **Laplacian operator** $\Delta : M(G) \to \text{Div}^0(G)$ is defined by
 \[\Delta f = \sum_{v \in V(G)} \left(\sum_{e = vw} (f(v) - f(w)) \right)(v). \]

- The group of **principal divisors** on G is the subgroup
 \[\text{Prin}(G) = \{ \Delta f : f \in M(G) \} \]
 of $\text{Div}^0(G)$.
Rational functions and principal divisors

- The group of **rational functions** on G is
 \[\mathcal{M}(G) = \{ \text{functions } f : V(G) \to \mathbb{Z} \}. \]

- The **Laplacian operator** $\Delta : \mathcal{M}(G) \to \text{Div}^0(G)$ is defined by
 \[\Delta f = \sum_{v \in V(G)} \left(\sum_{e=vw} (f(v) - f(w)) \right) (v). \]

- The group of **principal divisors** on G is the subgroup
 \[\text{Prin}(G) = \{ \Delta f : f \in \mathcal{M}(G) \} \]
 of $\text{Div}^0(G)$.
The Jacobian

- Divisors $D, D' \in \text{Div}(G)$ are **linearly equivalent**, written $D \sim D'$, if $D - D'$ is principal.
- The Jacobian (or Picard group) of G is

 $$\text{Jac}(G) = \text{Div}^0(G)/\text{Prin}(G).$$

- This is a finite abelian group whose cardinality is the number of spanning trees in G (**Kirchhoff’s Matrix-Tree Theorem**).
The Jacobian

- Divisors $D, D' \in \text{Div}(G)$ are linearly equivalent, written $D \sim D'$, if $D - D'$ is principal.

- The Jacobian (or Picard group) of G is
 \[\text{Jac}(G) = \text{Div}^0(G)/\text{Prin}(G). \]

- This is a finite abelian group whose cardinality is the number of spanning trees in G (Kirchhoff’s Matrix-Tree Theorem).
Divisors $D, D' \in \text{Div}(G)$ are \textit{linearly equivalent}, written $D \sim D'$, if $D - D'$ is principal.

The \textit{Jacobian} (or \textit{Picard group}) of G is

$$\text{Jac}(G) = \text{Div}^0(G)/\text{Prin}(G).$$

This is a finite abelian group whose cardinality is the number of spanning trees in G (Kirchhoff’s Matrix-Tree Theorem).
The Riemann-Roch theorem

- The **canonical divisor** on G is

\[K_G = \sum_{v \in V(G)} (\deg(v) - 2)(v). \]

Its degree is $2g - 2$, where $g = \dim_{\mathbb{R}} H_1(G, \mathbb{R})$ is the **genus** of G.

- Define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

Theorem ("Riemann-Roch for graphs", B.–Norine)

For every $D \in \text{Div}(G)$, we have

\[r(D) - r(K_G - D) = \deg(D) + 1 - g. \]
The Riemann-Roch theorem

- The canonical divisor on G is

$$K_G = \sum_{v \in V(G)} (\deg(v) - 2) (v).$$

Its degree is $2g - 2$, where $g = \dim_{\mathbb{R}} H_1(G, \mathbb{R})$ is the genus of G.

- Define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

Theorem ("Riemann-Roch for graphs", B.–Norine)

For every $D \in \text{Div}(G)$, we have

$$r(D) - r(K_G - D) = \deg(D) + 1 - g.$$
The Riemann-Roch theorem

- The canonical divisor on G is

$$K_G = \sum_{v \in V(G)} (\deg(v) - 2)(v).$$

Its degree is $2g - 2$, where $g = \dim_{\mathbb{R}} H_1(G, \mathbb{R})$ is the genus of G.

- Define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

Theorem ("Riemann-Roch for graphs", B.–Norine)

For every $D \in \text{Div}(G)$, we have

$$r(D) - r(K_G - D) = \deg(D) + 1 - g.$$
A word about the proof

The proof of the Riemann-Roch theorem for graphs is based on a combinatorial study of reduced divisors, which are distinguished coset representatives for the elements of $\text{Div}^0(G)/\text{Prin}(G)$. They are also known in the literature as G-parking functions.
Outline

