Basic Question

How often does p divide $h(-D)$?
Basic Question

What is

\[P(p \mid h(-D)) = \lim_{X \to \infty} \frac{\#\{0 \leq D \leq X \text{ s.t. } p \mid h(-D)\}}{\#\{0 \leq D \leq X\}}? \]
Guess: Random Integer?

\[P(p \mid h(-D)) = P(p \mid D) = \frac{1}{p} \]
\begin{equation}
P(p \mid h(-D)) \approx \frac{1}{p} + \frac{1}{p^2} - \frac{1}{p^5} - \frac{1}{p^7} + \cdots \quad (p \text{ odd})
\end{equation}

\begin{align*}
&= 1 - \prod_{i \geq 1} \left(1 - \frac{1}{p^i}\right) \\
&= 0.43 \ldots \neq 1/3 \quad (p = 3) \\
&= 0.23 \ldots \neq 1/5 \quad (p = 5)
\end{align*}

\begin{align*}
P(\text{Cl}(-D)_3 \cong \mathbb{Z}/9\mathbb{Z}) &\approx 0.070 \\
P(\text{Cl}(-D)_3 \cong (\mathbb{Z}/3\mathbb{Z})^2) &\approx 0.0097
\end{align*}
Random finite abelian groups

Idea

\[P(p \mid h(-D)) = P(p \mid \#G) = ??? \]
Let G_p be the set of isomorphism classes of **finite abelian groups of p-power order.**
Random finite abelian groups

Idea

\[P(p \mid h(-D)) = P(p \mid \#G) = ??? \]

Let \(G_p \) be the set of isomorphism classes of **finite abelian groups of \(p \)-power order**.

Theorem (Cohen, Lenstra)

(i) \[\sum_{G \in G_p} \frac{1}{\# \text{Aut } G} = \prod_i \left(1 - \frac{1}{p^i}\right)^{-1} = C_p^{-1} \]
Random finite abelian groups

Idea

\[P(p \mid h(-D)) = P(p \mid \#G) = ??? \]

Let \(G_p \) be the set of isomorphism classes of finite abelian groups of \(p \)-power order.

Theorem (Cohen, Lenstra)

(i) \[\sum_{G \in G_p} \frac{1}{\# \text{Aut } G} = \prod_i \left(1 - \frac{1}{p^i}\right)^{-1} = C_p^{-1} \]

(ii) \(G \mapsto \frac{C_p}{\# \text{Aut } G} \) is a probability distribution on \(G_p \)
Random finite abelian groups

Idea

\[P(p \mid h(-D)) = P(p \mid \#G) = ??? \]

Let \(G_p \) be the set of isomorphism classes of **finite abelian groups of \(p \)-power order.**

Theorem (Cohen, Lenstra)

(i) \[\sum_{G \in G_p} \frac{1}{\# \text{Aut } G} = \prod_i \left(1 - \frac{1}{p^i}\right)^{-1} = C_p^{-1} \]

(ii) \(G \mapsto \frac{C_p}{\# \text{Aut } G} \) is a **probability distribution** on \(G_p \)

(iii) \[\text{Avg } (\#G[p]) = \text{Avg } (p^{r_{p}(G)}) = 2 \]
Cohen and Lenstra’s conjecture

Let \(f : G_p \rightarrow \mathbb{Z} \) be a function.

Definition

\[
\text{Avg } f = \sum_{G \in G_p} \frac{C_p}{\# \text{Aut } G} \cdot f(G)
\]
Cohen and Lenstra’s conjecture

Let $f: G_p \rightarrow \mathbb{Z}$ be a function.

Definition

$$\text{Avg } f = \sum_{G \in G_p} \frac{C_p}{\# \text{Aut } G} \cdot f(G)$$

$$\text{Avg}_{\text{Cl}} f = \frac{\sum_{0 \leq D \leq X} f(\text{Cl}(-D)_p)}{\sum_{0 \leq D \leq X} 1}$$
Cohen and Lenstra’s conjecture

Let \(f : G_p \to \mathbb{Z} \) be a function.

Definition

\[
\text{Avg } f = \sum_{G \in G_p} \frac{C_p}{\# \text{Aut } G} \cdot f(G)
\]

\[
\text{Avg}_{\text{Cl}} f = \frac{\sum_{0 \leq D \leq X} f(\text{Cl}(-D)_p)}{\sum_{0 \leq D \leq X} 1}
\]

Conjecture (Cohen, Lenstra)

(i) \(\text{Avg}_{\text{Cl}} f = \text{Avg } f \)
Cohen and Lenstra’s conjecture

Let $f : \mathbb{G}_p \to \mathbb{Z}$ be a function.

