Diophantine and tropical geometry

David Zureick-Brown

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

UW-Madison Colloquium
February 20, 2015

\[a^2 + b^2 = c^2 \]
Basic Problem (Solving Diophantine Equations)

Analysis

Let $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$ be polynomials.
Let R be a ring (e.g., $R = \mathbb{Z}, \mathbb{Q}$).

Problem

Describe the set

$$\{(a_1, \ldots, a_n) \in R^n : \forall i, f_i(a_1, \ldots, a_n) = 0\}.$$
Basic Problem (Solving Diophantine Equations)

Analysis

Let $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$ be polynomials. Let R be a ring (e.g., $R = \mathbb{Z}, \mathbb{Q}$).

Problem

Describe the set

$$\{(a_1, \ldots, a_n) \in R^n : \forall i, f_i(a_1, \ldots, a_n) = 0\}.$$

Fact

Solving diophantine equations is hard.
The ring $R = \mathbb{Z}$ is especially hard.
The ring $R = \mathbb{Z}$ is especially hard.

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:

- **input:** $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$;
- **output:** YES / NO according to whether the set

\[
\{(a_1, \ldots, a_n) \in \mathbb{Z}^n : \forall i, f_i(a_1, \ldots, a_n) = 0\}
\]

is non-empty.
Hilbert’s Tenth Problem

The ring $R = \mathbb{Z}$ is especially hard.

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:

- **input:** $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$;
- **output:** YES / NO according to whether the set

$$\{(a_1, \ldots, a_n) \in \mathbb{Z}^n : \forall i, f_i(a_1, \ldots, a_n) = 0\}$$

is non-empty.

This is *still open* for many other rings (e.g., $R = \mathbb{Q}$).
The only solutions to the equation

\[x^n + y^n = z^n, \ n \geq 3 \]

are multiples of the triples

\((0, 0, 0), (\pm 1, \mp 1, 0), \pm (1, 0, 1), (0, \pm 1, \pm 1)\).
Fermat’s Last Theorem

Theorem (Wiles et. al)

The only solutions to the equation

\[x^n + y^n = z^n, \quad n \geq 3 \]

are multiples of the triples

\[(0, 0, 0), \quad (\pm 1, \mp 1, 0), \quad \pm (1, 0, 1), \quad (0, \pm 1, \pm 1). \]

This took 300 years to prove!
The only solutions to the equation

\[x^n + y^n = z^n, \quad n \geq 3 \]

are multiples of the triples

(0, 0, 0), \ (±1, ±1, 0), \ ±(1, 0, 1), \ (0, ±1, ±1).

This took 300 years to prove!
Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:
- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).
Basic Problem: \(f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n] \)

Qualitative:
- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative
- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)
Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Implicit question

- Why do equations have (or fail to have) solutions?
- Why do some have many and some have none?
- What underlying mathematical structures control this?
Example: Pythagorean triples

Lemma

The equation

\[x^2 + y^2 = z^2 \]

has infinitely many non-zero coprime solutions.
Pythagorean triples

Slope = $t = \frac{y}{x+1}$

$x = \frac{1-t^2}{1+t^2}$

$y = \frac{2t}{1+t^2}$
Lemma

The solutions to

\[a^2 + b^2 = c^2 \]

are all multiples of the triples

\[
\begin{align*}
 a &= 1 - t^2 \\
 b &= 2t \\
 c &= 1 + t^2
\end{align*}
\]
The Mordell Conjecture

Example
The equation $y^2 + x^2 = 1$ has infinitely many solutions.
Example

The equation \(y^2 + x^2 = 1 \) has infinitely many solutions.

Theorem (Faltings)

For \(n \geq 5 \), the equation

\[
y^2 + x^n = 1
\]

has only finitely many solutions.
The Mordell Conjecture

Example
The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)
For $n \geq 5$, the equation
$$y^2 + x^n = 1$$
has only finitely many solutions.