1. The secret life of graphs
2. Tropical curves and their Jacobians
3. Graphs and arithmetic surfaces
Tropical geometry

- Let K be an algebraically closed field which is complete with respect to a (non-trivial) non-archimedean valuation val.
- Examples: $K = \mathbb{C}_p$ or $K = \text{the Puiseux series field } \mathbb{C}\{T\}$.
- If X is a d-dimensional irreducible algebraic subvariety of the torus $(K^*)^n$, then

$$\text{Trop}(X) = \overline{\text{val}(X)} \subseteq \mathbb{R}^n$$

is a connected polyhedral complex of pure dimension d.
Tropical geometry

- Let K be an algebraically closed field which is complete with respect to a (non-trivial) non-archimedean valuation val.
- Examples: $K = \mathbb{C}_p$ or $K = \text{the Puiseux series field } \mathbb{C}\{T\}$.
- If X is a d-dimensional irreducible algebraic subvariety of the torus $(K^*)^n$, then

$$\text{Trop}(X) = \overline{\text{val}(X)} \subseteq \mathbb{R}^n$$

is a connected polyhedral complex of pure dimension d.
Let K be an algebraically closed field which is complete with respect to a (non-trivial) non-archimedean valuation val.

Examples: $K = \mathbb{C}_p$ or $K =$ the Puiseux series field $\mathbb{C}\{T\}$.

If X is a d-dimensional irreducible algebraic subvariety of the torus $(\mathbb{K}^*)^n$, then

$$\text{Trop}(X) = \overline{\text{val}(X)} \subseteq \mathbb{R}^n$$

is a connected polyhedral complex of pure dimension d.

A tropical cubic curve in \mathbb{R}^2
Metric graphs

- A **weighted graph** is a graph G together with an assignment of a “length” $\ell(e) > 0$ to each edge $e \in E(G)$.

- A (compact) **metric graph** Γ is just the “geometric realization” of a weighted graph: it is obtained from a weighted graph G by identifying each edge e with a line segment of length $\ell(e)$. In particular, Γ is a compact metric space.

- A weighted graph G whose geometric realization is Γ will be called a **model** for Γ.

![Diagram of metric graphs](image)
Metric graphs

- A **weighted graph** is a graph G together with an assignment of a “length” $\ell(e) > 0$ to each edge $e \in E(G)$.
- A (compact) **metric graph** Γ is just the “geometric realization” of a weighted graph: it is obtained from a weighted graph G by identifying each edge e with a line segment of length $\ell(e)$. In particular, Γ is a compact metric space.
- A weighted graph G whose geometric realization is Γ will be called a **model** for Γ.

![Diagram of metric graphs]
A **weighted graph** is a graph G together with an assignment of a “length” $\ell(e) > 0$ to each edge $e \in E(G)$.

A (compact) **metric graph** Γ is just the “geometric realization” of a weighted graph: it is obtained from a weighted graph G by identifying each edge e with a line segment of length $\ell(e)$. In particular, Γ is a compact metric space.

A weighted graph G whose geometric realization is Γ will be called a **model** for Γ.

Diagram:

![Diagram of weighted graphs](image-url)
Abstract tropical curves

Following Mikhalkin, an abstract tropical curve is just a “metric graph with a finite number of unbounded ends”.

Convention

We will ignore the unbounded ends and use the terms “tropical curve” and “metric graph” interchangeably.
Abstract tropical curves

Following Mikhalkin, an abstract tropical curve is just a “metric graph with a finite number of unbounded ends”.

Convention

We will ignore the unbounded ends and use the terms “tropical curve” and “metric graph” interchangeably.
For a tropical curve Γ, we make the following definitions:

- \textbf{Div}(\Gamma) is the free abelian group on Γ.
- \textbf{M}(\Gamma) consists of all continuous piecewise affine functions $f : \Gamma \to \mathbb{R}$ with integer slopes.
- The Laplacian operator $\Delta : \mathcal{M}(\Gamma) \to \text{Div}^0(\Gamma)$ is defined by $-\Delta f = \sum_{p \in \Gamma} \sigma_p(f)(p)$, where $\sigma_p(f)$ is the sum of the slopes of f in all tangent directions emanating from p.
- \textbf{Prin}(\Gamma) = \{ \Delta f : f \in \mathcal{M}(\Gamma) \}$.
- \textbf{Jac}(\Gamma) = \text{Div}^0(\Gamma)/\text{Prin}(\Gamma). This can be naturally identified with a g-dimensional real torus (‘Tropical Abel theorem’).
For a tropical curve Γ, we make the following definitions:

