PROBLEMS ABOUT COUNTABLE SETS

This is a collection of problems from class and from the homework that I would like students to be able to do. For each of these sets, either prove directly that it is countable (i.e., write down a bijection from $\mathbb{Z}_{>0}$), or use the injectivity, surjectivity, or union theorem. I may or may not ask you to prove all of your claims (i.e., I may ask you to write down a bijection, but not to prove that the map you wrote down is a bijection), but in general still expect you to justify every detail unless I request otherwise.

On the exam, I will make it clear what you are allowed to assume (i.e., “Prove that \mathbb{Q} is countable. You may assume that $\mathbb{Z} \times \mathbb{Z}$ is countable.”). For this worksheet though, to do any given problem, you may use the result of any previous problem.

(1) Prove that each of the following is countable.
 (a) \mathbb{Z}
 (b) $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$
 (c) \mathbb{Q}
 (d) $\mathbb{Z} \times \mathbb{Z}$
 (e) $\{e^n | n \in \mathbb{Z}\}$
 (f) $\mathbb{Q}^+ \cup \{e^n | n \in \mathbb{Z}\}$
 (g) $\mathbb{Q} \times \mathbb{Q}$
 (h) \mathbb{Q}^n
 (i) $\mathbb{Q}_d = \text{set of polynomials of rational coefficients of degree at most } d$.
 (j) \mathbb{Q}
 (k) $P_{BD}(\mathbb{Z})$
 (l) $\text{Fun}_{BD}(\mathbb{Z})$
 (m) $\text{Seq}_{BD}(\mathbb{Z}_{>0})$
 (n) \mathbb{Q}

In addition, make sure that you can do the homework problems, especially 6 and 11 of 6.1.
(2) **Hints:**

(a) \(\mathbb{Z} \); Hint: write down an explicit bijection
(b) \(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \); Hint: injectivity theorem.
(c) \(\mathbb{Q} \); Hint: Union theorem or surjection theorem.
(d) \(\mathbb{Z} \times \mathbb{Z} \); Hint: union theorem or surjection theorem.
(e) \(\{ e^n \mid n \in \mathbb{Z} \} \); Hint: write down an explicit bijection with \(\mathbb{Z} \)
(f) \(\mathbb{Q}^+ \cup \{ e^n \mid n \in \mathbb{Z} \} \); Hint: union theorem + injection theorem
(g) \(\mathbb{Q} \times \mathbb{Q} \); Hint: union theorem
(h) \(\mathbb{Q}^n \); Hint: Union theorem
(i) \(\mathbb{Q}_d \); Hint: find a bijection with a set from a previous problem.
(j) \(\mathbb{Q} \); Hint: Union theorem
(k) \(P_{BD}(\mathbb{Z}) \); Hint: Union theorem and surjection theorem. This one is just like \(\mathbb{Q} \).
(l) \(\text{Fun}_{BD}(\mathbb{Z}) \); Hint: Union theorem
(m) \(\text{Seq}_{BD}(\mathbb{Z}_{>0}) \); Hint: Union or surjection theorem
(n) \(\mathbb{Q} \); Hint: union theorem