Theorem (Faltings)
For $n \geq 5$, the equation
$$y^2 = f(x)$$
has only finitely many solutions if $f(x)$ is squarefree, with degree > 4.
Fermat Curves

Question

Why is Fermat’s last theorem believable?

1. \(x^n + y^n - z^n = 0 \) looks like a surface (3 variables)
2. \(x^n + y^n - 1 = 0 \) looks like a curve (2 variables)
Example

\[y^2 = (x^2 - 1)(x^2 - 2)(x^2 - 3) \]

This is a cross section of a two holed torus. The **genus** is the number of holes.

Conjecture (Mordell)

A curve of genus \(g \geq 2 \) has only finitely many rational solutions.
Question

Why is Fermat’s last theorem believable?

1. $x^n + y^n - 1 = 0$ is a curve of genus $(n - 1)(n - 2)/2$.
2. Mordell implies that for fixed $n > 3$, the nth Fermat equation has only finitely many solutions.
Question

What if \(n = 3 \)?

1. \(x^3 + y^3 - 1 = 0 \) is a curve of genus \((3 - 1)(3 - 2)/2 = 1 \).
2. We were lucky; \(Ax^3 + By^3 = Cz^3 \) can have infinitely many solutions.
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 6 \]

\[3^2 + 4^2 = 5^2, \ 3 \cdot 4 = 2 \cdot 6 \]
$x^2 + y^2 = z^2, \ xy = 2 \cdot 157$
The pair of equations

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has **infinitely many** solutions. **How large** is the smallest solution? **How many digits** does the smallest solution have?
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has infinitely many solutions. How large is the smallest solution? How many digits does the smallest solution have?
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has \textbf{infinitely many} solutions. \textbf{How large} is the smallest solution? \textbf{How many digits} does the smallest solution have?

\[
\begin{align*}
x &= \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
y &= \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
z &= \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{align*}
\]
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has infinitely many solutions. How large is the smallest solution? How many digits does the smallest solution have?

\[
x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}
\]

\[
y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}
\]

\[
z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\]

The denominator of \(z \) has 44 digits!
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has infinitely many solutions. How large is the smallest solution? How many digits does the smallest solution have?

\[
\begin{align*}
x & = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
y & = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
z & = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{align*}
\]

The denominator of \(z \) has 44 digits!

How did anyone ever find this solution?
Congruent number problem

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

has infinitely many solutions. How large is the smallest solution? How many digits does the smallest solution have?

\[x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \]

\[y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \]

\[z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576} \]

The denominator of \(z \) has 44 digits!

How did anyone ever find this solution?

“Next” solution has 176 digits!
Back of the envelope calculation

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

- \(\text{Num, den}(x, y, z) \leq 10 \sim 10^6 \) many, \textbf{1 min} on Emory’s computers.
Back of the envelope calculation

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

- \(\text{Num, den}(x, y, z) \leq 10 \sim 10^6 \) many, 1 min on Emory’s computers.
- \(\text{Num, den}(x, y, z) \leq 10^{44} \sim 10^{264} \) many, 10^{258} mins = 10^{252} years.

\[\frac{\text{many}}{\text{minutes}} = \frac{\text{many}}{\text{years}} \]
Back of the envelope calculation

\[x^2 + y^2 = z^2, \quad xy = 2 \cdot 157 \]

- \(\text{Num, den}(x, y, z) \leq 10 \sim 10^6 \) many, 1 min on Emory’s computers.
- \(\text{Num, den}(x, y, z) \leq 10^{44} \sim 10^{264} \) many, \(10^{258} \) mins = \(10^{252} \) years.
- \(10^9 \) many computers in the world – so \(10^{243} \) years.
Back of the envelope calculation

\[x^2 + y^2 = z^2, \ xy = 2 \cdot 157 \]

- \(\text{Num, den}(x, y, z) \leq 10 \sim 10^6 \) many, 1 min on Emory’s computers.
- \(\text{Num, den}(x, y, z) \leq 10^{44} \sim 10^{264} \) many, \(10^{258} \) mins = \(10^{252} \) years.
- \(10^9 \) many computers in the world – so \(10^{243} \) years
- Expected time of ‘heat death’ of universe – \(10^{100} \) years.

\[
\]
The only solutions to the equation

\[x^n + y^n = z^n + w^n, \quad n \geq 5 \]

satisfy \(xyzw = 0 \) or lie on the lines \(x = \pm y, \quad z = \pm w \) (and permutations).

