The canonical ring of a stacky curve

David Zureick-Brown (Emory University)
John Voight (Dartmouth)

AMS Summer Institute in Algebraic Geometry

July 31, 2015

Slides available at http://www.mathcs.emory.edu/~dzb/slides/
Let Γ be a Fuchsian group (e.g. $\Gamma = \Gamma_0(N) \subset \text{SL}_2(\mathbb{Z})$).

Definition

A **modular form** for Γ of weight $k \in \mathbb{Z}_{\geq 0}$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

$$f(\gamma z) = (cz + d)^k f(z) \quad \text{for all } \gamma \in \Gamma$$

and such that the limit $\lim_{z \to *} f(z)$ exists for all cusps \ast.

Definition

Let $M_k(\Gamma)$ be the \mathbb{C}-vector space of modular forms for Γ of weight k.
Ring of Modular forms

Definition (Ring of Modular forms)

\[M(\Gamma) := \bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma) \]

Example

\[M(\text{SL}_2(\mathbb{Z})) \cong \mathbb{C}[E_4, E_6] \]

Theorem (Wagreich)

\(M(\Gamma) \) is generated by two elements if and only if

\[\Gamma = \text{SL}_2(\mathbb{Z}), \Gamma_0(2), \text{ or } \Gamma(2). \]
Definition (Ring of Modular forms)

\[M(\Gamma) := \bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma) \]

Example (LMFDB)

\[M(\Gamma_0(11)) \cong \mathbb{C}[E_2, f_E, g_4]/(g_4^2 - F(E_2, f_E)) \]

Example (Ji, 1998)

\[M(\Gamma_{2,3,7}) \cong \mathbb{C}[\Delta_{12}, \Delta_{16}, \Delta_{30}]/f(\Delta_{12}, \Delta_{16}, \Delta_{30}) \]
Rustom’s conjectures (2012)

Conjecture (Rustom)

The \mathbb{C}-algebra $M(\Gamma_0(N))$ is generated in weight at most 6 with relations in weight at most 12.

– This was proved by Wagreich in 1980/81.

Conjecture (Rustom)

The $\mathbb{Z}[1/6N]$-algebra $M(\Gamma_0(N), \mathbb{Z}[1/6N])$ is generated in weight at most 6 with relations in weight at most 12.

– $M_k(\Gamma_0(N), R)$ consists of forms with q-expansion in $R[[q]]$.

David Zureick-Brown and John Voight

The canonical ring of a stacky curve

July 31, 2015
Main Theorem

Conjecture (Rustom)
The \(\mathbb{Z}[1/6N] \)-algebra \(M(\Gamma_0(N), \mathbb{Z}[1/6N]) \) is generated in weight at most 6 with relations in weight at most 12.

Theorem (Voight, ZB)
Rustom’s conjecture is true.
Modular curves

1. $Y = \mathcal{H}/\Gamma$
2. $X = Y \cup \Delta = \mathcal{H}/\Gamma$

Kodaira-Spencer

$$M_k(\Gamma) \cong H^0(X, \Omega^1(\Delta) \otimes k/2)$$

$$f(z) \mapsto f(z) \, dz \otimes k/2$$

Log canonical ring

$$M(\Gamma) \cong R_{X,\Delta} := \bigoplus_k H^0(X, \Omega^1(\Delta) \otimes k)$$
Example: $X_0(11)$ (fundamental domain)
Example: $X_0(11), \Delta = P + Q$

Example (LMFDB)

$$\bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma_0(11)) \cong \mathbb{C}[E_2, f_E, g_4]/(g_4^2 - F(E_2, f_E))$$

Remark (Via Kodaira Spencer)

$$\bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma_0(11)) \cong \bigoplus_{k \in \mathbb{Z}_{\geq 0}} H^0(X_0(11), k(P + Q))$$

Remark (Riemann–Roch)

$$\dim H^0(X_0(11), k(P + Q)) = \max\{1, 2k\}$$

$$\dim \text{im} \left(H^0(X_0(11), P + Q)^\otimes 2 \to H^0(X_0(11), 2(P + Q)) \right) = 3$$
Log canonical map/ring

Definition

The **canonical map** $\phi_K : C \rightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) : \ldots : \omega_g(P)]$.

(An embedding iff C is not hyperelliptic.)

Facts

$$C \cong \text{Proj } R_{X,\Delta} \cong \text{Proj } \bigoplus_k H^0(X, \Omega^1(\Delta) \otimes_k)$$

Facts

The relations among $R_{X,1}$ are the defining equations of $\phi_K(C)$.
Let C be non-hyperelliptic, non-trigonal, not a plane quintic.

Theorem (Enriques-Noether-Baggage-Petri)

The canonical ring R_C is generated in degree 1 with relations in degree 2.