- $\text{Div}(\Gamma)$ is the free abelian group on Γ.
- $\mathcal{M}(\Gamma)$ consists of all continuous piecewise affine functions $f : \Gamma \rightarrow \mathbb{R}$ with integer slopes.
- The Laplacian operator $\Delta : \mathcal{M}(\Gamma) \rightarrow \text{Div}^0(\Gamma)$ is defined by

 \[- \Delta f = \sum_{p \in \Gamma} \sigma_p(f)(p),\]

 where $\sigma_p(f)$ is the sum of the slopes of f in all tangent directions emanating from p.
- $\text{Prin}(\Gamma) = \{ \Delta f : f \in \mathcal{M}(\Gamma) \}$.
- $\text{Jac}(\Gamma) = \text{Div}^0(\Gamma)/\text{Prin}(\Gamma)$. This can be naturally identified with a g-dimensional real torus (‘Tropical Abel theorem’).
Divisors

For a tropical curve Γ, we make the following definitions:

- $\text{Div}(\Gamma)$ is the free abelian group on Γ.
- $\mathcal{M}(\Gamma)$ consists of all continuous piecewise affine functions $f : \Gamma \to \mathbb{R}$ with integer slopes.
- The Laplacian operator $\Delta : \mathcal{M}(\Gamma) \to \text{Div}^0(\Gamma)$ is defined by $-\Delta f = \sum_{p \in \Gamma} \sigma_p(f)(p)$, where $\sigma_p(f)$ is the sum of the slopes of f in all tangent directions emanating from p.
- $\text{Prin}(\Gamma) = \{ \Delta f : f \in \mathcal{M}(\Gamma) \}$.
- $\text{Jac}(\Gamma) = \text{Div}^0(\Gamma)/\text{Prin}(\Gamma)$. This can be naturally identified with a g-dimensional real torus (‘Tropical Abel theorem’).
Divisors

For a tropical curve Γ, we make the following definitions:

- $\text{Div}(\Gamma)$ is the free abelian group on Γ.
- $\mathcal{M}(\Gamma)$ consists of all continuous piecewise affine functions $f : \Gamma \to \mathbb{R}$ with integer slopes.
- The Laplacian operator $\Delta : \mathcal{M}(\Gamma) \to \text{Div}^0(\Gamma)$ is defined by $-\Delta f = \sum_{p \in \Gamma} \sigma_p(f)(p)$, where $\sigma_p(f)$ is the sum of the slopes of f in all tangent directions emanating from p.
- $\text{Prin}(\Gamma) = \{ \Delta f : f \in \mathcal{M}(\Gamma) \}$.
- $\text{Jac}(\Gamma) = \text{Div}^0(\Gamma)/\text{Prin}(\Gamma)$. This can be naturally identified with a g-dimensional real torus (‘Tropical Abel theorem’).
For a tropical curve Γ, we make the following definitions:

- $\text{Div}(\Gamma)$ is the free abelian group on Γ.
- $\mathcal{M}(\Gamma)$ consists of all continuous piecewise affine functions $f : \Gamma \to \mathbb{R}$ with integer slopes.
- The Laplacian operator $\Delta : \mathcal{M}(\Gamma) \to \text{Div}^0(\Gamma)$ is defined by $-\Delta f = \sum_{p \in \Gamma} \sigma_p(f)(p)$, where $\sigma_p(f)$ is the sum of the slopes of f in all tangent directions emanating from p.
- $\text{Prin}(\Gamma) = \{ \Delta f : f \in \mathcal{M}(\Gamma) \}$.
- $\text{Jac}(\Gamma) = \text{Div}^0(\Gamma) / \text{Prin}(\Gamma)$. This can be naturally identified with a g-dimensional real torus (‘Tropical Abel theorem’).
As before, define $K_{\Gamma} = \sum_{p \in \Gamma} (\deg(p) - 2) (p)$.

For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

Theorem ("Riemann-Roch for tropical curves", Gathmann–Kerber, Mikhalkin–Zharkov)

For every $D \in \text{Div}(\Gamma)$, we have

$$r(D) - r(K_{\Gamma} - D) = \deg(D) + 1 - g.$$
Tropical Riemann-Roch

As before, define $K_\Gamma = \sum_{p \in \Gamma} (\deg(p) - 2) (p)$. For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

For every $D \in \text{Div}(\Gamma)$, we have

$$r(D) - r(K_\Gamma - D) = \deg(D) + 1 - g.$$
Tropical Riemann-Roch

As before, define $K_{\Gamma} = \sum_{p \in \Gamma} (\deg(p) - 2) \cdot (p)$. For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be -1 iff D is not equivalent to an effective divisor, and to be at least k iff $D - E$ is equivalent to an effective divisor for every effective divisor of degree k.