Conjecture
The Swinnerton-Dyer K3 surface

\[x^4 + 2y^4 = 1 + 4z^4 \]
The Swinnerton-Dyer K3 surface

\[x^4 + 2y^4 = 1 + 4z^4 \]

Two ‘obvious’ solutions – \((\pm 1 : 0 : 0)\).
The Swinnerton-Dyer K3 surface

\[x^4 + 2y^4 = 1 + 4z^4 \]

- Two ‘obvious’ solutions – \((\pm 1 : 0 : 0)\).
- The next smallest solutions are \((\pm \frac{1484801}{1169407}, \pm \frac{1203120}{1169407}, \pm \frac{1157520}{1169407})\).

Problem

Find another solution.

Remark

1. \(10^{16}\) years to find via brute force.
2. Age of the universe – \(13.75 \pm 0.11\) billion years (roughly \(10^{10}\)).
Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to \(x^2 + y^3 = z^7 \) are the 16 triples

\[
(\pm 1, -1, 0), \quad (\pm 1, 0, 1), \quad \pm (0, 1, 1),
\]
The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

$(\pm 1, -1, 0), \ (\pm 1, 0, 1), \ \pm(0, 1, 1), \ (\pm 3, -2, 1), \ \ldots$
Fermat-like equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to \(x^2 + y^3 = z^7\) are the 16 triples

\[(\pm 1, -1, 0), \ (\pm 1, 0, 1), \ \pm (0, 1, 1), \ (\pm 3, -2, 1), \ (\pm 71, -17, 2),\]
Fermat-like equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

$(\pm 1, -1, 0)$, $(\pm 1, 0, 1)$, $\pm (0, 1, 1)$, $(\pm 3, -2, 1)$,
$(\pm 71, -17, 2)$, $(\pm 2213459, 1414, 65)$, $(\pm 15312283, 9262, 113)$,
$(\pm 21063928, -76271, 17)$.
Problem

What are the solutions to the equation $x^a + y^b = z^c$?
Problem

What are the solutions to the equation \(x^a + y^b = z^c \)?

Theorem (Darmon and Granville)

Fix \(a, b, c \geq 2 \). Then the equation \(x^a + y^b = z^c \) has only finitely many coprime integer solutions iff \(\chi = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 \leq 0 \).
Known Solutions to $x^a + y^b = z^c$

The ‘known’ solutions with

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$$

are the following:

$$1^p + 2^3 = 3^2$$

$$2^5 + 7^2 = 3^4, \ 7^3 + 13^2 = 2^9, \ 2^7 + 17^3 = 71^2, \ 3^5 + 11^4 = 122^2$$

$$17^7 + 76271^3 = 21063928^2, \ 1414^3 + 2213459^2 = 65^7$$

$$9262^3 + 153122832^2 = 113^7$$

$$43^8 + 96222^3 = 30042907^2, \ 33^8 + 1549034^2 = 15613^3$$
Known Solutions to $x^a + y^b = z^c$

The ‘known’ solutions with

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$$

are the following:

$$1^p + 2^3 = 3^2$$

$$2^5 + 7^2 = 3^4, \ 7^3 + 13^2 = 2^9, \ 2^7 + 17^3 = 71^2, \ 3^5 + 11^4 = 122^2$$

$$17^7 + 76271^3 = 21063928^2, \ 1414^3 + 2213459^2 = 65^7$$

$$9262^3 + 153122832^2 = 113^7$$

$$43^8 + 96222^3 = 30042907^2, \ 33^8 + 1549034^2 = 15613^3$$

Problem (Beal’s conjecture)