Definition

$$\text{Avg } f = \sum_{G \in \mathbb{G}_p} \frac{C_p}{\# \text{Aut } G} \cdot f(G)$$

$$\text{Avg}_\text{Cl } f = \sum_{0 \leq D \leq X} f(\text{Cl}(-D)[p]) \frac{1}{\sum_{0 \leq D \leq X} 1}$$

Conjecture (Cohen, Lenstra)

(i) $\text{Avg}_\text{Cl } f = \text{Avg } f$

(ii) $\text{Avg } (\# \text{Cl}(-D)[p]) = 2$
Cohen and Lenstra’s conjecture

Let $f : G_p \rightarrow \mathbb{Z}$ be a function.

Definition

$$\text{Avg } f = \sum_{G \in G_p} \frac{C_p}{\# \text{Aut } G} \cdot f(G)$$

$$\text{Avg}_{\text{Cl}} f = \frac{\sum_{0 \leq D \leq X} f(\text{Cl}(-D)_p)}{\sum_{0 \leq D \leq X} 1}$$

Conjecture (Cohen, Lenstra)

(i) $\text{Avg}_{\text{Cl}} f = \text{Avg } f$

(ii) $\text{Avg } (\# \text{Cl}(-D)[p])^2 = 2 + p$
Cohen and Lenstra’s conjecture

Let $f : \mathbb{G}_p \rightarrow \mathbb{Z}$ be a function.

Definition

$$\text{Avg } f = \sum_{G \in \mathbb{G}_p} \frac{C_p}{\# \text{ Aut } G} \cdot f(G)$$

$$\text{Avg}_{\text{Cl } f} = \frac{\sum_{0 \leq D \leq X} f(\text{Cl}(-D)_p)}{\sum_{0 \leq D \leq X} 1}$$

Conjecture (Cohen, Lenstra)

(i) $\text{Avg}_{\text{Cl } f} = \text{Avg } f$

(ii) $\text{Avg } (\# \text{ Cl}(-D)[p])^2 = 2 + p$

(iii) $P(\text{Cl}(-D)_p \cong G) = \frac{C_p}{\# \text{ Aut } G}$.
<table>
<thead>
<tr>
<th>Researcher</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davenport-Heilbronn</td>
<td>$\text{Avg Cl}(–D)[3] = 2$</td>
</tr>
<tr>
<td>Bhargava</td>
<td>$\text{Avg Cl}(K)[2] = 3$ (K cubic)</td>
</tr>
<tr>
<td>Bhargava</td>
<td>counts quartic dihedral extensions</td>
</tr>
<tr>
<td>Kohnen-Ono</td>
<td>$N_{p</td>
</tr>
<tr>
<td>Heath-Brown</td>
<td>$N_{p</td>
</tr>
<tr>
<td>Byeon</td>
<td>$N_{\text{Cl}_p \cong (\mathbb{Z}/g\mathbb{Z})^2}(X) \gg \frac{x^{\frac{1}{g}}}{\log x}$</td>
</tr>
</tbody>
</table>
Cohen-Lenstra over $\mathbb{F}_q(t)$, $\ell \neq p$

\[
\text{Cl}(-D) = \text{Pic}(\text{Spec } \mathcal{O}_K)
\]

VS

\[
\text{Pic}(C)
\]
Cohen-Lenstra over $\mathbb{F}_q(t)$, $\ell \neq p$

$$\text{Cl}(-D) = \text{Pic}(\text{Spec } \mathcal{O}_K)$$

VS

$$\text{Pic}(C) \xrightarrow{\text{deg}} \mathbb{Z} \to 0$$
Cohen-Lenstra over $\mathbb{F}_q(t)$, $\ell \neq p$

\[
\text{Cl}(-D) = \text{Pic}(\text{Spec } \mathcal{O}_K)
\]

\[
\text{VS}
\]

\[
0 \rightarrow \text{Pic}^0(C) \rightarrow \text{Pic}(C) \xrightarrow{\text{deg}} \mathbb{Z} \rightarrow 0
\]
Basic Question over $\mathbb{F}_q(t)$, $\ell \neq p$

Fix $G \in G_{\ell}$.

What is $P(\text{Pic}^0(C)_\ell \cong G)$?