Theorem ("Riemann-Roch for tropical curves", Gathmann–Kerber, Mikhalkin–Zharkov)

For every $D \in \text{Div}(\Gamma)$, we have

$$r(D) - r(K_{\Gamma} - D) = \deg(D) + 1 - g.$$
Outline

1. The secret life of graphs
2. Tropical curves and their Jacobians
3. Graphs and arithmetic surfaces
Notation and terminology

- K: a field which is complete with respect to a (nontrivial) non-archimedean valuation
- R: the valuation ring of K
- k: the residue field of K (which we assume to be algebraically closed)
- \mathfrak{X}: an arithmetic surface, i.e., a flat proper scheme over R whose generic fiber X is a smooth (proper) geometrically connected curve over K. We call \mathfrak{X} a model for X.
Notation and terminology

- K: a field which is complete with respect to a (nontrivial) non-archimedean valuation
- R: the valuation ring of K
- k: the residue field of K (which we assume to be algebraically closed)
- \mathcal{X}: an arithmetic surface, i.e., a flat proper scheme over R whose generic fiber X is a smooth (proper) geometrically connected curve over K. We call \mathcal{X} a model for X.
Notation and terminology

- K: a field which is complete with respect to a (nontrivial) non-archimedean valuation
- R: the valuation ring of K
- k: the residue field of K (which we assume to be algebraically closed)
- \mathfrak{X}: an arithmetic surface, i.e., a flat proper scheme over R whose generic fiber X is a smooth (proper) geometrically connected curve over K. We call \mathfrak{X} a model for X.

Notation and terminology

- K: a field which is complete with respect to a (nontrivial) non-archimedean valuation
- R: the valuation ring of K
- k: the residue field of K (which we assume to be algebraically closed)
- \mathfrak{X}: an arithmetic surface, i.e., a flat proper scheme over R whose generic fiber X is a smooth (proper) geometrically connected curve over K. We call \mathfrak{X} a model for X.
An arithmetic surface \mathcal{X}/R is called **semistable** if its special fiber \mathcal{X}_k is reduced and all singularities of \mathcal{X}_k are ordinary double points. It is called **strongly semistable** if in addition every irreducible component of \mathcal{X}_k is smooth.

By the **Semistable Reduction Theorem**, there exists a finite extension L/K such that $X_L := X \times_K L$ has a strongly semistable model.

The **dual graph** of a strongly semistable arithmetic surface \mathcal{X} is the weighted graph $G = G_\mathcal{X}$ whose vertices correspond to the irreducible components of \mathcal{X}_k and whose edges correspond to the singular points of \mathcal{X}_k, with $\ell(e)$ equal to the thickness of the corresponding singularity.
An arithmetic surface X/R is called **semistable** if its special fiber X_k is reduced and all singularities of X_k are ordinary double points. It is called **strongly semistable** if in addition every irreducible component of X_k is smooth.

By the **Semistable Reduction Theorem**, there exists a finite extension L/K such that $X_L := X \times_K L$ has a strongly semistable model.

The **dual graph** of a strongly semistable arithmetic surface X is the weighted graph $G = G_X$ whose vertices correspond to the irreducible components of X_k and whose edges correspond to the singular points of X_k, with $\ell(e)$ equal to the **thickness** of the corresponding singularity.
Semistability and dual graphs

- An arithmetic surface \(\mathcal{X}/R \) is called \textbf{semistable} if its special fiber \(\mathcal{X}_k \) is reduced and all singularities of \(\mathcal{X}_k \) are ordinary double points. It is called \textbf{strongly semistable} if in addition every irreducible component of \(\mathcal{X}_k \) is smooth.

- By the \textbf{Semistable Reduction Theorem}, there exists a finite extension \(L/K \) such that \(X_L := X \times_K L \) has a strongly semistable model.

- The \textbf{dual graph} of a strongly semistable arithmetic surface \(\mathcal{X} \) is the weighted graph \(G = G_{\mathcal{X}} \) whose vertices correspond to the irreducible components of \(\mathcal{X}_k \) and whose edges correspond to the singular points of \(\mathcal{X}_k \), with \(\ell(e) \) equal to the \textbf{thickness} of the corresponding singularity.
If R is a DVR with maximal ideal (π), the **thickness** of $z \in X^\text{sing}_k \subset X$ is the unique natural number k such that z has an analytic local equation of the form $xy = \pi^k$.