These are all solutions with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.
Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that
\[\frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1 < 0. \]
Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that
\[\frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1 < 0. \]

$1,000,000 prize for proof of conjecture...
Generalized Fermat Equations – Known Solutions

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that
\[\frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1 < 0.\]

$1,000,000 prize for proof of conjecture…

…or even for a counterexample.
Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to \(x^2 + y^3 = z^7 \) are the 16 triples

\[
(\pm 1, -1, 0), \ (\pm 1, 0, 1), \ \pm (0, 1, 1), \ (\pm 3, -2, 1),
\]
\[
(\pm 71, -17, 2), (\pm 2213459, 1414, 65), \ (\pm 15312283, 9262, 113),
\]
\[
(\pm 21063928, -76271, 17).
\]

\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0
\]
Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

$(\pm 1, -1, 0), \; (\pm 1, 0, 1), \; \pm(0, 1, 1), \; (\pm 3, -2, 1), \; (\pm 71, -17, 2), \; (\pm 2213459, 1414, 65), \; (\pm 15312283, 9262, 113), \; (\pm 21063928, -76271, 17)$.

\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0
\]

\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{6} - 1 = 0
\]
Examples of Generalized Fermat Equations

Theorem (Darmon, Merel)

Any pairwise coprime solution to the equation

\[x^n + y^n = z^2, \; n > 4 \]

satisfies \(xyz = 0 \).

\[\frac{1}{n} + \frac{1}{n} + \frac{1}{2} - 1 = \frac{2}{n} - \frac{1}{2} < 0 \]
The ideas behind the proof of FLT now permeate the study of diophantine problems.
The ideas behind the proof of FLT now permeate the study of diophantine problems.

Theorem (Bugeaud, Mignotte, Siksek 2006)

The only Fibonacci numbers that are perfect powers are

\[
F_0 = 0, \quad F_1 = F_2 = 1, \quad F_6 = 8, \quad F_{12} = 144.
\]
Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

\[x^2 + y^3 = z^5 \]
Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

\[x^2 + y^3 = z^5 \]

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0 \]
Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

\[x^2 + y^3 = z^5 \]

has infinitely many coprime solutions

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0 \]
The equation
\[x^2 + y^3 = z^5 \]
has infinitely many coprime solutions

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0 \]

\[(T/2)^2 + H^3 + (f/12^3)^5 \]

1. \(f = st(t^{10} - 11t^5s^5 - s^{10}) \),
2. \(H = \text{Hessian of } f \),
3. \(T = \text{a degree 3 covariant of the dodecahedron} \).
(p, q, r) such that $\chi < 0$ and the solutions to $x^p + y^q = z^r$ have been determined.

<table>
<thead>
<tr>
<th>Set</th>
<th>Authors/Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>${n, n, n}$</td>
<td>Wiles, Taylor-Wiles, building on work of many others</td>
</tr>
<tr>
<td>${2, n, n}$</td>
<td>Darmon-Merel, others for small n</td>
</tr>
<tr>
<td>${3, n, n}$</td>
<td>Darmon-Merel, others for small n</td>
</tr>
<tr>
<td>${5, 2n, 2n}$</td>
<td>Bennett</td>
</tr>
<tr>
<td>${(2, 4, n)}$</td>
<td>Ellenberg, Bruin, Ghioca $n \geq 4$</td>
</tr>
<tr>
<td>${(2, n, 4)}$</td>
<td>Bennett-Skinner; $n \geq 4$</td>
</tr>
<tr>
<td>${2, 3, n}$</td>
<td>Poonen-Shaefer-Stoll, Bruin. $6 \leq n \leq 9$</td>
</tr>
<tr>
<td>${2, 2\ell, 3}$</td>
<td>Chen, Dahmen, Siksek; primes $7 < \ell < 1000$ with $\ell \neq 31$</td>
</tr>
<tr>
<td>${3, 3, n}$</td>
<td>Bruin; $n = 4, 5$</td>
</tr>
<tr>
<td>${3, 3, \ell}$</td>
<td>Kraus; primes $17 \leq \ell \leq 10000$</td>
</tr>
<tr>
<td>${(2, 2n, 5)}$</td>
<td>Chen $n \geq 3^*$</td>
</tr>
<tr>
<td>${(4, 2n, 3)}$</td>
<td>Bennett-Chen $n \geq 3$</td>
</tr>
<tr>
<td>${(6, 2n, 2)}$</td>
<td>Bennett-Chen $n \geq 3$</td>
</tr>
<tr>
<td>${(2, 6, n)}$</td>
<td>Bennett-Chen $n \geq 3$</td>
</tr>
</tbody>
</table>
(p, q, r) such that $\chi < 0$ and the solutions to $x^p + y^q = z^r$ have been determined.