(Limit is taken as $\deg f \to \infty$, where $C : y^2 = f(x)$.)
\[\text{Aut } T_\ell (\text{Jac}_C) \cong \mathbb{Z}_\ell^{2g} \]
\[\text{Gal}_{\mathbb{F}_q} \to \text{Aut} \, T_\ell(Jac_C) \cong \mathbb{Z}_\ell^{2g} \]
Frob ∈ Gal_{F_q} → Aut T_ℓ(Jac_C) ≅ \mathbb{Z}_ℓ^{2g}
Main Tool over $\mathbb{F}_q(t)$ – Tate Module

- $\text{Frob} \in \text{Gal}_{\mathbb{F}_q} \to \text{Aut } T_\ell(Jac_C) \cong \mathbb{Z}_\ell^{2g}$

- $\text{coker } (\text{Frob} - \text{Id}) \cong Jac_C(\mathbb{F}_q)_\ell = \text{Pic}^0(C)$
Random Tate-modules

\[F \in \text{GL}_{2g}(\mathbb{Z}_\ell) \text{ (w/ Haar measure)} \]
$F \in \text{GL}_{2g}(\mathbb{Z}_\ell)$ (w/ Haar measure)

Theorem (Friedman, Washington)

$$P(\text{coker } F - I \cong L) = \frac{C_\ell}{\# \text{Aut } L}$$
\[F \in \text{GL}_{2g}(\mathbb{Z}_\ell) \text{ (w/ Haar measure)} \]

Theorem (Friedman, Washington)

\[P(\text{coker } F - I \cong L) = \frac{C_\ell}{\# \text{ Aut } L} \]

Conjecture

\[P(\text{Pic}^0(C) \cong L) = \frac{C_\ell}{\# \text{ Aut } L} \]
In the limit (w/ upper and lower densities):

Achter – conjectures are true for GSp_{2g} instead of GL_{2g}.

Ellenberg-Venkatesh – conjectures are true if $\ell \nmid q - 1$.

Garton – explicit conjectures for $\text{GSp}_{2g}, \ell \mid q - 1$.
Cohen-Lenstra over $\mathbb{F}_p(t)$, $\ell = p$

Basic question – what is $P(p \mid \# \text{Jac}_C(\mathbb{F}_p))$?
Cohen-Lenstra over $\mathbb{F}_p(t)$, $\ell = p$

\[T_\ell(\text{Jac}_C) \cong \mathbb{Z}_\ell^r, \quad 0 \leq r \leq g \]
Cohen-Lenstra over $\mathbb{F}_p(t)$, $\ell = p$

$$T_\ell(\text{Jac}_C) \cong \mathbb{Z}_\ell^r, \quad 0 \leq r \leq g$$

Definition

The p-**rank** of Jac_C is the integer r.
Cohen-Lenstra over $\mathbb{F}_p(t)$, $\ell = p$

$$T_\ell(\text{Jac}_C) \cong \mathbb{Z}_\ell^r, \ 0 \leq r \leq g$$

Definition

The \textbf{p-rank} of Jac_C is the integer r.

Complication

As C varies, r varies. Need to know the distribution of p-ranks, or find a better algebraic gadget than $T_\ell(\text{Jac}_C)$.
(i) $\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V)$.

Definition
Dieudonné Modules

Definition

(i) $\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V)$.

(ii) A **Dieudonné module** is a \mathcal{D}-module which is finite and free as a \mathbb{Z}_q module.
Dieudonné Modules

Definition

(i) \(\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V) \).

(ii) A Dieudonné module is a \(\mathcal{D} \)-module which is finite and free as a \(\mathbb{Z}_q \) module.

\[\text{Jac}_C \]
Dieudonné Modules

Definition

1. \(\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V) \).
2. A **Dieudonné module** is a \(\mathcal{D} \)-module which is finite and free as a \(\mathbb{Z}_q \) module.

\[
M = H^1_{\text{cris}}(\text{Jac} C, \mathbb{Z}_p)
\]

\(\text{Jac} C \)
Definition

(i) \(\mathbb{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V) \).

(ii) A Dieudonné module is a \(\mathbb{D} \)-module which is finite and free as a \(\mathbb{Z}_q \) module.

\[
M = H^1_{\text{cris}}(\text{Jac}_C, \mathbb{Z}_p)
\]
Dieudonné Modules

Definition

(i) \(\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}}V) \).