- z is a **regular** point of X iff its thickness is 1.
- In general, the **formal fiber** $\text{red}^{-1}(z) \subset X(\bar{K})$ is isomorphic (as a rigid analytic space) to an open annulus

$$A = \{ x \in \bar{K} : |x| < R \} \setminus \{ x \in \bar{K} : |x| \leq r \}$$

and we define the **thickness** of z to be the modulus $\log R / \log r$ of A.

Thickness of singularities
If R is a DVR with maximal ideal (π), the thickness of $z \in X_k^{\text{sing}} \subset X$ is the unique natural number k such that z has an analytic local equation of the form $xy = \pi^k$.

z is a regular point of X iff its thickness is 1.

In general, the formal fiber $\text{red}^{-1}(z) \subset X(\bar{K})$ is isomorphic (as a rigid analytic space) to an open annulus

$$A = \{x \in \bar{K} : |x| < R\} \backslash \{x \in \bar{K} : |x| \leq r\}$$

and we define the thickness of z to be the modulus $\log R / \log r$ of A.
If R is a DVR with maximal ideal (π), the thickness of $z \in X_k^{\text{sing}} \subset X$ is the unique natural number k such that z has an analytic local equation of the form $xy = \pi^k$.

- z is a regular point of X iff its thickness is 1.
- In general, the formal fiber $\text{red}^{-1}(z) \subset X(\bar{K})$ is isomorphic (as a rigid analytic space) to an open annulus

$$A = \{x \in \bar{K} : |x| < R\} \setminus \{x \in \bar{K} : |x| \leq r\}$$

and we define the thickness of z to be the modulus $\log R / \log r$ of A.
The reduction graph

- The **reduction graph** $\Gamma = \Gamma_X$ of X is the metric graph realization of G_X.

- **Remark:** Γ_X sits naturally inside the Berkovich analytic space X^{an} associated to X, and there is a canonical deformation retraction $X^{an} \to \Gamma_X$. Berkovich calls Γ_X the **skeleton** of the model X.
The reduction graph

- The reduction graph $\Gamma = \Gamma_{\mathcal{X}}$ of \mathcal{X} is the metric graph realization of $G_{\mathcal{X}}$.

- **Remark:** $\Gamma_{\mathcal{X}}$ sits naturally inside the Berkovich analytic space X^{an} associated to X, and there is a canonical deformation retraction $X^{\text{an}} \to \Gamma_{\mathcal{X}}$. Berkovich calls $\Gamma_{\mathcal{X}}$ the skeleton of the model \mathcal{X}.
Models and their reductions

\[p \text{ odd prime} \]
\[X / \mathbb{Q}_p^{nr} : (x^2 - 2y^2 + z^2)(x^2 - z^2) + p y^3 z = 0 \]

Stable model:

Minimal regular model:

Dual graph:

Dual graph:
Suppose R is a DVR, and let \mathcal{X}/R be a regular strongly semistable arithmetic surface.

Let Z_1, \ldots, Z_n be the irreducible components of \mathcal{X}_k, corresponding to the vertices v_1, \ldots, v_n of $G_\mathcal{X}$.

Given a Cartier divisor $\mathcal{D} \in \text{Div}(\mathcal{X})$, let \mathcal{L} be the associated line bundle, and define a homomorphism $\rho_\mathcal{X} : \text{Div}(\mathcal{X}) \to \text{Div}(G)$ by

$$
\rho_\mathcal{X}(\mathcal{D}) = \sum_i \deg(\mathcal{L}|_{Z_i})(v_i) \in \text{Div}(G).
$$

This extends to a homomorphism $\rho : \text{Div}(X) \to \text{Div}(G)$ by taking Zariski closures.
Suppose R is a DVR, and let \mathcal{X}/R be a regular strongly semistable arithmetic surface.

Let Z_1, \ldots, Z_n be the irreducible components of \mathcal{X}_k, corresponding to the vertices v_1, \ldots, v_n of $G_{\mathcal{X}}$.