(n, n, n)	Wiles, Taylor-Wiles, building on work of many others
$(2, n, n)$	Darmon-Merel, others for small n
$(3, n, n)$	Darmon-Merel, others for small n
$(5, 2n, 2n)$	Bennett
$(2, 4, n)$	Ellenberg, Bruin, Ghioca $n \geq 4$
$(2, n, 4)$	Bennett-Skinner; $n \geq 4$
$(2, 3, n)$	Poonen-Shaefer-Stoll, Bruin. $6 \leq n \leq 9$
$(2, 2\ell, 3)$	Chen, Dahmen, Siksek; primes $7 < \ell < 1000$ with $\ell \neq 31$
$(3, 3, n)$	Bruin; $n = 4, 5$
$(3, 3, \ell)$	Kraus; primes $17 \leq \ell \leq 10000$
$(2, 2n, 5)$	Chen $n \geq 3^*$
$(4, 2n, 3)$	Bennett-Chen $n \geq 3$
$(6, 2n, 2)$	Bennett-Chen $n \geq 3$
$(2, 6, n)$	Bennett-Chen $n \geq 3$
$(2, 3, 10)$	ZB
Faltings’ theorem / Mordell’s conjecture

Theorem (Faltings, Vojta, Bombieri)

Let X be a smooth curve over \mathbb{Q} with genus at least 2. Then $X(\mathbb{Q})$ is finite.

Example

For $g \geq 2$, $y^2 = x^{2g+1} + 1$ has only finitely many solutions with $x, y \in \mathbb{Q}$.
Uniformity

Problem

1. Given X, compute $X(\mathbb{Q})$ exactly.
2. Compute bounds on $\#X(\mathbb{Q})$.

Conjecture (Uniformity)

There exists a constant $N(g)$ such that every smooth curve of genus g over \mathbb{Q} has at most $N(g)$ rational points.

Theorem (Caporaso, Harris, Mazur)

Lang’s conjecture \Rightarrow uniformity.
Elkies studied K3 surfaces of the form

\[y^2 = S(t, u, v) \]

with lots of rational lines, such that \(S \) restricted to such a line is a perfect square.
Coleman’s bound

Theorem (Coleman)

Let X be a curve of genus g and let $r = \text{rank}_\mathbb{Z} \text{Jac}_X(\mathbb{Q})$. Suppose $p > 2g$ is a prime of good reduction. Suppose $r < g$. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + 2g - 2.$$

Remark

1. A modified statement holds for $p \leq 2g$ or for $K \neq \mathbb{Q}$.

2. Note: this does not prove uniformity (since the first good p might be large).

Tools

p-adic integration and Riemann–Roch
(\textit{p-adic integration}) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \geq g - r$ such that,

$$\int_P^Q \omega = 0 \quad \forall P, Q \in X(\mathbb{Q}), \omega \in V$$

\textbf{(Coleman, via Newton Polygons)} Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \#(\text{div } \omega \cap D_P)$

\textbf{(Riemann-Roch)} $\sum n_P = 2g - 2$.

\textbf{(Coleman’s bound)} $\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$.

