In the following, please simplify any negations.

1. Write the negation of each of the following:
 a) There exists an integer n such that if n is a multiple of 3, then n^2 is a multiple of 9.
 b) For all real numbers x, if $x < 0$ then \sqrt{x} is not a real number.

2. Write the negation and contrapositive of each of the following:
 a) If n and m are even, then $n + m$ is even.
 b) $P \Rightarrow (Q \land \neg R)$.

3. Extra credit (Due Thursday, Sept. 8).
 a) Prove that $\sqrt{3}$ is irrational using the same technique as in class.
 b) Does the proof from class work for $\sqrt{5}$? If not, explain which step fails.