Given a Cartier divisor $D \in \text{Div}(\mathcal{X})$, let \mathcal{L} be the associated line bundle, and define a homomorphism $\rho_{\mathcal{X}} : \text{Div}(\mathcal{X}) \to \text{Div}(G)$ by

$$\rho_{\mathcal{X}}(D) = \sum_i \deg(\mathcal{L}|_{Z_i})(v_i) \in \text{Div}(G).$$

This extends to a homomorphism $\rho : \text{Div}(X) \to \text{Div}(G)$ by taking Zariski closures.
Suppose R is a DVR, and let \mathcal{X}/R be a regular strongly semistable arithmetic surface.

Let Z_1, \ldots, Z_n be the irreducible components of \mathcal{X}_k, corresponding to the vertices v_1, \ldots, v_n of $G_{\mathcal{X}}$.

Given a Cartier divisor $D \in \text{Div}(\mathcal{X})$, let \mathcal{L} be the associated line bundle, and define a homomorphism $\rho_{\mathcal{X}} : \text{Div}(\mathcal{X}) \rightarrow \text{Div}(G)$ by

$$\rho_{\mathcal{X}}(D) = \sum_{i} \text{deg}(\mathcal{L}|_{Z_i})(v_i) \in \text{Div}(G).$$

This extends to a homomorphism $\rho : \text{Div}(X) \rightarrow \text{Div}(G)$ by taking Zariski closures.
Specialization of divisors

- Suppose R is a DVR, and let \mathcal{X}/R be a regular strongly semistable arithmetic surface.
- Let Z_1, \ldots, Z_n be the irreducible components of \mathcal{X}_k, corresponding to the vertices v_1, \ldots, v_n of $G_{\mathcal{X}}$.
- Given a Cartier divisor $D \in \text{Div}(\mathcal{X})$, let \mathcal{L} be the associated line bundle, and define a homomorphism $\rho_{\mathcal{X}} : \text{Div}(\mathcal{X}) \to \text{Div}(G)$ by
 \[
 \rho_{\mathcal{X}}(D) = \sum_i \deg(\mathcal{L}|_{Z_i})(v_i) \in \text{Div}(G).
 \]
- This extends to a homomorphism $\rho : \text{Div}(X) \to \text{Div}(G)$ by taking Zariski closures.
Properties of the specialization map

- \(\deg(\rho(D)) = \deg(D) \).
- If \(D \sim_X D' \) then \(\rho(D) \sim_G \rho(D') \). Thus \(\rho \) induces a homomorphism \(\text{Jac}(X) \to \text{Jac}(G) \).
Properties of the specialization map

- \(\deg(\rho(D)) = \deg(D) \).
- If \(D \sim_X D' \) then \(\rho(D) \sim_G \rho(D') \). Thus \(\rho \) induces a homomorphism \(\text{Jac}(X) \to \text{Jac}(G) \).
We continue to suppose that R is a DVR.

Let \mathcal{J}/R be the Néron model of $\text{Jac}(X)$, and let $\Phi_{\mathcal{J}}$ be the group of connected components of the special fiber of \mathcal{J}.

The following is a reformulation of a theorem of Raynaud:

Theorem (Raynaud)

$\Phi_{\mathcal{J}}$ is canonically isomorphic to $\text{Jac}(G_{\bar{x}})$ for any strongly semistable regular model \bar{x}/R for X.
We continue to suppose that R is a DVR.

Let \mathcal{J}/R be the Néron model of $\text{Jac}(X)$, and let $\Phi_{\mathcal{J}}$ be the group of connected components of the special fiber of \mathcal{J}.

The following is a reformulation of a theorem of Raynaud:

Theorem (Raynaud)

$\Phi_{\mathcal{J}}$ is canonically isomorphic to $\text{Jac}(G_\mathfrak{X})$ for any strongly semistable regular model \mathfrak{X}/R for X.
We continue to suppose that R is a DVR.

Let \mathcal{J}/R be the Néron model of $\text{Jac}(X)$, and let $\Phi_{\mathcal{J}}$ be the group of connected components of the special fiber of \mathcal{J}.

The following is a reformulation of a theorem of Raynaud:

Theorem (Raynaud)

$\Phi_{\mathcal{J}}$ is canonically isomorphic to $\text{Jac}(G_{\check{X}})$ for any strongly semistable regular model \check{X}/R for X.
We continue to suppose that R is a DVR.

Let \mathcal{J}/R be the Néron model of $\text{Jac}(X)$, and let $\Phi_{\mathcal{J}}$ be the group of connected components of the special fiber of \mathcal{J}.