\text\text{David Zureick-Brown} (Emory University) \hspace{1cm} \text{Diophantine and tropical geometry} \hspace{1cm} \text{February 20, 2015} \hspace{1cm} \text{36 / 42}
Example (from McCallum-Poonen’s survey paper)

Example

\[X : y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1 \]

1. Points reducing to \(\tilde{Q} = (0, 1) \) are given by

\[
\begin{align*}
x &= p \cdot t, \text{ where } t \in \mathbb{Z}_p \\
y &= \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} = 1 + x^2 + \cdots
\end{align*}
\]

2. \[
\int_{P_{(0,1)}}^{P_t} \frac{xdx}{y} = \int_{0}^{t} (x - x^3 + \cdots)dx
\]
Chabauty’s method

\textbf{\((p\text{-adic integration})\) There exists} \(V \subset H^0(X_{Q_p}, \Omega^1_X) \) \text{ with}
\[\dim_{Q_p} V \geq g - r \]
\text{such that,}
\[\int_P^Q \omega = 0 \quad \forall P, Q \in X(Q), \omega \in V \]

\textbf{(Coleman, via Newton Polygons) Number of zeroes in a residue}
\text{disc} \(D_P \) \text{ is} \(\leq 1 + n_P \), \text{ where}
\[n_P = \# (\text{div} \omega \cap D_P) \]

\textbf{(Riemann-Roch)} \[\sum n_P = 2g - 2. \]

\textbf{(Coleman’s bound)} \[\sum_{P \in X(F_p)} (1 + n_P) = \#X(F_p) + 2g - 2. \]
Theorem (Stoll)

Let X be a hyperelliptic curve of genus g and let $r = \text{rank}_\mathbb{Z} \text{Jac}_X(\mathbb{Q})$. Suppose $r < g - 2$.

Let \mathcal{X} be a stable proper model of X. Then

$$\#X(\mathbb{Q}) \leq 8(r + 4)(g - 1) + \max\{1, 4r\} \cdot g$$

Tools

- p-adic integration on annuli
- Comparison of different analytic continuations of p-adic integration
Main Theorem (partial uniformity for curves)

Theorem (Katz, Rabinoff, ZB)

Let \(X \) be any curve of genus \(g \) and let \(r = \text{rank}_\mathbb{Z} \text{Jac}_X(\mathbb{Q}) \). Suppose \(r \leq g - 2 \). Let \(e = 3(g+1)^2(4g-4) \). Then

\[
\#X(\mathbb{Q}) \leq (2g - 2)6 + 2g\sqrt{2}) \ N_2(1/e, 2g - 2)
\]

where

\[
N_p(A, B) := \min \left\{ N \text{ s.t. } p^N \geq N^{1/A} p^B \right\}.
\]

Tools

- \(p \)-adic integration on annuli
- Comparison of different analytic continuations of \(p \)-adic integration
- Non-Archimedean (Berkovich) structure of a curve [BPR]
- Combinatorial restraints coming from the Tropical canonical bundle
Corollary ((Partially) effective Manin-Mumford)

There is an effective constant $N(g)$ such that if $g(X) = g$, then

$$\#(X \cap \text{Jac}_{X,tors})(\mathbb{Q}) \leq N(g)$$

Corollary

There is an effective constant $N'(g)$ such that if $g(X) = g > 3$ and X/\mathbb{Q} has totally degenerate, trivalent reduction mod 2, then

$$\#(X \cap \text{Jac}_{X,tors})(\mathbb{C}) \leq N'(g)$$

The second corollary is a big improvement

1. It requires working over a non-discretely valued field.
2. The bound only depends on the reduction type.
3. Integration over wide opens (c.f. Coleman) instead of discs and annuli.
Baker-Payne-Rabinoff and the slope formula

(Dual graph Γ of $X_{\mathbb{F}_p}$)

(Contraction Theorem) $\tau: X^\text{an} \rightarrow \Gamma$.

(Combinatorial harmonic analysis/potential theory)

f a meromorphic function on X^an

$F := (−\log |f|)|_\Gamma$ associated tropical, piecewise linear function

$\text{div } F$ combinatorial record of the slopes of F

(Slope formula) $\tau_* \text{div } f = \text{div } F$