MATH 250 HANDOUT 15 - COMPOSITIONS AND INJECTIVITY/SURJECTIVITY

(1) Let \(f: \mathbb{R} \to \mathbb{R} \) be the function \(f(x) = \frac{1}{1+x^2} \) and let \(g: \mathbb{R} \to \mathbb{R} \) be the function \(g(x) = e^x \).

(a) What is \(g \circ f(0) \)?
(b) What is \(f \circ g(0) \)?
(c) Give a formula for \(f \circ g \) and \(g \circ f \).

(2) Let \(f: \mathbb{R} \to \mathbb{Z} \) be the function \(f(x) = \lfloor x \rfloor \) (i.e., round \(x \) down to the nearest integer) and let \(g: \mathbb{Z} \to \mathbb{Z} \) be the function \(g(n) = \) ‘the number of distinct prime factors of \(n \)’.
(So \(g(0) = g(1) = 0, g(4) = 1, g(6) = 2 \))

(a) What is \(g \circ f(\pi) \)?
(b) What is \(g \circ f(91.1023124) \)?
(c) Is \(g \circ f \) injective? Surjective?

(3) Let \(f: \mathbb{Z} \to P(\mathbb{Z}) \) be the function \(f(n) = n \) and let \(g: P(\mathbb{Z}) \to P(\mathbb{Z}) \) be the function \(g(S) = S \cap \{1\} \).

(a) What is \(g \circ f(0) \)?
(b) What is \(g \circ f(1) \)?
(c) Give a formula for \(g \circ f \).
(4) Let $f: A \to B$ and $g: B \to C$ be functions. Prove or disprove each of the following:

(a) If f and g are injections, then gf is an injection.
(b) If f and g are surjections, then gf is a surjection.
(c) If f and g are bijections, then gf is a bijection.
(d) If gf is an injection, then f and g are injections.
(e) If gf is a surjection, then f and g are surjections.
(f) If gf is a bijection, then f and g are bijections.
(g) If gf is an injection, then f is an injection.
(h) If gf is an injection, then g is an injection.
(i) If gf is a surjection, then f is a surjection.
(j) If gf is a surjection, then g is a surjection.
(k) If gf is a bijection, then f is a bijection.
(l) If gf is a bijection, then g is a bijection.
(m) If gf is an injection and g is invertible, then f is an injection.