(ii) A **Dieudonné module** is a \(\mathcal{D} \)-module which is finite and free as a \(\mathbb{Z}_q \) module.

\[
M = H^1_{\text{cris}}(\text{Jac}_C, \mathbb{Z}_p)
\]

\[
\{ \text{Jac}_C[p^n] \}_n
\]

\[
H^1_{\text{dR}}(\text{Jac}_C, \mathbb{F}_p)
\]
Dieudonné Modules

Definition

(i) \(\mathcal{D} = \mathbb{Z}_q[F, V]/(FV = VF = p, Fz = z^\sigma F, Vz = z^{\sigma^{-1}} V) \).

(ii) A **Dieudonné module** is a \(\mathcal{D} \)-module which is finite and free as a \(\mathbb{Z}_q \) module.

\[
M = H^1_{\text{cris}}(\text{Jac}_C, \mathbb{Z}_p)
\]

\[
\{ \text{Jac}_C[p^n] \}_n
\]

\[
H^1_{\text{dR}}(\text{Jac}_C, \mathbb{F}_p)
\]

\[
V^{-1}: df \mapsto \frac{"d(f^p)"}{p}
\]
Invariants via Dieudonné Modules

Invariants

(i) \(p\text{-rank}(\text{Jac}_C) = \dim F^\infty(M \otimes \mathbb{F}_p). \)

(ii) \(a(\text{Jac}_C) = \dim \text{Hom}(\alpha_p, \text{Jac}_C[p]) = \dim (\ker V \cap \ker F). \)

(iii) \(\text{Jac}_C(\mathbb{F}_p)_p = \text{coker}(F - \text{Id})|_{F^\infty(M \otimes \mathbb{F}_p)}. \)
A **principally quasi polarized** Dieudonné module is a Dieudonné module M together with a non-degenerate symplectic pairing $\langle \cdot, \cdot \rangle$ such that for all $x, y \in M$,

$$\langle Fx, y \rangle = \sigma \langle x, V y \rangle.$$
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) Mod\(^{pqp}\) \(D\) has a natural probability measure.
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{p_{qp}} \mathbb{D}$ has a natural probability measure.

(Push forward along $\text{Sp}_{2g}(\mathbb{Z}_p)^2 \to \text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p)$)

(ii) $P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} \left(1 + p^{-i}\right)^{-1} \cdot s \prod_{i=1}^{\infty} \left(1 - p^{-i}\right)^{-1}$.

(iii) $P(r(M) = g - s) = \text{complicated but explicit expression}.$

(iii') $P(r(M) = g - 2) = (p^{-2} + p^{-3}) \cdot \prod_{i=1}^{\infty} \left(1 + p^{-i}\right)^{-1}$.

(iv) 1st moment is 2.

(v) $P(p \nmid \# \text{coker}(F - \text{Id}) | F_\infty (M \otimes F_p)) = C_p.$
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{pqp} \mathcal{D}$ has a natural probability measure.

(Push forward along $\text{Sp}_{2g}(\mathbb{Z}_p)^2 \to \text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p)$)

(ii) $P(a(M) = s) = p^{-(s+1)/2} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}.$
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{pqp} \mathbb{D}$ has a natural probability measure.

(Push forward along $\text{Sp}_{2g}(\mathbb{Z}_p)^2 \to \text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p)$)

(ii) $P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}$.

(iii) $P(r(M) = g - s) = \text{complicated but explicit expression}$.
Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{pqp} \mathbb{D}$ has a natural probability measure.

(Push forward along $\text{Sp}_{2g}(\mathbb{Z}_p)^2 \to \text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p))$

(ii) $P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}$.

(iii) $P(r(M) = g - s) =$ complicated but explicit expression.

(iii') $P(r(M) = g - 2) = (p^{-2} + p^{-3}) \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1}$.
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{pqp} \mathbb{D}$ has a natural probability measure.

\[(\text{Push forward along } \text{Sp}_{2g}(\mathbb{Z}_p)^2 \to \text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p))\]

(ii) $P(a(M) = s) = p^{-\left(\frac{s+1}{2}\right)} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}$.

(iii) $P(r(M) = g - s) = \text{complicated but explicit expression}$.

(iii') $P(r(M) = g - 2) = (p^{-2} + p^{-3}) \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1}$

(iv) 1^{st} moment is 2.
Main Theorem

Theorem (Cais, Ellenberg, ZB)

(i) $\text{Mod}^{pqp} \mathbb{D}$ has a natural probability measure.

(ii) $P(a(M) = s) = p^{-(\frac{s+1}{2})} \cdot \prod_{i=1}^{\infty} \left(1 + p^{-i}\right)^{-1} \cdot \prod_{i=1}^{s} \left(1 - p^{-i}\right)^{-1}$.

(iii) $P(r(M) = g - s) = \text{complicated but explicit expression}$.