The following is a reformulation of a theorem of Raynaud:

Theorem (Raynaud)

$\Phi_{\mathcal{J}}$ is canonically isomorphic to $\text{Jac}(G_{\mathcal{X}})$ for any strongly semistable regular model \mathcal{X}/R for X.

Suppose R is a DVR and X is a strongly semistable regular arithmetic surface over R with dual graph G.

Proposition ("Specialization Inequality", B.)

For every $D \in \text{Div}(X)$, we have $r_G(\rho(D)) \geq r_X(D)$.

For general R, there is also a specialization map $\tau : \text{Div}(X_{\overline{K}}) \rightarrow \text{Div}(\Gamma)$ which can be thought of in terms of Berkovich spaces as ‘retraction to the skeleton’. The analogous specialization inequality holds:

Proposition

For every $D \in \text{Div}(X_{\overline{K}})$, we have $r(\tau(D)) \geq r_X(D)$.
Suppose R is a DVR and \mathcal{X} is a strongly semistable regular arithmetic surface over R with dual graph G.

Proposition ("Specialization Inequality", B.)

For every $D \in \text{Div}(X)$, we have $r_G(\rho(D)) \geq r_X(D)$.

For general R, there is also a specialization map $\tau : \text{Div}(X_{\overline{K}}) \rightarrow \text{Div}(\Gamma)$ which can be thought of in terms of Berkovich spaces as ‘retraction to the skeleton’. The analogous specialization inequality holds:

Proposition

For every $D \in \text{Div}(X_{\overline{K}})$, we have $r(\tau(D)) \geq r_X(D)$.

The specialization inequality
The specialization inequality

Suppose R is a DVR and \mathcal{X} is a strongly semistable regular arithmetic surface over R with dual graph G.

Proposition ("Specialization Inequality", B.)

For every $D \in \text{Div}(X)$, we have $r_G(\rho(D)) \geq r_X(D)$.

For general R, there is also a specialization map $\tau : \text{Div}(X_{\overline{K}}) \rightarrow \text{Div}(\Gamma)$ which can be thought of in terms of Berkovich spaces as ‘retraction to the skeleton’. The analogous specialization inequality holds:

Proposition

For every $D \in \text{Div}(X_{\overline{K}})$, we have $r(\tau(D)) \geq r_X(D)$.
The specialization inequality

Suppose R is a DVR and \mathcal{X} is a strongly semistable regular arithmetic surface over R with dual graph G.

Proposition ("Specialization Inequality", B.)

For every $D \in \text{Div}(X)$, we have $r_G(\rho(D)) \geq r_X(D)$.

For general R, there is also a specialization map $\tau : \text{Div}(X_{\overline{K}}) \to \text{Div}(\Gamma)$ which can be thought of in terms of Berkovich spaces as ‘retraction to the skeleton’. The analogous specialization inequality holds:

Proposition

For every $D \in \text{Div}(X_{\overline{K}})$, we have $r(\tau(D)) \geq r_X(D)$.
Tropical Brill-Noether theory I

Theorem ("Tropical Brill-Noether theorem Part I", B.)

If \(g - (r + 1)(g - d + r) \geq 0 \), then every tropical curve \(\Gamma \) of genus \(g \) has a special divisor (a divisor \(D \) with \(\deg(D) \leq d \) and \(r(D) \geq r \)).

The proof uses classical algebraic geometry to prove a result in combinatorics!
Theorem ("Tropical Brill-Noether theorem Part I", B.)

\[g - (r + 1)(g - d + r) \geq 0, \] then every tropical curve \(\Gamma \) of genus \(g \) has a special divisor (a divisor \(D \) with \(\deg(D) \leq d \) and \(r(D) \geq r \)).

The proof uses classical algebraic geometry to prove a result in combinatorics!
Sketch of proof

- By a semicontinuity argument on the moduli space of metric graphs of genus g, we may assume without loss of generality that Γ has rational edge lengths.
- Rescaling, we may assume that Γ has a “regular model” G (i.e., a model with all edge lengths equal to 1).
- By deformation theory, there exists a regular, totally degenerate, strongly semistable arithmetic surface X with dual graph G.
- By classical Brill-Noether theory, there is a special divisor D on $X_{\overline{K}}$.
- By the specialization inequality, $\tau(D)$ is a special divisor on Γ.
Sketch of proof

- By a semicontinuity argument on the moduli space of metric graphs of genus g, we may assume without loss of generality that Γ has rational edge lengths.