Remark

1. For C trigonal or a plane quintic R_C is generated in degree 1 with relations in degrees 2 and 3
2. (unless $g(C) = 3$, which has a single relation in degree 4)
3. For C hyperelliptic, there are generators in degrees 1,2, relations in degrees up to 4.
Let C be a curve and Δ a log divisor.

Theorem (Voight, ZB)

The log canonical ring R_C is generated in degree at most 3 with relations in degree at most 6.

Remark

Lots of exceptional cases if $0 < \deg \Delta \leq 2$.

Remark (Things stabilize)

1. Generators in degree 1 with relations in degree 2,3 if $\Delta = 3$
2. (Mumford.) Generators in degree 1 with relations in degree 2 if $\Delta \geq 4$
Log Petri’s theorem

Let C be a curve and Δ a log divisor.

Theorem (Voight, ZB)

The log canonical ring R_C is generated in degree at most 3 with relations in degree at most 6.

Corollary

Rustom’s conjecture is true if Γ acts without stabilizers.
Modular curves

1. \(Y = \mathcal{H}/\Gamma \)
2. \(X = Y \cup \Delta = \mathcal{H}/\Gamma \)

Kodaira-Spencer

\[
M_k(\Gamma) \cong H^0(X, \Omega^1(\Delta) \otimes k/2)
\]

\[
f(z) \mapsto f(z) \, dz \otimes k/2
\]

Log canonical ring

\[
M(\Gamma) \cong R_{X,\Delta} := \bigoplus_k H^0(X, \Omega^1(\Delta) \otimes k)
\]
Fig. 1
Fundamental Domain for $X(1)$

$$D = K + \Delta = -\infty$$

<table>
<thead>
<tr>
<th>d</th>
<th>dD</th>
<th>$\dim H^0(X, \lfloor dD \rfloor)$</th>
<th>$\dim M_{2d}(\text{SL}_2(\mathbb{Z}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$-\infty$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-2∞</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-3∞</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-4∞</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-5∞</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>-6∞</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Fractional divisors

Remark

1. Divisors are now **fractional**.
2. \(D = D_0 + \frac{n_1}{a_1} P_1 + \frac{n_2}{a_2} P_2 + \frac{n_3}{a_3} P_3 \)

Fact

\[K_{\mathcal{X}} = K_X + \sum \frac{e_P - 1}{e_P} P \]
Floors

Definition

The floor $[D]$ of a Weil divisor $D = \sum_i a_i P_i$ on \mathcal{X} is the divisor on X given by

$$[D] = \sum_i \left\lfloor \frac{a_i}{\# G_{P_i}} \right\rfloor \pi(P_i).$$

Fact

$$H^0(\mathcal{X}, D) = H^0(X, [D]).$$
Example: $X(1)$

$$D = K + \Delta = \frac{1}{2} P + \frac{2}{3} Q - \infty$$

<table>
<thead>
<tr>
<th>d</th>
<th>$\lfloor dD \rfloor$</th>
<th>$\deg \lfloor dD \rfloor$</th>
<th>$\dim H^0(X, \lfloor dD \rfloor)$</th>
<th>$M_{2d}(\text{SL}_2(\mathbb{Z}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$-\infty$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$P + Q - 2\infty$</td>
<td>0</td>
<td>1</td>
<td>E_4</td>
</tr>
<tr>
<td>3</td>
<td>$P + 2Q - 3\infty$</td>
<td>0</td>
<td>1</td>
<td>E_6</td>
</tr>
<tr>
<td>4</td>
<td>$2P + 2Q - 4\infty$</td>
<td>0</td>
<td>1</td>
<td>E_4^2</td>
</tr>
<tr>
<td>5</td>
<td>$2P + 3Q - 5\infty$</td>
<td>0</td>
<td>1</td>
<td>$E_4 E_6$</td>
</tr>
<tr>
<td>6</td>
<td>$3P + 4Q - 6\infty$</td>
<td>1</td>
<td>2</td>
<td>E_4^3, E_6^2</td>
</tr>
</tbody>
</table>
Main theorem

Theorem (Voight,ZB)

Let \((X, Δ)\) be a tame log stacky curve with signature \((g; e_1, \ldots, e_r; δ)\) over a field \(k\), and let \(e = \max(1, e_1, \ldots, e_r)\). Then the canonical ring

\[
R(X, Δ) = \bigoplus_{d=0}^{∞} H^0(X, Ω(Δ)⊗^d)
\]

is generated as a \(k\)-algebra by elements of degree at most \(3e\) with relations of degree at most \(6e\).

Remark

Moreover, if \(2g − 2 + δ \geq 0\), then \(R(X, Δ)\) is generated in degree at most \(\max(3, e)\) with relations in degree at most \(2 \max(3, e)\).
Final comments

Remark

1. We generalize to the relative and spin cases.
2. We give (relative) Gröbner bases, generic initial ideals.
3. Exact formulations of theorems are amenable to computation.