(iii$'$) $P(r(M) = g - 2) = (p^{-2} + p^{-3}) \cdot \prod_{i=1}^{\infty} \left(1 + p^{-i}\right)^{-1}$

(iv) 1^{st} moment is 2.

(v) $P \left(p \nmid \# \text{coker}(F - \text{Id}) \mid F_{\infty} (M \otimes_{F_p}) \right) = C_p$.

David Zureick-Brown (Emory University) Random Dieudonné Modules November 13, 2012 19 / 29
Proofs

Part (i)

Mod^{qp} D has a natural probability measure.
Part (i)

\[\text{Mod}^{\text{pp}} \mathbb{D} \text{ has a natural probability measure.}\]

1. \((D, \langle , \rangle, F, V)\) s.t., \(FV = VF = p\) and \(\langle F(-), - \rangle = \sigma\langle - , V(-) \rangle\).
Proofs

Part (i)

\(\text{Mod}^{\text{pqp}} \mathbb{D} \) has a natural probability measure.

1. \((D, \langle \cdot, \cdot \rangle, F, V)\) s.t., \(FV = VF = p\) and \(\langle F(-), - \rangle = \sigma \langle -, V(-) \rangle\).

2. \(D = \mathbb{Z}_q^{2g}, \langle \cdot, \cdot \rangle = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, F_0 = \begin{bmatrix} pl & 0 \\ 0 & I \end{bmatrix}, V_0 = pF^{-1}\).
Proofs

Part (i)

\(\text{Mod}^{pqp} \mathbb{D} \) has a natural probability measure.

1. \((D, \langle , \rangle, F, V) \) s.t., \(FV = VF = p \) and \(\langle F(-), - \rangle = \sigma \langle - , V(-) \rangle \).

2. \(D = \mathbb{Z}_q^{2g}, \langle , \rangle = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, F_0 = \begin{bmatrix} pl & 0 \\ 0 & I \end{bmatrix}, V_0 = pF^{-1}. \)

Proposition

The double coset space \(\text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p) \) contains all \(pqp \) Dieudonné modules.
Proofs

Part (i)

\[\text{Mod}_{pq}^D \text{ has a natural probability measure.} \]

1. \((D, \langle , \rangle, F, V)\) s.t., \(FV = VF = p\) and \(\langle F(-), - \rangle = \sigma \langle - , V(-) \rangle.\)

2. \(D = \mathbb{Z}_{q^2}, \langle , \rangle = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, F_0 = \begin{bmatrix} pl & 0 \\ 0 & I \end{bmatrix}, V_0 = pF^{-1}.\)

Proposition

The double coset space \(\text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p)\) contains all \(pq\) Dieudonné modules.

Proof: Witt’s theorem – \(\text{Sp}_{2g}\) acts transitively on symplecto-bases.
Proofs

Part (i)

\(\text{Mod}^{pqp} \mathbb{D} \) has a natural probability measure.

1. \((D, \langle \cdot, \cdot \rangle, F, V)\) s.t., \(FV = VF = p\) and \(\langle F(\cdot), \cdot \rangle = \sigma \langle \cdot, V(\cdot) \rangle\).

2. \(D = \mathbb{Z}_q^{2g}, \langle \cdot, \cdot \rangle = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, F_0 = \begin{bmatrix} pl & 0 \\ 0 & I \end{bmatrix}, V_0 = pF^{-1}\).

Proposition

The double coset space \(\text{Sp}_{2g}(\mathbb{Z}_p) \cdot F_0 \cdot \text{Sp}_{2g}(\mathbb{Z}_p)\) contains all \(pqp\) Dieudonné modules.

Proof: Witt's theorem – \(\text{Sp}_{2g}\) acts transitively on symplecto-bases. Note: \(F \notin \text{Sp}_{2g}(\mathbb{Z}_p)\), but rather the subset of \(\text{GSp}_{2g}(\mathbb{Z}_p)\) of multiplier \(p^g\) matricies.
Proofs

Part (ii)

\[P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}. \]
Part (ii)

\[P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}. \]

1. Duality implies that \(W_1 := \ker(F \otimes \mathbb{F}_p) \) and \(W_2 := \ker(V \otimes \mathbb{F}_p) \) are maximal isotropics.
Proofs

Part (ii)

\[P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}. \]

1. Duality implies that \(W_1 := \ker(F \otimes \mathbb{F}_p) \) and \(W_2 := \ker(V \otimes \mathbb{F}_p) \) are maximal isotropics.
2. \(a(M) = \dim(W_1 \cap W_2) \)
Part (ii)

\[P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}. \]