- Rescaling, we may assume that Γ has a “regular model” G (i.e., a model with all edge lengths equal to 1).

- By deformation theory, there exists a regular, totally degenerate, strongly semistable arithmetic surface X with dual graph G.

- By classical Brill-Noether theory, there is a special divisor D on X_K.

- By the specialization inequality, $\tau(D)$ is a special divisor on Γ.
Sketch of proof

- By a semicontinuity argument on the moduli space of metric graphs of genus g, we may assume without loss of generality that Γ has rational edge lengths.
- Rescaling, we may assume that Γ has a “regular model” \mathcal{G} (i.e., a model with all edge lengths equal to 1).
- By deformation theory, there exists a regular, totally degenerate, strongly semistable arithmetic surface X with dual graph \mathcal{G}.
 - By classical Brill-Noether theory, there is a special divisor D on X_K.
 - By the specialization inequality, $\tau(D)$ is a special divisor on Γ.
By a semicontinuity argument on the moduli space of metric graphs of genus \(g\), we may assume without loss of generality that \(\Gamma\) has rational edge lengths.

Rescaling, we may assume that \(\Gamma\) has a “regular model” \(G\) (i.e., a model with all edge lengths equal to 1).

By deformation theory, there exists a regular, totally degenerate, strongly semistable arithmetic surface \(X\) with dual graph \(G\).

By classical Brill-Noether theory, there is a special divisor \(D\) on \(X_{\overline{K}}\).

By the specialization inequality, \(\tau(D)\) is a special divisor on \(\Gamma\).
Sketch of proof

- By a semicontinuity argument on the moduli space of metric graphs of genus g, we may assume without loss of generality that Γ has rational edge lengths.
- Rescaling, we may assume that Γ has a “regular model” G (i.e., a model with all edge lengths equal to 1).
- By deformation theory, there exists a regular, totally degenerate, strongly semistable arithmetic surface X with dual graph G.
- By classical Brill-Noether theory, there is a special divisor D on $X_{\overline{K}}$.
- By the specialization inequality, $\tau(D)$ is a special divisor on Γ.
Using purely combinatorial methods (the theory of reduced divisors), the following result was recently proved:

Theorem (“Tropical Brill-Noether theorem Part II”, Cools-Draisma-Payne-Robeva)

If \(g - (r + 1)(g - d + r) < 0 \), then there exist (infinitely many) tropical curves \(\Gamma \) of genus \(g \) having no special divisor.

Combining this combinatorial result with our specialization inequality gives a new proof of the Brill-Noether-Griffiths-Harris theorem in classical algebraic geometry: If \(g - (r + 1)(g - d + r) < 0 \), then on a general smooth algebraic curve \(X/\mathbb{C} \) of genus \(g \) there is no divisor \(D \) with \(\deg(D) \leq d \) and \(r(D) \geq r \).
Using purely combinatorial methods (the theory of reduced divisors), the following result was recently proved:

Theorem ("Tropical Brill-Noether theorem Part II", Cools-Draisma-Payne-Robeva)

If \(g - (r + 1)(g - d + r) < 0 \), then there exist (infinitely many) tropical curves \(\Gamma \) of genus \(g \) having no special divisor.

Combining this combinatorial result with our specialization inequality gives a new proof of the Brill-Noether-Griffiths-Harris theorem in classical algebraic geometry: If \(g - (r + 1)(g - d + r) < 0 \), then on a general smooth algebraic curve \(X/\mathbb{C} \) of genus \(g \) there is no divisor \(D \) with \(\deg(D) \leq d \) and \(r(D) \geq r \).
Using purely combinatorial methods (the theory of reduced divisors), the following result was recently proved:

Theorem ("Tropical Brill-Noether theorem Part II", Cools-Draisma-Payne-Robeva)

If \(g - (r + 1)(g - d + r) < 0 \), then there exist (infinitely many) tropical curves \(\Gamma \) of genus \(g \) having no special divisor.

Combining this combinatorial result with our specialization inequality gives a new proof of the Brill-Noether-Griffiths-Harris theorem in classical algebraic geometry: If

\[g - (r + 1)(g - d + r) < 0, \]

then on a general smooth algebraic curve \(X/\mathbb{C} \) of genus \(g \) there is no divisor \(D \) with \(\deg(D) \leq d \) and \(r(D) \geq r \).