1. Duality implies that \(W_1 := \ker(F \otimes \mathbb{F}_p) \) and \(W_2 := \ker(V \otimes \mathbb{F}_p) \) are maximal isotropics.
2. \(a(M) = \dim(W_1 \cap W_2) \)
3. Argue that \(W_1 \) and \(W_2 \) are randomly distributed.
Part (ii)

\[P(a(M) = s) = p^{-\binom{s+1}{2}} \cdot \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \cdot \prod_{i=1}^{s} (1 - p^{-i})^{-1}. \]

1. Duality implies that \(W_1 := \ker(F \otimes \mathbb{F}_p) \) and \(W_2 := \ker(V \otimes \mathbb{F}_p) \) are maximal isotropics.
2. \(a(M) = \dim(W_1 \cap W_2) \)
3. Argue that \(W_1 \) and \(W_2 \) are randomly distributed.
4. This expression is the probability that two random maximal isotropics intersect with dimension \(s \).
Part (ii)

\[P(a(M) = s) = p^{-\left(\frac{s+1}{2}\right)} \cdot \prod_{i=1}^{\infty} \left(1 + p^{-i}\right)^{-1} \cdot \prod_{i=1}^{s} \left(1 - p^{-i}\right)^{-1}. \]

1. Duality implies that \(W_1 := \ker(F \otimes \mathbb{F}_p) \) and \(W_2 := \ker(V \otimes \mathbb{F}_p) \) are maximal isotropics.

2. \(a(M) = \dim(W_1 \cap W_2) \)

3. Argue that \(W_1 \) and \(W_2 \) are randomly distributed.

4. This expression is the probability that two random maximal isotropics intersect with dimension \(s \).

5. Compute this with Witt’s theorem (\(\text{Sp}_{2g} \) acts transitively on pairs of maximal isotropics whose intersection has dimension \(s \)), and compute explicitly the size of the stabilizers.
Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression}. \]
Proofs

Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression}. \]

1. Recall: \(r(M) = \dim F^\infty(M) = \text{rank}(F \otimes F_p)^g \).
Proofs

Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression.} \]

1. Recall: \(r(M) = \dim F^\infty(M) = \rank(F \otimes \mathbb{F}_p)^g. \)

2. (Prüfer, Crabb, others) The number of nilpotent \(N \in M_n(\mathbb{F}_q) \) is \(q^{n(n-1)}. \) Able to modify Crabb’s argument:
Proofs

Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression}. \]

1. Recall: \(r(M) = \dim F^\infty(M) = \text{rank}(F \otimes \mathbb{F}_p)^g. \)

2. (Prüfer, Crabb, others) The number of nilpotent \(N \in M_n(\mathbb{F}_q) \) is \(q^{n(n-1)}. \) Able to modify Crabb’s argument:

 1. Given \(N \) nilpotent, get a flag \(V_i := N^i(V). \)
Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression.} \]

1. Recall: \(r(M) = \dim F^\infty(M) = \text{rank}(F \otimes \mathbb{F}_p)^g. \)

2. (Prüfer, Crabb, others) The number of nilpotent \(N \in M_n(\mathbb{F}_q) \) is \(q^{n(n-1)}. \) Able to modify Crabb’s argument:

 1. Given \(N \) nilpotent, get a flag \(V_i := N^i(V). \)
 2. There is a unique basis \(\{y_1, \ldots, y_g\} \) such that \(N(y_g) = 0 \) and \(V_i = \langle N^i(y_{m_i+1}), \ldots, N(y_{g-1}) \rangle \) (where \(m_i = g - \dim V_{i-1} \))
Proofs

Part (iii)

\[P(r(M) = g - s) = \text{complicated but explicit expression}. \]

1. Recall: \(r(M) = \dim F^\infty(M) = \text{rank}(F \otimes \mathbb{F}_p)^g. \)

2. (Prüfer, Crabb, others) The number of nilpotent \(N \in M_n(\mathbb{F}_q) \) is \(q^{n(n-1)}. \) Able to modify Crabb’s argument:

 1. Given \(N \) nilpotent, get a flag \(V_i := N^i(V). \)
 2. There is a unique basis \(\{y_1, \ldots, y_g\} \) such that \(N(y_g) = 0 \) and \(V_i = \langle N^i(y_{m_i+1}), \ldots, N(y_{g-1}) \rangle \) (where \(m_i = g - \dim V_{i-1} \))
 3. The map \(N \mapsto (N(y_1), \ldots, N(y_{g-1})) \in V^{n-1} \) is bijective.
Part (iv)

1^{st} moment is 2: $\text{Avg}(\#G(F_p)[p]) = 2$
Part (iv)

1st moment is 2: \(\text{Avg}(\#G(\mathbb{F}_p)[p]) = 2 \)

1. First fix the \(p \)-corank.
Proofs

Part (iv)

1st moment is 2: \(\text{Avg} \left(\# G(F_p)[p] \right) = 2 \)

1. First fix the \(p \)-corank.
 - Associated \(p \)-divisible group decomposes as
 \[
 G = G^m \times G^{\text{et}} \times G^{ll}.
 \]
Proofs

Part (iv)

1st moment is 2: \(\text{Avg}(\#G(\mathbb{F}_p)[p]) = 2 \)

1 First fix the \(p \)-corank.
 1 Associated \(p \)-divisible group decomposes as
 \[
 G = G^m \times G^{et} \times G^{ll}.
 \]

2 Fixing the \(p \)-corank fixes the dimension of \(G^{ll} \)
Part (iv)

1st moment is 2: \(\text{Avg}(\#G(\mathbb{F}_p)[p]) = 2 \)

1. First fix the \(p \)-corank.
 1. Associated \(p \)-divisible group decomposes as
 \[
 G = G^m \times G^{et} \times G^\flat.
 \]

2. Fixing the \(p \)-corank fixes the dimension of \(G^\flat \)

2. (Show that \(G \) random \(\Rightarrow \) \(G^{et} \) random.)
Part (iv)

1st moment is 2: \(\text{Avg}(\#G(\mathbb{F}_p)[p]) = 2 \)

1 First fix the \(p \)-corank.
 1 Associated \(p \)-divisible group decomposes as
 \[G = G^m \times G^{et} \times G^{ll}. \]

2 Fixing the \(p \)-corank fixes the dimension of \(G^{ll} \)

2 (Show that \(G \) random \(\Rightarrow \) \(G^{et} \) random.)

3 \(G(\mathbb{F}_p) = G^{et}(\mathbb{F}_p) = \text{coker}(F|_{\mathcal{M}^{et}} - \text{Id}). \)
Part (iv)

1st moment is 2: \(\text{Avg}(\#G(\mathbb{F}_p)[p]) = 2 \)

1. First fix the \(p \)-corank.

 Associated \(p \)-divisible group decomposes as

 \[G = G^m \times G^{et} \times G'^{ll}. \]

2. Fixing the \(p \)-corank fixes the dimension of \(G'^{ll} \)

 (Show that \(G \) random \(\Rightarrow G^{et} \) random.)

3. \(G(\mathbb{F}_p) = G^{et}(\mathbb{F}_p) = \text{coker}(F|_{\text{Met}} - \text{Id}). \)

4. \(F|_{\text{Met}} \) is random in \(\text{GL}_g(\mathbb{Z}_p) \).
Part (v)

\[P \left(p \nmid \# \text{coker}(F - \text{Id}) \mid_{F^\infty(M \otimes \mathbb{F}_p)} \right) = C_p. \]
Part (v)

\[P \left(p \mid \# \text{coker}(F - \text{Id}) \mid F^\infty(M \otimes \mathbb{F}_p) \right) = C_p. \]

Basically the same proof as the last part.
Question

Does $P(p \nmid \# \text{Jac}_C(F_p)) = C_p$?
Question
Does \(P(p \nmid \# \text{Jac}_C(\mathbb{F}_p)) = C_p \)?

Data
- \(C \) hyperelliptic, \(p \neq 2 \) – **YES**!
Question

Does $P(p \nmid \# \text{Jac}_C(\mathbb{F}_p)) = C_p$?

Data

- C hyperelliptic, $p \neq 2$ – **YES**!
- C plane curve, $p \neq 2$ – **YES**!
Question

Does \(P(p \nmid \# \text{Jac}_C(\mathbb{F}_p)) = C_p \)?

Data

- \(C \) hyperelliptic, \(p \neq 2 \) – **YES**!
- \(C \) plane curve, \(p \neq 2 \) – **YES**!
- \(C \) plane curve, \(p = 2 \) –
Question

Does \(P(p \nmid \# \text{Jac}_C(\mathbb{F}_p)) = C_p \)?

Data

- \(C \) hyperelliptic, \(p \neq 2 \) – YES!
- \(C \) plane curve, \(p \neq 2 \) – YES!
- \(C \) plane curve, \(p = 2 \) – NO!?!
Theorem (Cais, Ellenberg, ZB)

\[P(2 \nmid \# \text{Jac}_C(\mathbb{F}_2)) = 0 \] for plane curves of \textbf{odd} degree.
Theorem (Cais, Ellenberg, ZB)

\[P(2 \nmid \# \text{Jac}_C(F_2)) = 0 \] for plane curves of odd degree.

Proof – theta characteristics.
\[P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \]

\[= \prod_{i=1}^{\infty} (1 - p^{-2i+1})? \]
a-number data

Does

\[
P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} = \prod_{i=1}^{\infty} (1 - p^{-2i+1})?
\]

Data

- C hyperelliptic, $p \neq 2$ -
a-number data

Does

$$P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1}$$

$$= \prod_{i=1}^{\infty} (1 - p^{-2i+1})?$$

Data

- C hyperelliptic, $p \neq 2$ — **not quite**.
Does

\[P(\text{a}(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \]

\[= \prod_{i=1}^{\infty} (1 - p^{-2i+1})? \]

Data

- \(C \) hyperelliptic, \(p \neq 2 \) – not quite.

\[P(\text{a}(\text{Jac}_C(\mathbb{F}_p)) = 0) = 1 - 3^{-1} \]

\((p = 3)\)
Does

$$P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1}$$

$$= \prod_{i=1}^{\infty} (1 - p^{-2i+1})?$$

Data

- C hyperelliptic, $p \neq 2$ – not quite.

$$P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = 1 - 3^{-1}$$

$$= (1 - 5^{-1})(1 - 5^{-3}) \quad (p = 3)$$

$$= (1 - 7^{-1})(1 - 7^{-3})(1 - 7^{-5}) \quad (p = 5)$$
a-number data

\[P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \prod_{i=1}^{\infty} (1 + p^{-i})^{-1} \]

\[= \prod_{i=1}^{\infty} (1 - p^{-2i+1})? \]

Data

- C hyperelliptic, \(p \neq 2 \) – not quite.

\[P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = 1 - 3^{-1} \quad (p = 3) \]
\[= (1 - 5^{-1})(1 - 5^{-3}) \quad (p = 5) \]
\[= (1 - 7^{-1})(1 - 7^{-3})(1 - 7^{-5}) \quad (p = 7) \]
Rational points on Moduli Spaces

\[P(a(\text{Jac}_{C_f}(\mathbb{F}_p))) = 0) = \lim_{g \to \infty} \frac{\#H^\text{ord}_g(\mathbb{F}_p)}{\#H_g(\mathbb{F}_p)}. \]
- \(P(a(Jac_{C_f}(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#H^\text{ord}_g(\mathbb{F}_p)}{\#H_g(\mathbb{F}_p)}. \)

- One can access this through cohomology and the Weil conjectures.
- $P(a(\text{Jac}_{C_f}(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\# \mathcal{H}_g^{\text{ord}}(\mathbb{F}_p)}{\# \mathcal{H}_g(\mathbb{F}_p)}$.

- One can access this through cohomology and the Weil conjectures.

- Our data suggests that $\mathcal{H}_g^{\text{ord}}$ has cohomology that does not arise by pulling back from \mathcal{H}_g.
Rational points on Moduli Spaces

- $P(a(Jac\,_{Cf}(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#\mathcal{H}_g^{ord}(\mathbb{F}_p)}{\#\mathcal{H}_g(\mathbb{F}_p)}$.

- One can access this through cohomology and the Weil conjectures.

- Our data suggests that \mathcal{H}_g^{ord} has cohomology that does not arise by pulling back from \mathcal{H}_g.

- $P(a(Jac\,_{C}(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#\mathcal{M}_g^{ord}(\mathbb{F}_p)}{\#\mathcal{M}_g(\mathbb{F}_p)} = ???$
Rational points on Moduli Spaces

- $P(a(\text{Jac}_{C_f}(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#H^\text{ord}_g(\mathbb{F}_p)}{\#H_g(\mathbb{F}_p)}$.

- One can access this through cohomology and the Weil conjectures.

- Our data suggests that H^ord_g has cohomology that does not arise by pulling back from H_g.

- $P(a(\text{Jac}_C(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#M^\text{ord}_g(\mathbb{F}_p)}{\#M_g(\mathbb{F}_p)} = ???$

- $P(a(A(\mathbb{F}_p)) = 0) = \lim_{g \to \infty} \frac{\#A^\text{ord}_g(\mathbb{F}_p)}{\#A_g(\mathbb{F}_p)} = ???$
Thank you

Thank You!